留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尼龙6填料对碳纤维-环氧树脂复合材料力学与摩擦磨损性能的提升机制

田经纬 白艳博 李承高 咸贵军

田经纬, 白艳博, 李承高, 等. 尼龙6填料对碳纤维-环氧树脂复合材料力学与摩擦磨损性能的提升机制[J]. 复合材料学报, 2023, 40(9): 5011-5025. doi: 10.13801/j.cnki.fhclxb.20230110.003
引用本文: 田经纬, 白艳博, 李承高, 等. 尼龙6填料对碳纤维-环氧树脂复合材料力学与摩擦磨损性能的提升机制[J]. 复合材料学报, 2023, 40(9): 5011-5025. doi: 10.13801/j.cnki.fhclxb.20230110.003
TIAN Jingwei, BAI Yanbo, LI Chenggao, et al. Enhancement mechanism of nylon 6 filler on the mechanical and frictional wear properties of carbon fiber-epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5011-5025. doi: 10.13801/j.cnki.fhclxb.20230110.003
Citation: TIAN Jingwei, BAI Yanbo, LI Chenggao, et al. Enhancement mechanism of nylon 6 filler on the mechanical and frictional wear properties of carbon fiber-epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5011-5025. doi: 10.13801/j.cnki.fhclxb.20230110.003

尼龙6填料对碳纤维-环氧树脂复合材料力学与摩擦磨损性能的提升机制

doi: 10.13801/j.cnki.fhclxb.20230110.003
基金项目: 国家重点研发计划(2021YFB3704402);国家自然科学基金(52008137);黑龙江省自然科学基金(LH2021E073)
详细信息
    通讯作者:

    咸贵军,博士,教授,博士生导师,研究方向为土木工程纤维增强树脂复合材料与结构 E-mail: gjxian@hit.edu.cn

  • 中图分类号: TB332

Enhancement mechanism of nylon 6 filler on the mechanical and frictional wear properties of carbon fiber-epoxy resin composites

Funds: National Key Research and Development Program of China (2021YFB3704402); National Natural Science Foundation of China (52008137); Heilongjiang Provincial Natural Science Foundation of China (LH2021E073)
  • 摘要: 碳纤维-环氧树脂复合材料具有高强高模、耐腐蚀、抗疲劳等优异性能,作为结构材料被广泛用于土木工程中。尼龙6具有良好的断裂韧性、自润滑性、减摩耐磨性等优点,将其作为填料加入至短切碳纤维-环氧树脂复合材料中有望大幅提升材料的力学和摩擦磨损性能。本文采用尼龙6改性短切碳纤维-环氧树脂复合材料,基于树脂基体优选方法制备了一种力学性能优异、耐高温且具有低摩擦系数和低磨损速率的高性能复合材料。试验研究了添加尼龙6对复合材料的热、力学及摩擦磨损性能的影响,结合微观形貌与结构分析,揭示了尼龙6对复合材料性能提升机制。研究发现,添加7.5wt%尼龙6后,复合材料的拉伸断裂韧性提升了199%,断裂破坏模式由脆性断裂转变为韧性断裂,拉伸断口形貌由“平原状”转变为“沟壑状”,玻璃化转变温度提升了15.2℃。添加10wt%尼龙6可以显著降低复合材料的摩擦系数(~80%)、磨损速率(~53%)、划痕宽度(~22%)、线粗糙度(~15%),耐磨损性能提升机制归因于尼龙6可在摩擦表面协助形成一层均匀致密的润滑隔离膜,使磨损类型由严重的疲劳磨损变为轻微的粘着磨损或磨粒磨损。

     

  • 图  1  所选树脂体系化学结构式

    Figure  1.  Chemical structure formula of the selected resin system

    图  2  力学增强相短切碳纤维(SCFs)的SEM图像 ((a), (b)) 和摩擦润滑相PA6的粒径分布图 (c)

    Figure  2.  SEM images of the mechanically enhanced phase short-cut carbon fibers (SCFs) ((a), (b)) and particle size distribution of the friction lubricated phase PA6 (c)

    图  3  往复式摩擦磨损试验机:(a) 摩擦副系统;(b) 机器结构原理;(c) 摩擦盘系统;(d) 电机驱动器

    Figure  3.  Reciprocating friction and wear tester: (a) Friction pair system; (b) Machine structure principle; (c) Friction disk system; (d) Motor driver

    AC—Alternating current

    图  4  PA6改性HTREPC的力学拉伸性能:(a) 应力-应变曲线;(b) 拉伸强度;(c) 断裂伸长率;(d) 断裂韧性

    Figure  4.  Mechanical tensile properties of nylon 6 modified HTREPC: (a) Stress-strain curves; (b) Tensile strength; (c) Elongation at break; (d) Fracture toughness

    图  5  HTREPC拉伸断口低/高倍表面形貌分析:((a), (d)) Control;((b), (e)) EPCP2.5;((c), (f)) EPCP7.5

    Figure  5.  Surface morphology analysis of HTREPC tensile fractures at low/high magnification: ((a), (d)) Control; ((b), (e)) EPCP2.5; ((c), (f)) EPCP7.5

    图  6  PA6改性HTREPC的热力学性能:(a) 储存模量;(b) 损耗因子

    Figure  6.  Thermomechanical properties of nylon 6 modified HTREPC: (a) Storage modulus; (b) Loss factor

    图  7  PA6改性HTREPC的热学性能:(a) 热重曲线;(b) 热流曲线

    Figure  7.  Thermal properties of nylon 6 modified HTREPC: (a) Thermogravimetry curves; (b) Heat flow curves

    图  8  (a) PA6改性HTREPC的FTIR图谱;(b) 填料与两种树脂基体的氢键作用

    Figure  8.  (a) FTIR spectra of PA6 modified HTREPC; (b) Hydrogen bonding action between PA6 filler and two types of resin matrix

    图  9  PA6对HTREPC摩擦磨损性能的影响:(a) 摩擦系数(COFs);(b) 磨损速率(Ws)和划痕宽度(WSW);(c) 划痕轮廓图;(d) 线粗糙度

    Figure  9.  Effect of nylon 6 on the friction and wear properties of HTREPC: (a) Friction coefficient (COFs); (b) Wear rate (Ws) and scratch width (WSW); (c) Scratch profile diagram; (d) Line roughness

    图  10  HTREPC表面划痕和对应研磨球形貌图:((a), (d)) Control;((b), (e)) EPCP5;((c), (f)) EPCP10

    Figure  10.  Scratch morphologies of the HTREPC surface and the corresponding grinding ball: ((a), (d)) Control; ((b), (e)) EPCP5; ((c), (f)) EPCP10

    图  11  HTREPC表面划痕的低/高倍SEM图像:((a), (d)) Control;((b), (e)) EPCP5;((c), (f)) EPCP10

    Figure  11.  Low/high magnification SEM images of HTREPC surface scratches: ((a), (d)) Control; ((b), (e)) EPCP5; ((c), (f)) EPCP10

    图  12  HTREPC往复摩擦磨损类型:(a) 分层磨损(疲劳磨损);(b) 粘着磨损;(c) 磨粒磨损

    Figure  12.  Types of reciprocating friction and wear of HTREPC: (a) Delamination wear (fatigue wear); (b) Adhesive wear; (c) Abrasive wear

    表  1  耐高温复合材料用环氧树脂体系(HTREP)

    Table  1.   Epoxy resin systems for high temperature-resistant composites (HTREP)

    FormulaTs-AAG80F51Hardener

    (Ts-B∶HTDA)
    Normal EP 0 100% 0% 0% 3∶2
    HTREP 1 0% 100% 0% 3∶2
    2 0% 0% 100% 3∶2
    3 67% 33% 0% 3∶2
    4 67% 0% 33% 3∶2
    5 50% 50% 0% 3∶2
    6 50% 0% 50% 3∶2
    Notes: HTDA—Methylcyclohexanediamine; Amine equivalents of the curing agents Ts-B and HTDA are 69 g/mol and 32 g/mol respectively; the epoxy equivalents of the epoxy resins Ts-A/F51 and AG80 are 196 g/mol and 111 g/mol respectively.
    下载: 导出CSV

    表  2  基于最优耐高温树脂基体的PA6/SCFs添加配方

    Table  2.   Formulation of PA6/SCFs additives based on optimal high temperature-resistant resin matrix

    SpecimensSCFs
    /wt%
    PA6
    /wt%
    BYK-066 N
    /wt%
    Diluent
    /wt%
    Control 10.0 0.0 1.0 2.0
    EPCP2.5 10.0 2.5 1.0 2.0
    EPCP5 10.0 5.0 1.0 2.0
    EPCP7.5 10.0 7.5 1.0 2.0
    EPCP10 10.0 10.0 1.0 2.0
    Notes: EP—Optimal high-temperature resistant epoxy resin matrix; C—Short-cut carbon fibres (SCFs); P—Nylon 6 (PA6); Numbers—Mass ratio of PA6 additives.
    下载: 导出CSV

    表  3  耐高温环氧树脂基体力学/热力学性能

    Table  3.   Mechanical/thermomechanical properties of high temperature resistant epoxy resin substrates

    FormulaBending strength/MPaBending modulus/GPaElongation/%Tg/℃
    0115.3(±3.79)3.26(±0.22)4.34(±0.12) 90.4(±1.25)
    1 62.3(±4.25)3.24(±0.42)1.32(±0.23)201.2(±1.42)
    2 81.6(±3.78)2.58(±0.31)1.98(±0.42)169.7(±0.85)
    3 79.5(±3.85)3.68(±0.15)2.34(±0.25)157.7(±1.53)
    4 91.5(±2.75)3.41(±0.12)2.96(±0.32)141.3(±1.42)
    5132.1(±2.62)4.69(±0.24)3.45(±0.17)173.6(±0.75)
    6107.5(±2.14)4.01(±0.25)3.68(±0.18)151.6(±0.99)
    Note: Tg—Glass transition temperature.
    下载: 导出CSV
  • [1] ZHANG Y, TIAN J, ZHONG J, et al. Thin nacre-biomimetic coating with super-anticorrosion performance[J]. ACS Nano,2018,12(10):10189-10200. doi: 10.1021/acsnano.8b05183
    [2] 李安邦, 徐善华. 锈蚀对钢板表面特性及CFRP板-锈蚀钢板界面黏结性能的影响[J]. 复合材料学报, 2022, 39(2):746-758.

    LI A B, XU S H. Effect of corrosion on the surface properties of steel plate and interfacial bonding properties between CFRP plate and corroded steel plate[J]. Acta Materiae Compositae Sinica,2022,39(2):746-758(in Chinese).
    [3] 李承高, 郭瑞, 黄翔宇, 等. 碳纤维增强树脂复合材料(CFRP)拉挤板材的楔形-挤压锚固机制[J]. 南京工业大学学报(自然科学版), 2021, 43(3):358-365.

    LI C G, GUO R, HUANG X Y, et al. Wedge-extrusion anchorage mechanism of pultruded CFRP plate[J]. Journal of Nanjing Tech University (Natural Science Edition),2021,43(3):358-365(in Chinese).
    [4] WANG Z K, ZHAO X L, XIAN G J, et al. Effect of sustained load and seawater and sea sand concrete environment on durability of basalt- and glass-fibre reinforced polymer (B/GFRP) bars[J]. Corrosion Science,2018,138:200-218. doi: 10.1016/j.corsci.2018.04.002
    [5] 李承高, 郭瑞, 王俊琦, 等. CFRP@GFRP混杂复合材料杆体在水浸泡环境下的性能演化[J]. 复合材料学报, 2021, 38(10):3290-3301.

    LI C G, GUO R, WANG J Q, et al. Property evolution of CFRP@GFRP hybrid composite rod exposed in the distilled water[J]. Acta Materiae Compositae Sinica,2021,38(10):3290-3301(in Chinese).
    [6] 吴超强, 王俊, 李帅, 等. 玻璃纤维增强复合材料-钢复合筋混凝土夹芯墙板抗弯性能[J]. 南京工业大学学报(自然科学版), 2021, 43(6):782-786.

    WU C Q, WANG J, LI S, et al. Bending behavior of concrete sandwich wall panels with GFRP-steel bar connecters[J]. Journal of Nanjing Tech University (Natural Science Edition),2021,43(6):782-786(in Chinese).
    [7] XIONG G, KANG P, ZHANG J, et al. Improved adhesion, heat resistance, anticorrosion properties of epoxy resins/POSS/methyl phenyl silicone coatings[J]. Progress in Organic Coatings,2019,135:454-464. doi: 10.1016/j.porgcoat.2019.06.017
    [8] 赵明月, 裴晓园, 王维, 等. 二维纳米材料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(5): 2049-2059.

    ZHAO M Y, PEI X Y, WANG W, et al. Application of two-dimensional nanomaterial/epoxy composite coating in corrosion protection[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2049-2059(in Chinese).
    [9] YANG G, WANG C, FU H, et al. Waterborne epoxy resin–polyurethane–emulsified asphalt: Preparation and properties[J]. Journal of Materials in Civil Engineering,2019,31(11):04019265. doi: 10.1061/(ASCE)MT.1943-5533.0002904
    [10] CHING Y C, GUNATHILAKE T U, CHING K Y, et al. Effects of high temperature and ultraviolet radiation on polymer composites[M]//Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Compo-sites. Amsterdam: Elsevier, 2019: 407-426.
    [11] 于越, 黄凤春, 张浩, 等. 耐高温环氧树脂改性研究进展[J]. 中国胶粘剂, 2017, 26(7):54-58.

    YU Yue, HUANG Fengchun, ZHANG Hao, et al. Research progress in modification of high temperature resistant epoxy resin[J]. China Adhesives,2017,26(7):54-58(in Chinese).
    [12] ABDELBARY A. Friction and wear of polymer and polymer composites[M]. Tribology of Polymer and Polymer Composites for Industry 40. Berlin: Springer, 2021: 33-54.
    [13] TIAN J, LI C, XIAN G. Reciprocating friction and wear performances of nanometer sized-TiO2 filled epoxy compo-sites[J]. Polymer Composites,2021,42(4):2061-2072. doi: 10.1002/pc.25959
    [14] ZHANG X, ZHAO N, HE C. The superior mechanical and physical properties of nanocarbon reinforced bulk compo-sites achieved by architecture design–A review[J]. Progress in Materials Science,2020,113:100672.
    [15] TIAN J, TANG Q, LI C, et al. Mechanical, bonding and tribological performances of epoxy-based nanocomposite coatings with multiple fillers[J]. Journal of Applied Polymer Science,2022,139(23):52303.
    [16] LI W W, LIU L, SHEN B. Effect of Ni-coated short carbon fibers on the mechanical and electrical properties of epoxy composites[J]. Fibers & Polymers,2013,14(9):1515-1520. doi: 10.1007/s12221-013-1515-3
    [17] 韩娟, 刘伟庆, 方海. 纤维增强树脂基复合材料在土木基础设施领域中的应用[J]. 南京工业大学学报(自然科学版), 2020, 42(5):543-554.

    HAN J, LIU W Q, FANG H. Application of fiber-reinforced resin matrix composites in the civil infrastructure field[J]. Journal of Nanjing Tech University (Natural Science Edition),2020,42(5):543-554(in Chinese).
    [18] SONG W Z, KONSTANTELLOS G, LI D Y, et al. Short carbon fibre-reinforced epoxy foams with isotropic cellular structure and anisotropic mechanical response produced from liquid foam templates[J]. Composites Science and Technology,2019,184:107871. doi: 10.1016/j.compscitech.2019.107871
    [19] QI H M, ZHANG G, CHANG L, et al. Ultralow friction and wear of polymer composites under extreme unlubricated sliding conditions[J]. Advanced Materials Interfaces,2017,4(13):1601171. doi: 10.1002/admi.201601171
    [20] MCELWAIN S E, BLANCHET T A, SCHADLER L S, et al. Effect of particle size on the wear resistance of alumina-filled PTFE micro-and nanocomposites[J]. Tribology Transactions,2008,51(3):247-253. doi: 10.1080/10402000701730494
    [21] BEN DIFALLAH B, KHARRAT M, DAMMAK M, et al. Mechanical and tribological response of ABS polymer matrix filled with graphite powder[J]. Materials & Design,2012,34:782-787. doi: 10.1016/j.matdes.2011.07.001
    [22] 韩宝军, 吴海银, 丁成成, 等. 高导热聚酰亚胺复合材料的性能[J]. 南京工业大学学报(自然科学版), 2020, 42(4):522-527.

    HAN B J, WU H Y, DING C C, et al. Performance of high thermal conductivity polyimide composites[J]. Journal of Nanjing Tech University (Natural Science Edition),2020,42(4):522-527(in Chinese).
    [23] YÁÑEZ-MACÍAS R, RIVERA-SALINAS J E, SOLÍS-ROSALES S, et al. Mechanical behavior of glass fiber-reinforced Nylon-6 syntactic foams and its Young's modulus numerical study[J]. Journal of Applied Polymer Science,2021,138(27):50648. doi: 10.1002/app.50648
    [24] GAO P P, SUN Z B, MAO Y J, et al. Tribological performances and self-lubricating mechanism of monomer casting nylon-6 composite coatings containing lube base oil-loaded microcapsules[J]. Progress in Organic Coatings,2021,160:106528. doi: 10.1016/j.porgcoat.2021.106528
    [25] ASTM. Standard test method for tensile properties of plastics: ASTM D638-91[S]. West Conshehoken: ASTM, 2008.
    [26] ASTM. Standard test method for flexural properties of polymer matrix composite materials: ASTM D 7264/D 7264M-07[S]. West Conshehoken: ASTM, 2007.
    [27] ASTM. Standard test method for assignment of the glass transition temperature by dynamic mechanical analysis: ASTM E1640-99[S]. West Conshehoken: ASTM, 2013.
    [28] SALIMIAN S, MALFAIT W J, ZADHOUSH A, et al. Fabrication and evaluation of silica aerogel-epoxy nanocompo-sites: Fracture and toughening mechanisms[J]. Theoretical and Applied Fracture Mechanics,2018,97:156-164. doi: 10.1016/j.tafmec.2018.08.007
    [29] MYALSKI J, GODZIERZ M, OLESIK P. Effect of carbon fillers on the wear resistance of pa6 thermoplastic composites[J]. Polymers-Basel,2020,12(10):2264. doi: 10.3390/polym12102264
    [30] LIU L, ZHOU M, JIN L, et al. Recent advances in friction and lubrication of graphene and other 2D materials: Mechanisms and applications[J]. Friction,2019,7(3):199-216. doi: 10.1007/s40544-019-0268-4
    [31] DASARI A, YU Z Z, MAI Y W. Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites[J]. Materials Science & Engineering R Reports,2009,63(2):31-80. doi: 10.1016/j.mser.2008.10.001
    [32] VINAYAGAMOORTHY R. Friction and wear characteristics of fibre-reinforced plastic composites[J]. Journal of Thermoplastic Composite Materials,2020,33(6):828-850. doi: 10.1177/0892705718815529
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  688
  • HTML全文浏览量:  313
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-04
  • 修回日期:  2022-11-11
  • 录用日期:  2023-01-05
  • 网络出版日期:  2023-01-11
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回