Enhancement mechanism of nylon 6 filler on the mechanical and frictional wear properties of carbon fiber-epoxy resin composites
-
摘要:
碳纤维-环氧树脂复合材料具有轻质高强、耐腐蚀、抗疲劳等优异性能,被广泛作为功能材料应用于土木工程结构修复与新建中。本文拟添加具有高断裂韧性、自润滑性和耐疲劳性能的尼龙6提升短切碳纤维增强环氧树脂基复合材料的摩擦磨损性能,研发可在高温、高载及往复运动等复杂环境下服役的高性能复合材料。试验研究了添加尼龙6对碳纤维-环氧树脂复合材料热、力学以及摩擦磨损性能的影响,结合微观形貌与结构分析,研究了性能提升机制。研究发现,添加7.5wt.%尼龙6后,复合材料的拉伸断裂韧性提升了199%,断裂破坏模式由脆性断裂转变为韧性断裂,拉伸断口形貌由“平原状”转变为“沟壑状”,玻璃化转变温度提升了15.2℃。添加10wt.%尼龙6可以显著降低复合材料的摩擦系数(~80%)、磨损速率(~53%)、划痕宽度(~22%)与线粗糙度(~15%),耐磨损性能的提升机制可归因于由尼龙6协助形成了一层均匀致密的润滑隔离膜,磨损类型由严重的疲劳磨损转变为轻微的粘着磨损或磨粒磨损。 尼龙6填料对碳纤维-环氧树脂复合材料力学和摩擦磨损性能的影响:(a)磨损设备;(b)拉伸性能;(c)摩擦系数;(d)磨损速率 Abstract: Carbon fiber-epoxy resin composites have excellent properties such as high strength and high modulus, corrosion and fatigue resistances, and are widely used as structural materials in civil engineering. Nylon 6 has advantages of great fracture toughness, self-lubrication, friction and wear reduction, etc. Its incorporation as a filler in short-cut carbon fiber-epoxy composites is expected to significantly improve mechanical and frictional wear properties. In this paper, a high performance composite with excellent mechanical properties, high temperature resistance, low coefficient of friction and wear rate was prepared through using short-cut carbon fiber-epoxy resin composites modified with nylon 6 based on the resin selection method. The effect of the addition of nylon 6 on the thermal, mechanical and frictional wear properties of composite was investigated, and the mechanism of nylon 6 on its performance enhancement was revealed by combining microscopic morphology and structural analysis. It was found that the tensile fracture toughness of the modified composites increased by 199% with the addition of 7.5wt.% nylon 6, and the fracture damage mode changed from brittle fracture to ductile fracture, the tensile fracture morphology changed from “plain” to “gully” and the glass transition temperature increased by 15.2℃. The addition of 10wt.% nylon 6 significantly reduced the frictional coefficient (~80%), wear rate (~53%), scratch width (~22%) and line roughness (~15%) of the composites. The improvement mechanism can be attributed to the fact that nylon 6 assisted in the formation of a uniform and dense lubricant isolation film on the scratch surface, which changed the wear type of the composites from the severe fatigue wear to the slight adhesive wear or abrasive wear.-
Key words:
- Composites /
- Epoxy resin /
- Carbon fiber /
- Nylon 6 /
- Mechanical properties /
- Friction and wear properties /
- Wear mechanism
-
表 1 耐高温复合材料用环氧树脂体系(HTREP)
Table 1. Epoxy resin systems for high temperature-resistant composites (HTREP)
Formula Ts-A AG80 F51 Hardener
(Ts-B:HTDA)Normal EP 0 100% 0% 0% 3∶2 HTREP 1 0% 100% 0% 3∶2 2 0% 0% 100% 3∶2 3 67% 33% 0% 3∶2 4 67% 0% 33% 3∶2 5 50% 50% 0% 3∶2 6 50% 0% 50% 3∶2 Notes: The amine equivalents of the curing agents Ts-B and HTDA are 69 g/mol and 32 g/mol respectively; the epoxy equivalents of the epoxy resins Ts-A/F51 and AG80 are 196 g/mol and 111 g/mol respectively. 表 2 基于最优耐高温树脂基体的PA6/SCFs添加配方
Table 2. Formulation of PA6/SCFs additives based on optimal high temperature-resistant resin matrix
Specimens SCFs
/wt.%PA6
/wt.%BYK-066 N
/wt.%Diluent
/wt.%Control 10.0 0.0 1.0 2.0 EPCP2.5 10.0 2.5 1.0 2.0 EPCP5 10.0 5.0 1.0 2.0 EPCP7.5 10.0 7.5 1.0 2.0 EPCP10 10.0 10.0 1.0 2.0 Notes: EP stands for optimal high-temperature resistant epoxy resin matrix; C stands for short-cut carbon fibres (SCFs); P stands for nylon 6 (PA6); and the numbers represent the weight ratio of PA6 additives. 表 3 耐高温环氧树脂基体力学/热力学性能
Table 3. Mechanical/thermomechanical properties of high temperature resistant epoxy resin substrates
Formula Bending strength/MPa Bending modulus/GPa Elongation/% Tg/oC 0 115.3(±3.79) 3.26(±0.22) 4.34(±0.12) 90.4(±1.25) 1 62.3(±4.25) 3.24(±0.42) 1.32(±0.23) 201.2(±1.42) 2 81.6(±3.78) 2.58(±0.31) 1.98(±0.42) 169.7(± 0.85) 3 79.5(±3.85) 3.68(±0.15) 2.34(±0.25) 157.7(±1.53) 4 91.5(±2.75) 3.41(±0.12) 2.96(±0.32) 141.3(±1.42) 5 132.1(±2.62) 4.69(±0.24) 3.45(±0.17) 173.6(±0.75) 6 107.5(±2.14) 4.01(±0.25) 3.68(±0.18) 151.6(±0.99) -
[1] ZHANG Y, TIAN J, ZHONG J, et al. Thin Nacre-Biomimetic Coating with Super-Anticorrosion Performance[J]. Acs Nano,2018,12(10):10189-200. doi: 10.1021/acsnano.8b05183 [2] 李安邦, 徐善华. 锈蚀对钢板表面特性及CFRP板-锈蚀钢板界面黏结性能的影响[J]. 复合材料学报, 2022, 39(2):746-58.Li AB, Xu SH. Effect of corrosion on the surface properties of steel plate and interfacial bonding properties between CFRP plate and corroded steel plate[J]. Acta Materiae Compositae Sinica,2022,39(2):746-58(in Chinese). [3] 李承高, 郭瑞, 黄翔宇, 等. 碳纤维增强树脂复合材料(CFRP)拉挤板材的楔形-挤压锚固机制[J]. 南京工业大学学报(自然科学版), 2021, 43(3):358-65.Li CG, G R. Wedge-extrusion anchorage mechanism of pultruded CFRP plate[J]. JOURNAL OF NANJING TECH UNIVERSITY (Natural Science Edition),2021,43(3):358-65(in Chinese). [4] WANG Z K, ZHAO X L, XIAN G J, et al. Effect of sustained load and seawater and sea sand concrete environment on durability of basalt- and glass-fibre reinforced polymer (B/GFRP) bars[J]. Corros Sci,2018,138:200-18. doi: 10.1016/j.corsci.2018.04.002 [5] 李承高, 郭瑞, 王俊琦, 等. CFRP@GFRP混杂复合材料杆体在水浸泡环境下的性能演化[J]. 复合材料学报, 2021, 38(10):3290-301.Li CG, G R. Property evolution of CFRP@GFRP hybrid composite rod exposed in the distilled water[J]. Acta Materiae Compositae Sinica,2021,38(10):3290-301(in Chinese). [6] 吴超强, 王俊, 李帅, 等. 玻璃纤维增强复合材料-钢复合筋混凝土夹芯墙板抗弯性能[J]. 南京工业大学学报(自然科学版), 2021, 43(6):782-6.Wu CQ, Wang J. Bending behavior of concrete sandwich wall panels with GFRP-steel bar connecters[J]. JOURNAL OF NANJING TECH UNIVERSITY (Natural Science Edition),2021,43(6):782-6(in Chinese). [7] XIONG G, KANG P, ZHANG J, et al. Improved adhesion, heat resistance, anticorrosion properties of epoxy resins/POSS/methyl phenyl silicone coatings[J]. Progress in Organic Coatings,2019,135:454-64. doi: 10.1016/j.porgcoat.2019.06.017 [8] 赵明月, 裴晓园, 王维, 等. 二维纳米材料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(05): 2049-59Application of two-dimensional nanomaterial/epoxy composite coating in corrosion protection[J]. Acta Materiae Compositae Sinica, 2022, 39(05): 2049-59(in Chinese) [9] YANG G, WANG C, FU H, et al. Waterborne epoxy resin–polyurethane–emulsified asphalt: Preparation and properties[J]. Journal of Materials in Civil Engineering,2019,31(11):04019265. doi: 10.1061/(ASCE)MT.1943-5533.0002904 [10] CHING Y C, GUNATHILAKE T U, CHING K Y, et al. Effects of high temperature and ultraviolet radiation on polymer composites [M]. Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier. 2019: 407-26. [11] 于越, 黄凤春, 张浩, 等. 耐高温环氧树脂改性研究进展[J]. 中国胶粘剂, 2017, 26(7):54-8.Yu Y, H FC. Research progress in modification of high temperature resistant epoxy resin[J]. CHINA ADHESIVES,2017,26(7):54-8(in Chinese). [12] ABDELBARY A. Friction and Wear of Polymer and Polymer Composites [M]. Tribology of Polymer and Polymer Composites for Industry 40. Springer. 2021: 33-54. [13] TIAN J, LI C, XIAN G. Reciprocating friction and wear performances of nanometer sized-TiO2 filled epoxy composites[J]. Polymer Composites,2021,42(4):2061-72. doi: 10.1002/pc.25959 [14] ZHANG X, ZHAO N, HE C. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design–a review[J]. Progress in Materials Science,2020:113(100672. [15] TIAN J, TANG Q, LI C, et al. Mechanical, bonding and tribological performances of epoxy-based nanocomposite coatings with multiple fillers[J]. Journal of Applied Polymer Science,2022:52303. [16] LI W W, LIU L, SHEN B. Effect of Ni-coated short carbon fibers on the mechanical and electrical properties of epoxy composites[J]. Fiber Polym,2013,14(9):1515-20. doi: 10.1007/s12221-013-1515-3 [17] 韩娟, 刘伟庆, 方海. 纤维增强树脂基复合材料在土木基础设施领域中的应用[J]. 南京工业大学学报(自然科学版), 2020, 42(5):543-54.Han J, Liu WQ. Application of fiber-reinforced resin matrix composites in the civil infrastructure field[J]. JOURNAL OF NANJING TECH UNIVERSITY (Natural Science Edition),2020,42(5):543-54(in Chinese). [18] SONG W Z, KONSTANTELLOS G, LI D Y, et al. Short carbon fibre-reinforced epoxy foams with isotropic cellular structure and anisotropic mechanical response produced from liquid foam templates[J]. Compos Sci Technol,2019,184:107871. doi: 10.1016/j.compscitech.2019.107871 [19] QI H M, ZHANG G, CHANG L, et al. Ultralow Friction and Wear of Polymer Composites under Extreme Unlubricated Sliding Conditions[J]. Adv Mater Interfaces,2017,4(13):1601171. doi: 10.1002/admi.201601171 [20] MCELWAIN S E, BLANCHET T A, SCHADLER L S, et al. Effect of particle size on the wear resistance of alumina-filled PTFE micro-and nanocomposites[J]. Tribology Transactions,2008,51(3):247-53. doi: 10.1080/10402000701730494 [21] BEN DIFALLAH B, KHARRAT M, DAMMAK M, et al. Mechanical and tribological response of ABS polymer matrix filled with graphite powder[J]. Mater Design,2012,34:782-7. doi: 10.1016/j.matdes.2011.07.001 [22] 韩宝军, 吴海银, 丁成成, 等. 高导热聚酰亚胺复合材料的性能[J]. 南京工业大学学报(自然科学版), 2020, 42(4):522-7.Han BJ, Wu HY. Performance of high thermal conductivity polyimide composites[J]. JOURNAL OF NANJING TECH UNIVERSITY (Natural Science Edition),2020,42(4):522-7(in Chinese). [23] YáñEZ-MACíAS R, RIVERA-SALINAS J E, SOLíS-ROSALES S, et al. Mechanical behavior of glass fiber-reinforced Nylon-6 syntactic foams and its Young's modulus numerical study[J]. Journal of Applied Polymer Science,2021,138(27):50648. doi: 10.1002/app.50648 [24] GAO P P, SUN Z B, MAO Y J, et al. Tribological performances and self-lubricating mechanism of monomer casting nylon-6 composite coatings containing lube base oil-loaded microcapsules[J]. Progress in Organic Coatings,2021,160:106528. doi: 10.1016/j.porgcoat.2021.106528 [25] ASTM D638-91 [J]. Standard test method for tensile properties of plastics, 2008. [26] ASTM D. 7264/D 7264 M–07 [J]. Standard test method for flexural properties of polymer matrix composite materials, 2007. [27] ASTM E1640-99 [J]. Standard test method for assignment of the glass transition temperature by dynamic mechanical analysis, 2013. [28] SALIMIAN S, MALFAIT W J, ZADHOUSH A, et al. Fabrication and evaluation of silica aerogel-epoxy nanocomposites: Fracture and toughening mechanisms[J]. Theor Appl Fract Mec,2018,97:156-64. doi: 10.1016/j.tafmec.2018.08.007 [29] MYALSKI J, GODZIERZ M, OLESIK P. Effect of carbon fillers on the wear resistance of pa6 thermoplastic composites[J]. Polymers-Basel,2020,12(10):2264. doi: 10.3390/polym12102264 [30] LIU L, ZHOU M, JIN L, et al. Recent advances in friction and lubrication of graphene and other 2 D materials: Mechanisms and applications[J]. Friction,2019,7(3):199-216. doi: 10.1007/s40544-019-0268-4 [31] DASARI A, YU Z Z, MAI Y W. Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites[J]. Mat Sci Eng R,2009,63(2):31-80. doi: 10.1016/j.mser.2008.10.001 [32] VINAYAGAMOORTHY R. Friction and wear characteristics of fibre-reinforced plastic composites[J]. Journal of Thermoplastic Composite Materials,2020,33(6):828-50. doi: 10.1177/0892705718815529 -

计量
- 文章访问数: 206
- HTML全文浏览量: 128
- 被引次数: 0