留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尼龙6填料对碳纤维-环氧树脂复合材料力学与摩擦磨损性能的提升机制

田经纬 白艳博 李承高 咸贵军

田经纬, 白艳博, 李承高, 等. 尼龙6填料对碳纤维-环氧树脂复合材料力学与摩擦磨损性能的提升机制[J]. 复合材料学报, 2023, 41(0): 1-15
引用本文: 田经纬, 白艳博, 李承高, 等. 尼龙6填料对碳纤维-环氧树脂复合材料力学与摩擦磨损性能的提升机制[J]. 复合材料学报, 2023, 41(0): 1-15
Jingwei TIAN, Yanbo BAI, Chenggao LI, Guijun XIAN. Enhancement mechanism of nylon 6 filler on the mechanical and frictional wear properties of carbon fiber-epoxy resin composites[J]. Acta Materiae Compositae Sinica.
Citation: Jingwei TIAN, Yanbo BAI, Chenggao LI, Guijun XIAN. Enhancement mechanism of nylon 6 filler on the mechanical and frictional wear properties of carbon fiber-epoxy resin composites[J]. Acta Materiae Compositae Sinica.

尼龙6填料对碳纤维-环氧树脂复合材料力学与摩擦磨损性能的提升机制

基金项目: 国家重点研发计划 (2021YFB3704402);国家自然科学基金 (52008137);黑龙江省自然科学基金 (LH2021E073)
详细信息
    通讯作者:

    咸贵军,博士,教授,博士生导师,研究方向为土木工程纤维增强树脂复合材料与结构 E-mail: gjxian@hit.edu.cn

  • 中图分类号: TB332

Enhancement mechanism of nylon 6 filler on the mechanical and frictional wear properties of carbon fiber-epoxy resin composites

Funds: National Key Research and Development Program of China (2021YFB3704402); National Natural Science Foundation of China (52008137); Heilongjiang Provincial Natural Science Foundation of China (LH2021E073)
  • 摘要: 碳纤维-环氧树脂复合材料具有轻质高强、耐腐蚀、抗疲劳等优异性能,被广泛作为功能材料应用于土木工程结构修复与新建中。本文拟添加具有高断裂韧性、自润滑性和耐疲劳性能的尼龙6提升短切碳纤维增强环氧树脂基复合材料的摩擦磨损性能,研发可在高温、高载及往复运动等复杂环境下服役的高性能复合材料。试验研究了添加尼龙6对碳纤维-环氧树脂复合材料热、力学以及摩擦磨损性能的影响,结合微观形貌与结构分析,研究了性能提升机制。研究发现,添加7.5wt.%尼龙6后,复合材料的拉伸断裂韧性提升了199%,断裂破坏模式由脆性断裂转变为韧性断裂,拉伸断口形貌由“平原状”转变为“沟壑状”,玻璃化转变温度提升了15.2℃。添加10wt.%尼龙6可以显著降低复合材料的摩擦系数(~80%)、磨损速率(~53%)、划痕宽度(~22%)与线粗糙度(~15%),耐磨损性能的提升机制可归因于由尼龙6协助形成了一层均匀致密的润滑隔离膜,磨损类型由严重的疲劳磨损转变为轻微的粘着磨损或磨粒磨损。尼龙6填料对碳纤维-环氧树脂复合材料力学和摩擦磨损性能的影响:(a)磨损设备;(b)拉伸性能;(c)摩擦系数;(d)磨损速率

     

  • 图  1  所选树脂体系化学结构式

    Figure  1.  Chemical structure formula of the selected resin system

    图  2  力学增强相SCFs的电镜图((a)和(b))和摩擦润滑相PA6的粒径分布图(c)

    Figure  2.  Electron micrographs of the mechanically enhanced phase SCFs((a) and (b))and particle size distribution of the friction lubricated phase PA6((c))

    图  3  往复式摩擦磨损试验机:(a)摩擦副系统;(b)机器结构原理;(c)摩擦盘系统;(d)电机驱动器

    Figure  3.  Reciprocating friction and wear tester: (a) friction pair system; (b) machine structure principle; (c) friction disk system; (d) motor driver

    图  4  PA6改性HTREPC的力学拉伸性能:(a)应力应变曲线;(b)拉伸强度;(c)断裂伸长率;(d)断裂韧性

    Figure  4.  Mechanical tensile properties of nylon 6 modified HTREPC: (a) stress-strain curves; (b) tensile strength; (c) elongation at break; (d) fracture toughness

    图  5  HTREPC拉伸断口低/高倍表面形貌分析:(a)/(d)Control;(b)/(e)EPCP2.5;(c)/(f)EPCP7.5

    Figure  5.  Surface morphology analysis of HTREPC tensile fractures at low/high magnification: (a)/(d) Control; (b)/(e) EPCP2.5; (c)/(f) EPCP7.5

    图  6  PA6改性HTREPC的热力学性能:(a)储存模量;(b)损耗因子

    Figure  6.  Thermomechanical properties of nylon 6 modified HTREPC: (a) storage modulus; (b) Tan delta

    图  7  PA6改性HTREPC的热学性能:(a)热重;(b)热流

    Figure  7.  Thermal properties of nylon 6 modified HTREPC: (a) thermogravimetry; (b) heat flow

    图  8  (a)傅里叶红外光谱分析;(b)PA6填料与两种树脂基体的氢键作用

    Figure  8.  (a) Fourier transform infrared spectroscopy analysis; (b) hydrogen bonding action between PA6 filler and two types of resin matrix

    图  9  PA6对HTREPC摩擦磨损性能的影响:(a)摩擦系数;(b)磨损速率和划痕宽度;(c)划痕轮廓图;(d)线粗糙度

    Figure  9.  Effect of nylon 6 on the friction and wear properties of HTREPC: (a) friction coefficient; (b) wear rate and scratch width; (c) scratch profile diagram; (d) line roughness

    图  10  HTREPC表面划痕和对应研磨球形貌图:(a)和(d)Control;(b)和(e)EPCP5;(c)和(f)EPCP10

    Figure  10.  Scratch morphologies of the HTREPC surface and the corresponding grinding ball: (a) and (d) Control; (b) and (e) EPCP5; (c) and (f) EPCP10

    图  11  HTREPC表面划痕的低/高倍SEM图:(a)和(d)Control;(b)和(e)EPCP5;(c)和(f)EPCP10

    Figure  11.  Low/high magnification SEM images of HTREPC surface scratches: (a) and (d) Control; (b) and (e) EPCP5; (c) and (f) EPCP10

    图  12  HTREPC往复摩擦磨损类型:(a)分层磨损(疲劳磨损);(b)粘着磨损;(c)磨粒磨损

    Figure  12.  Types of reciprocating friction and wear of HTREPC: (a) delamination wear (fatigue wear); (b) adhesive wear; (c) abrasive wear

    表  1  耐高温复合材料用环氧树脂体系(HTREP)

    Table  1.   Epoxy resin systems for high temperature-resistant composites (HTREP)

    FormulaTs-AAG80F51Hardener

    (Ts-B:HTDA)
    Normal EP 0 100% 0% 0% 3∶2
    HTREP 1 0% 100% 0% 3∶2
    2 0% 0% 100% 3∶2
    3 67% 33% 0% 3∶2
    4 67% 0% 33% 3∶2
    5 50% 50% 0% 3∶2
    6 50% 0% 50% 3∶2
    Notes: The amine equivalents of the curing agents Ts-B and HTDA are 69 g/mol and 32 g/mol respectively; the epoxy equivalents of the epoxy resins Ts-A/F51 and AG80 are 196 g/mol and 111 g/mol respectively.
    下载: 导出CSV

    表  2  基于最优耐高温树脂基体的PA6/SCFs添加配方

    Table  2.   Formulation of PA6/SCFs additives based on optimal high temperature-resistant resin matrix

    SpecimensSCFs
    /wt.%
    PA6
    /wt.%
    BYK-066 N
    /wt.%
    Diluent
    /wt.%
    Control 10.0 0.0 1.0 2.0
    EPCP2.5 10.0 2.5 1.0 2.0
    EPCP5 10.0 5.0 1.0 2.0
    EPCP7.5 10.0 7.5 1.0 2.0
    EPCP10 10.0 10.0 1.0 2.0
    Notes: EP stands for optimal high-temperature resistant epoxy resin matrix; C stands for short-cut carbon fibres (SCFs); P stands for nylon 6 (PA6); and the numbers represent the weight ratio of PA6 additives.
    下载: 导出CSV

    表  3  耐高温环氧树脂基体力学/热力学性能

    Table  3.   Mechanical/thermomechanical properties of high temperature resistant epoxy resin substrates

    FormulaBending strength/MPaBending modulus/GPaElongation/%Tg/oC
    0115.3(±3.79)3.26(±0.22)4.34(±0.12)90.4(±1.25)
    162.3(±4.25)3.24(±0.42)1.32(±0.23)201.2(±1.42)
    281.6(±3.78)2.58(±0.31)1.98(±0.42)169.7(± 0.85)
    379.5(±3.85)3.68(±0.15)2.34(±0.25)157.7(±1.53)
    491.5(±2.75)3.41(±0.12)2.96(±0.32)141.3(±1.42)
    5132.1(±2.62)4.69(±0.24)3.45(±0.17)173.6(±0.75)
    6107.5(±2.14)4.01(±0.25)3.68(±0.18)151.6(±0.99)
    下载: 导出CSV
  • [1] ZHANG Y, TIAN J, ZHONG J, et al. Thin Nacre-Biomimetic Coating with Super-Anticorrosion Performance[J]. Acs Nano,2018,12(10):10189-200. doi: 10.1021/acsnano.8b05183
    [2] 李安邦, 徐善华. 锈蚀对钢板表面特性及CFRP板-锈蚀钢板界面黏结性能的影响[J]. 复合材料学报, 2022, 39(2):746-58.

    Li AB, Xu SH. Effect of corrosion on the surface properties of steel plate and interfacial bonding properties between CFRP plate and corroded steel plate[J]. Acta Materiae Compositae Sinica,2022,39(2):746-58(in Chinese).
    [3] 李承高, 郭瑞, 黄翔宇, 等. 碳纤维增强树脂复合材料(CFRP)拉挤板材的楔形-挤压锚固机制[J]. 南京工业大学学报(自然科学版), 2021, 43(3):358-65.

    Li CG, G R. Wedge-extrusion anchorage mechanism of pultruded CFRP plate[J]. JOURNAL OF NANJING TECH UNIVERSITY (Natural Science Edition),2021,43(3):358-65(in Chinese).
    [4] WANG Z K, ZHAO X L, XIAN G J, et al. Effect of sustained load and seawater and sea sand concrete environment on durability of basalt- and glass-fibre reinforced polymer (B/GFRP) bars[J]. Corros Sci,2018,138:200-18. doi: 10.1016/j.corsci.2018.04.002
    [5] 李承高, 郭瑞, 王俊琦, 等. CFRP@GFRP混杂复合材料杆体在水浸泡环境下的性能演化[J]. 复合材料学报, 2021, 38(10):3290-301.

    Li CG, G R. Property evolution of CFRP@GFRP hybrid composite rod exposed in the distilled water[J]. Acta Materiae Compositae Sinica,2021,38(10):3290-301(in Chinese).
    [6] 吴超强, 王俊, 李帅, 等. 玻璃纤维增强复合材料-钢复合筋混凝土夹芯墙板抗弯性能[J]. 南京工业大学学报(自然科学版), 2021, 43(6):782-6.

    Wu CQ, Wang J. Bending behavior of concrete sandwich wall panels with GFRP-steel bar connecters[J]. JOURNAL OF NANJING TECH UNIVERSITY (Natural Science Edition),2021,43(6):782-6(in Chinese).
    [7] XIONG G, KANG P, ZHANG J, et al. Improved adhesion, heat resistance, anticorrosion properties of epoxy resins/POSS/methyl phenyl silicone coatings[J]. Progress in Organic Coatings,2019,135:454-64. doi: 10.1016/j.porgcoat.2019.06.017
    [8] 赵明月, 裴晓园, 王维, 等. 二维纳米材料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(05): 2049-59

    Application of two-dimensional nanomaterial/epoxy composite coating in corrosion protection[J]. Acta Materiae Compositae Sinica, 2022, 39(05): 2049-59(in Chinese)
    [9] YANG G, WANG C, FU H, et al. Waterborne epoxy resin–polyurethane–emulsified asphalt: Preparation and properties[J]. Journal of Materials in Civil Engineering,2019,31(11):04019265. doi: 10.1061/(ASCE)MT.1943-5533.0002904
    [10] CHING Y C, GUNATHILAKE T U, CHING K Y, et al. Effects of high temperature and ultraviolet radiation on polymer composites [M]. Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier. 2019: 407-26.
    [11] 于越, 黄凤春, 张浩, 等. 耐高温环氧树脂改性研究进展[J]. 中国胶粘剂, 2017, 26(7):54-8.

    Yu Y, H FC. Research progress in modification of high temperature resistant epoxy resin[J]. CHINA ADHESIVES,2017,26(7):54-8(in Chinese).
    [12] ABDELBARY A. Friction and Wear of Polymer and Polymer Composites [M]. Tribology of Polymer and Polymer Composites for Industry 40. Springer. 2021: 33-54.
    [13] TIAN J, LI C, XIAN G. Reciprocating friction and wear performances of nanometer sized-TiO2 filled epoxy composites[J]. Polymer Composites,2021,42(4):2061-72. doi: 10.1002/pc.25959
    [14] ZHANG X, ZHAO N, HE C. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design–a review[J]. Progress in Materials Science,2020:113(100672.
    [15] TIAN J, TANG Q, LI C, et al. Mechanical, bonding and tribological performances of epoxy-based nanocomposite coatings with multiple fillers[J]. Journal of Applied Polymer Science,2022:52303.
    [16] LI W W, LIU L, SHEN B. Effect of Ni-coated short carbon fibers on the mechanical and electrical properties of epoxy composites[J]. Fiber Polym,2013,14(9):1515-20. doi: 10.1007/s12221-013-1515-3
    [17] 韩娟, 刘伟庆, 方海. 纤维增强树脂基复合材料在土木基础设施领域中的应用[J]. 南京工业大学学报(自然科学版), 2020, 42(5):543-54.

    Han J, Liu WQ. Application of fiber-reinforced resin matrix composites in the civil infrastructure field[J]. JOURNAL OF NANJING TECH UNIVERSITY (Natural Science Edition),2020,42(5):543-54(in Chinese).
    [18] SONG W Z, KONSTANTELLOS G, LI D Y, et al. Short carbon fibre-reinforced epoxy foams with isotropic cellular structure and anisotropic mechanical response produced from liquid foam templates[J]. Compos Sci Technol,2019,184:107871. doi: 10.1016/j.compscitech.2019.107871
    [19] QI H M, ZHANG G, CHANG L, et al. Ultralow Friction and Wear of Polymer Composites under Extreme Unlubricated Sliding Conditions[J]. Adv Mater Interfaces,2017,4(13):1601171. doi: 10.1002/admi.201601171
    [20] MCELWAIN S E, BLANCHET T A, SCHADLER L S, et al. Effect of particle size on the wear resistance of alumina-filled PTFE micro-and nanocomposites[J]. Tribology Transactions,2008,51(3):247-53. doi: 10.1080/10402000701730494
    [21] BEN DIFALLAH B, KHARRAT M, DAMMAK M, et al. Mechanical and tribological response of ABS polymer matrix filled with graphite powder[J]. Mater Design,2012,34:782-7. doi: 10.1016/j.matdes.2011.07.001
    [22] 韩宝军, 吴海银, 丁成成, 等. 高导热聚酰亚胺复合材料的性能[J]. 南京工业大学学报(自然科学版), 2020, 42(4):522-7.

    Han BJ, Wu HY. Performance of high thermal conductivity polyimide composites[J]. JOURNAL OF NANJING TECH UNIVERSITY (Natural Science Edition),2020,42(4):522-7(in Chinese).
    [23] YáñEZ-MACíAS R, RIVERA-SALINAS J E, SOLíS-ROSALES S, et al. Mechanical behavior of glass fiber-reinforced Nylon-6 syntactic foams and its Young's modulus numerical study[J]. Journal of Applied Polymer Science,2021,138(27):50648. doi: 10.1002/app.50648
    [24] GAO P P, SUN Z B, MAO Y J, et al. Tribological performances and self-lubricating mechanism of monomer casting nylon-6 composite coatings containing lube base oil-loaded microcapsules[J]. Progress in Organic Coatings,2021,160:106528. doi: 10.1016/j.porgcoat.2021.106528
    [25] ASTM D638-91 [J]. Standard test method for tensile properties of plastics, 2008.
    [26] ASTM D. 7264/D 7264 M–07 [J]. Standard test method for flexural properties of polymer matrix composite materials, 2007.
    [27] ASTM E1640-99 [J]. Standard test method for assignment of the glass transition temperature by dynamic mechanical analysis, 2013.
    [28] SALIMIAN S, MALFAIT W J, ZADHOUSH A, et al. Fabrication and evaluation of silica aerogel-epoxy nanocomposites: Fracture and toughening mechanisms[J]. Theor Appl Fract Mec,2018,97:156-64. doi: 10.1016/j.tafmec.2018.08.007
    [29] MYALSKI J, GODZIERZ M, OLESIK P. Effect of carbon fillers on the wear resistance of pa6 thermoplastic composites[J]. Polymers-Basel,2020,12(10):2264. doi: 10.3390/polym12102264
    [30] LIU L, ZHOU M, JIN L, et al. Recent advances in friction and lubrication of graphene and other 2 D materials: Mechanisms and applications[J]. Friction,2019,7(3):199-216. doi: 10.1007/s40544-019-0268-4
    [31] DASARI A, YU Z Z, MAI Y W. Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites[J]. Mat Sci Eng R,2009,63(2):31-80. doi: 10.1016/j.mser.2008.10.001
    [32] VINAYAGAMOORTHY R. Friction and wear characteristics of fibre-reinforced plastic composites[J]. Journal of Thermoplastic Composite Materials,2020,33(6):828-50. doi: 10.1177/0892705718815529
  • 加载中
计量
  • 文章访问数:  206
  • HTML全文浏览量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-04
  • 修回日期:  2022-11-11
  • 录用日期:  2023-01-05
  • 网络出版日期:  2023-01-14

目录

    /

    返回文章
    返回