Progress in preparation and research of VO2-based composite structure films for smart windows
-
摘要: 二氧化钒(VO2)在68℃附近发生绝缘体-金属相转变,同时伴随着近红外光透射率突变,因此在智能节能窗领域具有巨大的应用潜力。近年来,关于 VO2的制备方法、相变机制及改善光学性能方面取得了显著进展。然而,在实际应用中,VO2仍面临一系列挑战,包括本征相变温度较高、可见光透过率(Tlum)较低、太阳能调节效率(∆Tsol)不佳、耐候性差以及颜色舒适度较差(呈现棕黄色)。针对这些问题,国内外的研究者进行了大量研究,发现复合结构对改善VO2性能具有显著作用,对推进其实际应用具有重要意义。然而,目前关于VO2基复合结构的综述相对较少。本文概括了VO2基复合结构的制备方法以及在智能窗领域的性能研究进展,并对VO2基复合结构薄膜未来发展前景进行了展望。Abstract: Vanadium dioxide (VO2) exhibits an insulator-metal phase transition near 68 ℃, coupled with a sudden alteration in near-infrared light transmittance, rendering it highly promising for intelligent energy-saving windows. Despite extensive research in recent years on preparation methods, phase transition mechanisms, and enhancement of dimming capabilities for VO2, practical applications face numerous challenges. These include its high intrinsic phase transition temperature, low visible light transmittance (Tlum) , inefficient regulation of solar energy (∆Tsol) , poor weather resistance, and limited color comfort (brownish-yellow hue) . Addressing these challenges, researchers worldwide have conducted extensive investigations, with composite structures emerging as a promising avenue for enhancing the overall performance of VO2 and advancing its practical applications. However, there remains a paucity of comprehensive reviews on VO2-based composite structures. This paper provides a synthesis and discussion of the preparation methods and performance research progress in the field of smart windows of VO2-based composite structures, while also exploring the future prospects of VO2-based composite structures.
-
Key words:
- vanadium dioxide /
- thermochromism /
- smart windows /
- composite structure
-
表 1 VO2核壳结构复合薄膜的光学性能
Table 1. Optical properties of VO2 core-shell composite thin films
Structure Tlum/% ∆Tsol/% Tc/℃ References VO2@SiO2 38.0 18.9 — Du et al.[30] 2022 VO2@ZnO 51.0 19.1 — Chen et al.[27] 2017 VO2@SiO2 50.6 14.7 25.2 Zhu et al.[34] 2015 VO2@TiO2 59.3 6.2 — Li et al.[28] 2013 VO2@PDA 56.3 14.5 33.8 Guo et al.[32] 2022 VO2@PMMA — 17.5 57 Hu et al.[35] 2023 VO2@Polymer — 20.34 — Zhao et al.[36] 2022 VO2@MgF2@PDA — 25.0 — Zhao et al.[33] 2019 Notes:Tlum is the luminous transmittance, ∆Tsol is the modulation of solar energy, Tc is the transition temperature, A@B is the core(A)@shell(B) structure, PDA is polydopamine, PMMA is polymethyl methacrylate. 表 2 不同基质材料VO2基复合薄膜的光学性能
Table 2. Optical properties of VO2-based composite films of different matrix materials
Structure Tlum/% ∆Tsol/% References VO2-Hydrogel 62.6 34.7 Zhou et al.[41]2015 VO2-Ni-Cl-IL 66.85 23.77 Zhu et al.[42]2016 VO2-{[(C2H5)2NH2]2NiBr4@SiO2} 52.9 25.7 Zhao et al. [52]2023 VO2-Spiropyran 48.58 23.58 Zhao et al.[44]2020 VO2@SiO2 61.8 12.6 Qu et al.[50]2019 SiO2@TiO2@VO2 73.9 12.0 Yang et al.[49]2018 VO2-[1, 4-bis (benzoxazol-2-yl) naphthalene] 73.0 9.0 Qin et al.[53]2021 VO2-PDA 56.23 7.64 Wang et al.[54]2023 Notes:A-B is the mixture of A and B,Ni-Cl-IL is the ionic liquid-rnickel-rchlorine complexes. 表 3 VO2多层结构复合薄膜的光学性能
Table 3. Optical properties of VO2 multilayer composite films
Structure Tlum/% ∆Tsol/% References Double-layer ZnO-VO2 46.4 6.0 Gagaoudakis et al.[81]2018 VO2-TiO2 61.5 15.1 Chen et al.[62]2011 TiO2-VO2 50.49 20.11 Wu et al.[75]2023 TiO2-VO2 47.3 8.8 Ji et al.[82]2019 VO2-HfO2 55.8 15.9 Chang et al.[83]2019 VO2-C₈H20O₄Si 52.7 16.4 Liu et al.[84]2018 TiO2-VO2 49.0 7.0 Jin et al.[73]2002 Three-layer SiNx-VO2-SiNx 40.4 14.5 Long et al.[85]2019 Cr2O3-VO2-SiO2 50.0 16.1 Chang et al.[86]2018 TiO2-VO2-TiO2 57.6 2.9 Jin et al.[70]2003 VO2-fluorescent brightener-organic polymer 78.87 7.34 Gao et al.[87]2021 Multi-layer SiNx-NiCrOx-SiNx-VOx-SiNx-NiCrOx-SiNx 40.5 18.4 Zhan et al.[88]2020 TiO2-VO2-TiO2-VO2-TiO2 45 12.1 Miyuka et al.[89]2009 HSi-VO2-FSi-P 54.0 16.4 Yao et al.[90]2019 Notes:A-B is the multi-layer structure of the lower layer(A) and the upper layer(B), HSi is the antireflective hollow SiO2 layer, FSi is the protective fluorosilane SiO2 layer, P is the antifogging cross-linked poly(vinyl alcohol) and poly(acrylic acid)layer. -
[1] WARWICK M E A, BINIONS R. Advances in thermochromic vanadium dioxide films[J]. Journal of Materials Chemistry A, 2014, 2(10): 3275-3292. doi: 10.1039/C3TA14124A [2] MANJAKKAL L, PEREIRA L, BARIMAH E K, et al. Multifunctional flexible and stretchable electrochromic energy storage devices[J]. Progress in Materials Science, 2024: 101244. [3] MA D, YANG T, FENG X, et al. Quadruple Control Electrochromic Devices Utilizing Ce4W9O33 Electrodes for Visible and Near-Infrared Transmission Intelligent Modulation[J]. Advanced Science, 2024: 2307223. [4] WANG J, WANG Z, ZHANG M, et al. A semi-solid, polychromatic dual-band electrochromic smart window: Visualizing sunlight and solar heat transmission[J]. Chemical Engineering Journal, 2024: 149628. [5] ZHANG Z, MO H, LI R, et al. The Counterbalancing Role of Oxygen Vacancy between the Electrochromic Properties and the Trapping Effect Passivation for Amorphous Tungsten Oxide Films[J]. Small Science, 2024: 2300219. [6] ZHAO X, SUN J, GUO Z, et al. One-step hydrothermal synthesis of monoclinic vanadium dioxide nanoparticles with low phase transition temperature[J]. Chemical Engineering Journal, 2022, 446: 137308. doi: 10.1016/j.cej.2022.137308 [7] ZHANG Z, ZHANG L, ZHOU Y, et al. Thermochromic energy efficient windows: Fundamentals, recent advances, and perspectives[J]. Chemical Reviews, 2023, 123(11): 7025-7080. doi: 10.1021/acs.chemrev.2c00762 [8] LA M, ZHOU H, LI N, et al. Improved performance of Mg-Y alloy thin film switchable mirrors after coating with a superhydrophobic surface[J]. Applied Surface Science, 2017, 403: 23-28. doi: 10.1016/j.apsusc.2017.01.106 [9] WITTWER V, DATZ M, ELL J, et al. Gasochromic windows[J]. Solar Energy Materials and Solar Cells, 2004, 84(1-4): 305-314. doi: 10.1016/j.solmat.2004.01.040 [10] LI N, LI Y, LI W, et al. One-step hydrothermal synthesis of TiO2@MoO3 core-shell nanomaterial: Microstructure, growth mechanism, and improved photochromic property[J]. The Journal of Physical Chemistry C, 2016, 120(6): 3341-3349. doi: 10.1021/acs.jpcc.5b10752 [11] LI N, LI Y, ZHOU Y, et al. Interfacial-charge-transfer-induced photochromism of MoO3@TiO2 crystalline-core amorphous-shell nanorods[J]. Solar Energy Materials and Solar Cells, 2017, 160: 116-125. doi: 10.1016/j.solmat.2016.10.016 [12] WANG S, FAN W, LIU Z, et al. Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties[J]. Journal of Materials Chemistry C, 2018, 6(2): 191-212. doi: 10.1039/C7TC04189F [13] GU J, WEI H, ZHAO T, et al. Unprecedented Spatial Manipulation n and Transformation of Dynamic Thermal Radiation Based on Vanadium Dioxide[J]. ACS Applied Materials & Interfaces, 2024, 16: 10352-10360. [14] WEI H, YAN X, GU J, et al. A universal approach to fabricating infrared-shielding smart coatings based on vanadium dioxide[J]. Solar Energy Materials and Solar Cells, 2022, 241: 111728. doi: 10.1016/j.solmat.2022.111728 [15] WANG S, LIU M, KONG L, et al. Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties[J]. Progress in Materials Science, 2016, 81: 1-54. doi: 10.1016/j.pmatsci.2016.03.001 [16] GOODENOUGH J B. The two components of the crystallographic transition in VO2[J]. Journal of Solid State Chemistry, 1971, 3(4): 490-500. doi: 10.1016/0022-4596(71)90091-0 [17] CHANG T, CAO X, LONG Y, et al. How to properly evaluate and compare the thermochromic performance of VO2-based smart coatings[J]. Journal of Materials Chemistry A, 2019, 7(42): 24164-24172. doi: 10.1039/C9TA06681K [18] 钟莉, 李明, 李广海. D相二氧化钒纳米星粉体及其制备方法[P]. 中国专利, CN104402050B, 2016-02-10. [19] WANG C, XU H, WANG C, et al. Preparation of VO2(M) nanoparticles with exemplary optical performance from VO2(B) nanobelts by Ball Milling[J]. Journal of Alloys and Compounds, 2021, 877: 159888. doi: 10.1016/j.jallcom.2021.159888 [20] 李登兵, 李明, 潘静, 等. 单分散的M相二氧化钒纳米颗粒的制备方法. 中国专利, CN104071843A, 2014-10-01. [21] POPURI S R, MICLAU M, ARTEMENKO A, et al. Rapid hydrothermal synthesis of VO2(B) and its conversion to thermochromic VO2(M1)[J]. Inorganic Chemistry, 2013, 52(9): 4780-4785. doi: 10.1021/ic301201k [22] CAO C, GAO Y, LUO H. Pure single-crystal rutile vanadium dioxide powders: synthesis, mechanism and phase-transformation property[J]. The Journal of Physical Chemistry C, 2008, 112(48): 18810-18814. doi: 10.1021/jp8073688 [23] ALIE D, GEDVILAS L, WANG Z, et al. Direct synthesis of thermochromic VO2 through hydrothermal reaction[J]. Journal of Solid State Chemistry, 2014, 212: 237-241. doi: 10.1016/j.jssc.2013.10.023 [24] LI Y, JI S, GAO Y, et al. Core-shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings[J]. Scientific Reports, 2013, 3(1): 1370. doi: 10.1038/srep01370 [25] ZHOU Y, JI S, LI Y, et al. Microemulsion-based synthesis of V1-xWxO2@SiO2 core-shell structures for smart window applications[J]. Journal of Materials Chemistry C, 2014, 2(19): 3812-3819. doi: 10.1039/C3TC32282C [26] LI W, JI S, QIAN K, et al. Preparation and characterization of VO2(M)-SnO2 thermochromic films for application as energy-saving smart coatings[J]. Journal of Colloid and Interface Science, 2015, 456: 166-173. doi: 10.1016/j.jcis.2015.06.013 [27] CHEN Y, ZENG X, ZHU J, et al. High performance and enhanced durability of thermochromic films using VO2@ZnO core-shell nanoparticles[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 27784-27791. [28] LI Y, JI S, GAO Y, et al. Modification of mott phase transition characteristics in VO2@TiO2 core/shell nanostructures by misfit-strained heteroepitaxy[J]. ACS Applied Materials & Interfaces, 2013, 5(14): 6603-6614. [29] XIE Y M, ZHAO X P, MOFID S A, et al. Influence of shell materials on the optical performance of VO2 core-shell nanoparticle-based thermochromic films[J]. Materials Today Nano, 2021, 13: 100102. doi: 10.1016/j.mtnano.2020.100102 [30] DU Z, LI M, ZOU F, et al. VO2@SiO2 nanoparticle-based films with localized surface plasmon resonance for smart windows[J]. ACS Applied Nano Materials, 2022, 5: 12972-12979. doi: 10.1021/acsanm.2c02788 [31] CHEN Y, SHAO Z, YANG Y, et al. Electrons-donating derived dual-resistant crust of VO2 nano-particles via ascorbic acid treatment for highly stable smart windows applications[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41229-41237. [32] GUO X, XU H, MA X, et al. Photothermal polydopamine coated VO2 nanoparticle thin film with enhanced optical property and stability[J]. Vacuum, 2022, 196: 110776. doi: 10.1016/j.vacuum.2021.110776 [33] ZHAO S, TAO Y, CHEN Y, et al. Room-temperature synthesis of inorganic-organic hybrid coated VO2 nanoparticles for enhanced durability and flexible temperature-responsive near-Infrared modulator application[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 10254-10261. [34] ZHU J, ZHOU Y, WANG B, et al. Vanadium dioxide nanoparticle-based thermochromic smart coating: High luminous transmittance, excellent solar regulation efficiency, and near room temperature phase transition[J]. ACS Applied Materials & Interfaces, 2015, 7(50): 27796-27803. [35] 呼啸, 李文婷, 付勍玮, 等. VO2@PMMA 微胶囊的原位制备及其热致变色涂层性能[J]. 复合材料学报, 2022, 40(8): 1-14.HU X, LI W, FU Q, et al. In situ preparation of VO2@PMMA microcapsule and thermochromic properties of its coating[J]. Acta Materiae Compositae Sinica, 2022, 40(8): 1-14(in Chinese). [36] ZHAO X, SUN J, MA J, et al. Combining reversible addition-fragmentation chain transfer polymerization and thiol-ene click reaction for application of core-shell structured VO2@polymer nanoparticles to smart window[J]. Sustainable Materials and Technologies, 2022, 32: e00420. doi: 10.1016/j.susmat.2022.e00420 [37] LAAKSONEN K, LI S Y, PUISTO S R, et al. Nanoparticles of TiO2 and VO2 in dielectric media: Conditions for low optical scattering, and comparison between effective medium and four-flux theories[J]. Solar Energy Materials and Solar Cells, 2014, 130: 132-137. doi: 10.1016/j.solmat.2014.06.036 [38] LI S Y, NIKLASSON G A, GRANQVIST C G. Nanothermochromics: Calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation[J]. Journal of Applied Physics, 2010, 108(6): 063525. doi: 10.1063/1.3487980 [39] ZHOU Y, HUANG A, LI Y, et al. Surface plasmon resonance induced excellent solar control for VO2@SiO2 nanorods-based thermochromic foils[J]. Nanoscale, 2013, 5(19): 9208-9213. doi: 10.1039/c3nr02221h [40] CAO C, GAO Y, LUO H. Pure single-crystal rutile vanadium dioxide powders: synthesis, mechanism and phase-transformation property[J]. The Journal of Physical Chemistry C, 2008, 112(48): 18810-18814. doi: 10.1021/jp8073688 [41] ZHOU Y, CAI Y, HU X, et al. VO2/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission[J]. Journal of Materials Chemistry A, 2015, 3(3): 1121-1126. doi: 10.1039/C4TA05035E [42] ZHU J, HUANG A, MA H, et al. Composite film of vanadium dioxide nanoparticles and Ionic liquid-nickel-chlorine complexes with excellent visible thermochromic performance[J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29742-29748. [43] CHEN Y, ZHU J, MA H, et al. VO2/Nickel-bromine-ionic liquid composite film for thermochromic application[J]. Solar Energy Materials and Solar Cells, 2019, 196: 124-130. doi: 10.1016/j.solmat.2019.03.047 [44] ZHU J, HUANG A, MA H, et al. Solar-thermochromism of a hybrid film of VO2 nanoparticles and Co II-Br-TMP complexes[J]. RSC Advances, 2016, 6(71): 67396-67399. doi: 10.1039/C6RA14232J [45] XU F, CAO X, ZHU J, et al. Broadband thermochromic VO2-based composite film with ultra-high solar modulation ability[J]. Materials Letters, 2018, 222: 62-65. doi: 10.1016/j.matlet.2018.03.176 [46] ZHAO X, HU X, SUN J, et al. VO2-based composite films with exemplary thermochromic and photochromic performance[J]. Journal of Applied Physics, 2020, 128(18): 185107. doi: 10.1063/5.0015382 [47] CAO X, WANG N, LAW J Y, et al. Nanoporous thermochromic VO2 (M) thin films: controlled porosity, largely enhanced luminous transmittance and solar modulating ability[J]. Langmuir, 2014, 30(6): 1710-1715. doi: 10.1021/la404666n [48] LONG S, CAO X, HUANG R, et al. Self-template synthesis of nanoporous VO2-based films: localized surface plasmon resonance and enhanced optical performance for solar glazing application[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22692-22702. [49] YAO L, QU Z, PANG Z, et al. Three-layered hollow nanospheres based coatings with ultrahigh-performance of energy-saving, antireflection, and self-cleaning for smart windows[J]. Small, 2018, 14(34): 1801661. doi: 10.1002/smll.201801661 [50] QU Z, YAO L, LI J, et al. Bifunctional template-induced VO2@SiO2 dual-shelled hollow nanosphere-based coatings for smart windows[J]. ACS Applied Materials & Interfaces, 2019, 11(17): 15960-15968. [51] XU H, GUO X, WANG S, et al. Double in-situ synthesis of highly dispersed VO2-Mg1.5VO4 porous film with excellent optical performance and durability for advanced smart windows[J]. Applied Surface Science, 2023, 622: 156851. doi: 10.1016/j.apsusc.2023.156851 [52] ZHAO X, YAO W, SUN J, et al. Thermochromic composite film of VO2 nanoparticles and [(C2H5)2NH2]2NiBr4@SiO2 nanospheres for smart window applications[J]. Chemical Engineering Journal, 2023, 460: 141715. doi: 10.1016/j.cej.2023.141715 [53] 秦成远, 高迎, 王程, 等. 二氧化钒-1, 4-双 (苯并噁唑-2-基) 萘复合薄膜及其热致变色和发光性能[J]. 复合材料学报, 2021, 38(10): 3412-3423.QIN C, GAO Y, WANG C, et al. Vanadium dioxide-1, 4-bis (benzoxazol-2-yl) naphthalene composite films and their thermochromic and photoluminescent property[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3412-3423(in Chinese). [54] 王彬彬, 高阳, 杨帅军, 等. 二氧化钒-聚二乙炔热致变色复合薄膜及其调光性能[J]. 复合材料学报, 2023, 40(6): 3417-3427.WANG B, GAO Y, YANG S, et al. Vanadium dioxide-polydiacetylene thermochromic composite films and their solar regulation properties[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3417-3427(in Chinese). [55] GUZMAN G, MORINEAU R, LIVAGE J. Synthesis of vanadium dioxide thin films from vanadium alkoxides[J]. Materials Research Bulletin, 1994, 29(5): 509-515. doi: 10.1016/0025-5408(94)90039-6 [56] FITZGERALD J V. Anelasticity of glass: II, internal friction and sodium ion diffusion in tank plate glass, a typical soda-lime-silica glass[J]. Journal of the American Ceramic Society, 1951, 34(11): 339-342. doi: 10.1111/j.1151-2916.1951.tb13481.x [57] KOO H, YOU H, KO K-E, et al. Thermochromic properties of VO2 thin film on SiNx buffered glass substrate[J]. Applied Surface Science, 2013, 277: 237-241. doi: 10.1016/j.apsusc.2013.04.031 [58] NAGASHIMA K, YANAGIDA T, TANAKA H, et al. Interface effect on metal-insulator transition of strained vanadium dioxide ultrathin films[J]. Journal of Applied Physics, 2007, 101(2): 026103-026103-3. doi: 10.1063/1.2424321 [59] ZHANG Z, GAO Y, LUO H, et al. Solution-based fabrication of vanadium dioxide on F: SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications[J]. Energy & Environmental Science, 2011, 4(10): 4290-4297. [60] KANG L, GAO Y, LUO H, et al. Thermochromic properties and low emissivity of ZnO: Al/VO2 double-layered films with a lowered phase transition temperature[J]. Solar Energy Materials and Solar Cells, 2011, 95(12): 3189-3194. doi: 10.1016/j.solmat.2011.06.047 [61] KANG L, GAO Y, CHEN Z, et al. Pt/VO2 double-layered films combining thermochromic properties with low emissivity[J]. Solar Energy Materials and Solar Cells, 2010, 94(12): 2078-2084. doi: 10.1016/j.solmat.2010.06.023 [62] CHEN Z, GAO Y, KANG L, et al. VO2-based double-layered films for smart windows: Optical design, all-solution preparation and improved properties[J]. Solar Energy Materials and Solar Cells, 2011, 95(9): 2677-2684. doi: 10.1016/j.solmat.2011.05.041 [63] ZHU M, QI H, WANG B, et al. Thermochromism of vanadium dioxide films controlled by the thickness of ZnO buffer layer under low substrate temperature[J]. Journal of Alloys and Compounds, 2018, 740: 844-851. doi: 10.1016/j.jallcom.2018.01.066 [64] GU J, WEI H, REN F, et al. VO2-based infrared radiation regulator with excellent dynamic thermal management performance[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 2683-2690. [65] REN F, WEI H, GU J, et al. In Situ Preparation of VO2 Films with Controlled Ionized Flux Density in HiPIMS and Their Regulation of Thermal Radiance[J]. ACS Applied Electronic Materials, 2020, 2(7): 2203-2210. doi: 10.1021/acsaelm.0c00383 [66] KOO H, XU L, KO K-E, et al. Effect of oxide buffer layer on the thermochromic properties of VO2 thin films[J]. Journal of Materials Engineering and Performance, 2013, 22(12): 3967-3973. doi: 10.1007/s11665-013-0696-7 [67] LONG S, CAO X, SUN G, et al. Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability[J]. Applied Surface Science, 2018, 441: 764-772. doi: 10.1016/j.apsusc.2018.02.083 [68] XU G, JIN P, TAZAWA M, et al. Optimization of antireflection coating for VO2-based energy efficient window[J]. Solar Energy Materials and Solar Cells, 2004, 83(1): 29-37. doi: 10.1016/j.solmat.2004.02.014 [69] KOO H, SHIN D, BAE S-H, et al. The effect of CeO2 antireflection layer on the optical properties of thermochromic VO2 film for smart window system[J]. Journal of Materials Engineering and Performance, 2014, 23: 402-407. doi: 10.1007/s11665-013-0740-7 [70] JIN P, XU G, TAZAWA M, et al. Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings[J]. Applied Physics A: Materials Science & Processing. 2003, 77: 455-459. [71] CHANG T, CAO X, Li N, et al. Facile and low-temperature fabrication of thermochromic Cr2O3/VO2 smart coatings: enhanced solar modulation ability, high luminous transmittance and UV-shielding function[J]. ACS applied Materials & Interfaces, 2017, 9(31): 26029-26037. [72] LEE M-H, CHO J-S. Better thermochromic glazing of windows with anti-reflection coating[J]. Thin Solid Films, 2000, 365(1): 5-6. doi: 10.1016/S0040-6090(99)01112-8 [73] JIN, PING, XU, et al. A VO2-based multifunctional window with highly improved luminous transmittance : Surfaces, interfaces, and films[J]. Japanese Journal of Applied Physics. 2002, 41(3): L278-L280. [74] SAITZEK S, GUINNETON F, SAUQUES L, et al. Thermochromic CeO2-VO2 bilayers: Role of ceria coating in optical switching properties[J]. Optical Materials, 2007, 30(3): 407-415. doi: 10.1016/j.optmat.2006.11.067 [75] WU W, WANG C, CHEN C, et al. Design of antireflection and enhanced thermochromic properties of TiO2/VO2 thin films[J]. Advanced Materials Interfaces, 2023, 10(15): 2202506. doi: 10.1002/admi.202202506 [76] DOU S, WANG Y, ZHANG X, et al. Facile preparation of double-sided VO2 (M) films with micro-structure and enhanced thermochromic performances[J]. Solar Energy Materials and Solar Cells, 2017, 160: 164-173. doi: 10.1016/j.solmat.2016.10.025 [77] DOU S, ZHAO J, ZHANG W, et al. A universal approach to achieve high luminous transmittance and solar modulating ability simultaneously for vanadium dioxide smart coatings via double-sided localized surface plasmon resonances[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7302-7309. [78] XU F, CAO X, SHAO Z, et al. Highly enhanced thermochromic performance of VO2 film using “movable” antireflective coatings[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 4712-4718. [79] POWELL M J, QUESADA-CABRERA R, TAYLOR A, et al. Intelligent multifunctional VO2/SiO2/TiO2 coatings for self-cleaning, energy-saving window panels[J]. Chemistry of Materials, 2016, 28(5): 1369-1376. doi: 10.1021/acs.chemmater.5b04419 [80] ZHENG J, BAO S, JIN P. TiO2(R)/VO2(M)/TiO2(A) multilayer film as smart window: Combination of energy-saving, antifogging and self-cleaning functions[J]. Nano Energy, 2015, 11: 136-145. doi: 10.1016/j.nanoen.2014.09.023 [81] GAGAOUDAKIS E, APERATHITIS E, MICHAIL G, et al. Low-temperature rf sputtered VO2 thin films as thermochromic coatings for smart glazing systems[J]. Solar Energy, 2018, 165: 115-121. doi: 10.1016/j.solener.2018.03.010 [82] JI Y, MATTSSON A, NIKLASSON G A, et al. Synergistic TiO2/VO2 window coating with thermochromism, enhanced luminous transmittance, and photocatalytic activity[J]. Joule, 2019, 3(10): 2457-2471. doi: 10.1016/j.joule.2019.06.024 [83] CHANG T, CAO X, LI N, et al. Mitigating deterioration of vanadium dioxide thermochromic films by interfacial encapsulation[J]. Matter, 2019, 1(3): 734-744. doi: 10.1016/j.matt.2019.04.004 [84] LIU C, WANG S, ZHOU Y, et al. Index-tunable anti-reflection coatings: Maximizing solar modulation ability for vanadium dioxide-based smart thermochromic glazing[J]. Journal of Alloys and Compounds, 2018, 731: 1197-1207. doi: 10.1016/j.jallcom.2017.10.045 [85] LONG S, CAO X, LI N, et al. Application-oriented VO2 thermochromic coatings with composite structures: Optimized optical performance and robust fatigue properties[J]. Solar Energy Materials and Solar Cells, 2019, 190: 138-148. [86] CHANG T, CAO X, DEDON L R, et al. Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings[J]. Nano Energy, 2018, 44: 256-264. doi: 10.1016/j.nanoen.2017.11.061 [87] 高迎, 秦成远, 聂永, 等. 二氧化钒-荧光增白剂-有机聚合物三层多功能复合薄膜[J]. 复合材料学报. 2022, 39(8): 3828-3844.GAO Y, QIN C, Nie Y, et al. Three-layer multifunctional vanadium dioxide-fluorescent brightener-organic polymer composite films[J]. Acta Materiae Compositae Sinica. 2021, 565: 150610(in Chinese). [88] ZHAN Y, LU Y, XIAO X, et al. Tuning thermochromic performance of VOx-based multilayer films by controlling annealing pressure[J]. Ceramics International, 2020, 46(2): 2079-2085. doi: 10.1016/j.ceramint.2019.09.188 [89] MLYUKA N R, NIKLASSON G A, GRANQVIST C G. Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance[J]. Solar Energy Materials and Solar Cells, 2009, 93(9): 1685-1687. doi: 10.1016/j.solmat.2009.03.021 [90] YAO L, QU Z, SUN R, et al. Long-lived multilayer coatings for smart windows: Integration of energy-saving, antifogging, and self-healing functions[J]. ACS Applied Energy Materials, 2019, 2(10): 7467-7473. doi: 10.1021/acsaem.9b01382
计量
- 文章访问数: 89
- HTML全文浏览量: 74
- 被引次数: 0