留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能窗用二氧化钒基复合结构薄膜的制备及研究进展

张新宇 徐慧妍 杨立凯 王尚 杨帅军 蒋绪川

张新宇, 徐慧妍, 杨立凯, 等. 智能窗用二氧化钒基复合结构薄膜的制备及研究进展[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 张新宇, 徐慧妍, 杨立凯, 等. 智能窗用二氧化钒基复合结构薄膜的制备及研究进展[J]. 复合材料学报, 2024, 42(0): 1-13.
ZHANG Xinyu, XU Huiyan, YANG Likai, et al. Progress in preparation and research of VO2-based composite structure films for smart windows[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Xinyu, XU Huiyan, YANG Likai, et al. Progress in preparation and research of VO2-based composite structure films for smart windows[J]. Acta Materiae Compositae Sinica.

智能窗用二氧化钒基复合结构薄膜的制备及研究进展

基金项目: 国家自然科学基金 (2180050407)
详细信息
    通讯作者:

    徐慧妍, 博士, 讲师, 研究方向为光、热、电、磁等外界刺激响应型无机功能材料 E-mail: ism_xuhy@ujn.edu

    蒋绪川, 博士, 教授, 博士生导师, 研究方向为功能无机纳米材料的制备及应用研究 E-mail: ism_jiangxc@ujn.edu.cn

  • 中图分类号: TB381

Progress in preparation and research of VO2-based composite structure films for smart windows

Funds: National Natural Science Foundation of China (2180050407)
  • 摘要: 二氧化钒(VO2)在68℃附近发生绝缘体-金属相转变,同时伴随着近红外光透射率突变,因此在智能节能窗领域具有巨大的应用潜力。近年来,关于 VO2的制备方法、相变机制及改善光学性能方面取得了显著进展。然而,在实际应用中,VO2仍面临一系列挑战,包括本征相变温度较高、可见光透过率(Tlum)较低、太阳能调节效率(∆Tsol)不佳、耐候性差以及颜色舒适度较差(呈现棕黄色)。针对这些问题,国内外的研究者进行了大量研究,发现复合结构对改善VO2性能具有显著作用,对推进其实际应用具有重要意义。然而,目前关于VO2基复合结构的综述相对较少。本文概括了VO2基复合结构的制备方法以及在智能窗领域的性能研究进展,并对VO2基复合结构薄膜未来发展前景进行了展望。

     

  • 图  1  VO2的金属相(R)(a)和绝缘相(R)(b)的能带结构图和晶体结构[15]

    Figure  1.  Band structure diagram and crystal structure of metallic phase(R) (a) and insulating phase(R) (b) of VO2[15]

    图  2  (a-b)VO2纳米颗粒[18,19];(c-d)无机壳层结构[23];(e-f)有机壳层结构[32];(g-h)无机-有机壳层结构[33]

    Figure  2.  (a-b)Nanocomposite particle[18,19];(c-d)Inorganic shell structure[23];(e-f)Organic shell structure[32] (g-h);Inorganic-organic shell structure[33]

    图  3  (a) VO2-水凝胶复合薄膜[41]; (b) VO2-Ni-Cl-IL复合薄膜[42]; (c) VO2-螺吡喃复合薄膜[46]

    Figure  3.  (a) VO2-hydrogel composite film[41]; (b) VO2-Ni-Cl-IL composite film[42]; (c) VO2-spiropyran composite film[44]

    图  4  (a) SiO2@TiO2@VO2三层空心纳米球结构[49]; (b) VO2@SiO2双层空心核壳结构[50]; (c) VO2-Mg1.5VO4多孔结构[51]

    Figure  4.  (a) SiO2@TiO2@VO2 three-layer hollow nanospheres[49]; (b) VO2@SiO2 double layer hollow core-shell structure[45]; (c) VO2-Mg1.5VO4 porous structure[51]

    图  5  (a) Cr2O3-VO2缓冲层结构[71]; (b) VO2-TiO2减反射结构[75]; (c) HSi-V-FSi-P多功能结构[81]; (d) VO2-HfO2多功能结构[82]

    Figure  5.  (a) Cr2O3-VO2 buffer layer structure[71]; (b) VO2-TiO2 antireflection structure[75]; (c) HSi-V-FSi-P multi-function structure[81]; (d) VO2-HfO2 multi-function structure[82]

    表  1  VO2核壳结构复合薄膜的光学性能

    Table  1.   Optical properties of VO2 core-shell composite thin films

    Structure Tlum/% Tsol/% Tc/℃ References
    VO2@SiO2 38.0 18.9 Du et al.[30] 2022
    VO2@ZnO 51.0 19.1 Chen et al.[27] 2017
    VO2@SiO2 50.6 14.7 25.2 Zhu et al.[34] 2015
    VO2@TiO2 59.3 6.2 Li et al.[28] 2013
    VO2@PDA 56.3 14.5 33.8 Guo et al.[32] 2022
    VO2@PMMA 17.5 57 Hu et al.[35] 2023
    VO2@Polymer 20.34 Zhao et al.[36] 2022
    VO2@MgF2@PDA 25.0 Zhao et al.[33] 2019
    Notes:Tlum is the luminous transmittance, ∆Tsol is the modulation of solar energy, Tc is the transition temperature, A@B is the core(A)@shell(B) structure, PDA is polydopamine, PMMA is polymethyl methacrylate.
    下载: 导出CSV

    表  2  不同基质材料VO2基复合薄膜的光学性能

    Table  2.   Optical properties of VO2-based composite films of different matrix materials

    Structure Tlum/% Tsol/% References
    VO2-Hydrogel 62.6 34.7 Zhou et al.[41]2015
    VO2-Ni-Cl-IL 66.85 23.77 Zhu et al.[42]2016
    VO2-{[(C2H5)2NH2]2NiBr4@SiO2} 52.9 25.7 Zhao et al. [52]2023
    VO2-Spiropyran 48.58 23.58 Zhao et al.[44]2020
    VO2@SiO2 61.8 12.6 Qu et al.[50]2019
    SiO2@TiO2@VO2 73.9 12.0 Yang et al.[49]2018
    VO2-[1, 4-bis (benzoxazol-2-yl) naphthalene] 73.0 9.0 Qin et al.[53]2021
    VO2-PDA 56.23 7.64 Wang et al.[54]2023
    Notes:A-B is the mixture of A and B,Ni-Cl-IL is the ionic liquid-rnickel-rchlorine complexes.
    下载: 导出CSV

    表  3  VO2多层结构复合薄膜的光学性能

    Table  3.   Optical properties of VO2 multilayer composite films

    Structure Tlum/% Tsol/% References
    Double-layer ZnO-VO2 46.4 6.0 Gagaoudakis et al.[81]2018
    VO2-TiO2 61.5 15.1 Chen et al.[62]2011
    TiO2-VO2 50.49 20.11 Wu et al.[75]2023
    TiO2-VO2 47.3 8.8 Ji et al.[82]2019
    VO2-HfO2 55.8 15.9 Chang et al.[83]2019
    VO2-C₈H20O₄Si 52.7 16.4 Liu et al.[84]2018
    TiO2-VO2 49.0 7.0 Jin et al.[73]2002
    Three-layer SiNx-VO2-SiNx 40.4 14.5 Long et al.[85]2019
    Cr2O3-VO2-SiO2 50.0 16.1 Chang et al.[86]2018
    TiO2-VO2-TiO2 57.6 2.9 Jin et al.[70]2003
    VO2-fluorescent brightener-organic polymer 78.87 7.34 Gao et al.[87]2021
    Multi-layer SiNx-NiCrOx-SiNx-VOx-SiNx-NiCrOx-SiNx 40.5 18.4 Zhan et al.[88]2020
    TiO2-VO2-TiO2-VO2-TiO2 45 12.1 Miyuka et al.[89]2009
    HSi-VO2-FSi-P 54.0 16.4 Yao et al.[90]2019
    Notes:A-B is the multi-layer structure of the lower layer(A) and the upper layer(B), HSi is the antireflective hollow SiO2 layer, FSi is the protective fluorosilane SiO2 layer, P is the antifogging cross-linked poly(vinyl alcohol) and poly(acrylic acid)layer.
    下载: 导出CSV
  • [1] WARWICK M E A, BINIONS R. Advances in thermochromic vanadium dioxide films[J]. Journal of Materials Chemistry A, 2014, 2(10): 3275-3292. doi: 10.1039/C3TA14124A
    [2] MANJAKKAL L, PEREIRA L, BARIMAH E K, et al. Multifunctional flexible and stretchable electrochromic energy storage devices[J]. Progress in Materials Science, 2024: 101244.
    [3] MA D, YANG T, FENG X, et al. Quadruple Control Electrochromic Devices Utilizing Ce4W9O33 Electrodes for Visible and Near-Infrared Transmission Intelligent Modulation[J]. Advanced Science, 2024: 2307223.
    [4] WANG J, WANG Z, ZHANG M, et al. A semi-solid, polychromatic dual-band electrochromic smart window: Visualizing sunlight and solar heat transmission[J]. Chemical Engineering Journal, 2024: 149628.
    [5] ZHANG Z, MO H, LI R, et al. The Counterbalancing Role of Oxygen Vacancy between the Electrochromic Properties and the Trapping Effect Passivation for Amorphous Tungsten Oxide Films[J]. Small Science, 2024: 2300219.
    [6] ZHAO X, SUN J, GUO Z, et al. One-step hydrothermal synthesis of monoclinic vanadium dioxide nanoparticles with low phase transition temperature[J]. Chemical Engineering Journal, 2022, 446: 137308. doi: 10.1016/j.cej.2022.137308
    [7] ZHANG Z, ZHANG L, ZHOU Y, et al. Thermochromic energy efficient windows: Fundamentals, recent advances, and perspectives[J]. Chemical Reviews, 2023, 123(11): 7025-7080. doi: 10.1021/acs.chemrev.2c00762
    [8] LA M, ZHOU H, LI N, et al. Improved performance of Mg-Y alloy thin film switchable mirrors after coating with a superhydrophobic surface[J]. Applied Surface Science, 2017, 403: 23-28. doi: 10.1016/j.apsusc.2017.01.106
    [9] WITTWER V, DATZ M, ELL J, et al. Gasochromic windows[J]. Solar Energy Materials and Solar Cells, 2004, 84(1-4): 305-314. doi: 10.1016/j.solmat.2004.01.040
    [10] LI N, LI Y, LI W, et al. One-step hydrothermal synthesis of TiO2@MoO3 core-shell nanomaterial: Microstructure, growth mechanism, and improved photochromic property[J]. The Journal of Physical Chemistry C, 2016, 120(6): 3341-3349. doi: 10.1021/acs.jpcc.5b10752
    [11] LI N, LI Y, ZHOU Y, et al. Interfacial-charge-transfer-induced photochromism of MoO3@TiO2 crystalline-core amorphous-shell nanorods[J]. Solar Energy Materials and Solar Cells, 2017, 160: 116-125. doi: 10.1016/j.solmat.2016.10.016
    [12] WANG S, FAN W, LIU Z, et al. Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties[J]. Journal of Materials Chemistry C, 2018, 6(2): 191-212. doi: 10.1039/C7TC04189F
    [13] GU J, WEI H, ZHAO T, et al. Unprecedented Spatial Manipulation n and Transformation of Dynamic Thermal Radiation Based on Vanadium Dioxide[J]. ACS Applied Materials & Interfaces, 2024, 16: 10352-10360.
    [14] WEI H, YAN X, GU J, et al. A universal approach to fabricating infrared-shielding smart coatings based on vanadium dioxide[J]. Solar Energy Materials and Solar Cells, 2022, 241: 111728. doi: 10.1016/j.solmat.2022.111728
    [15] WANG S, LIU M, KONG L, et al. Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties[J]. Progress in Materials Science, 2016, 81: 1-54. doi: 10.1016/j.pmatsci.2016.03.001
    [16] GOODENOUGH J B. The two components of the crystallographic transition in VO2[J]. Journal of Solid State Chemistry, 1971, 3(4): 490-500. doi: 10.1016/0022-4596(71)90091-0
    [17] CHANG T, CAO X, LONG Y, et al. How to properly evaluate and compare the thermochromic performance of VO2-based smart coatings[J]. Journal of Materials Chemistry A, 2019, 7(42): 24164-24172. doi: 10.1039/C9TA06681K
    [18] 钟莉, 李明, 李广海. D相二氧化钒纳米星粉体及其制备方法[P]. 中国专利, CN104402050B, 2016-02-10.
    [19] WANG C, XU H, WANG C, et al. Preparation of VO2(M) nanoparticles with exemplary optical performance from VO2(B) nanobelts by Ball Milling[J]. Journal of Alloys and Compounds, 2021, 877: 159888. doi: 10.1016/j.jallcom.2021.159888
    [20] 李登兵, 李明, 潘静, 等. 单分散的M相二氧化钒纳米颗粒的制备方法. 中国专利, CN104071843A, 2014-10-01.
    [21] POPURI S R, MICLAU M, ARTEMENKO A, et al. Rapid hydrothermal synthesis of VO2(B) and its conversion to thermochromic VO2(M1)[J]. Inorganic Chemistry, 2013, 52(9): 4780-4785. doi: 10.1021/ic301201k
    [22] CAO C, GAO Y, LUO H. Pure single-crystal rutile vanadium dioxide powders: synthesis, mechanism and phase-transformation property[J]. The Journal of Physical Chemistry C, 2008, 112(48): 18810-18814. doi: 10.1021/jp8073688
    [23] ALIE D, GEDVILAS L, WANG Z, et al. Direct synthesis of thermochromic VO2 through hydrothermal reaction[J]. Journal of Solid State Chemistry, 2014, 212: 237-241. doi: 10.1016/j.jssc.2013.10.023
    [24] LI Y, JI S, GAO Y, et al. Core-shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings[J]. Scientific Reports, 2013, 3(1): 1370. doi: 10.1038/srep01370
    [25] ZHOU Y, JI S, LI Y, et al. Microemulsion-based synthesis of V1-xWxO2@SiO2 core-shell structures for smart window applications[J]. Journal of Materials Chemistry C, 2014, 2(19): 3812-3819. doi: 10.1039/C3TC32282C
    [26] LI W, JI S, QIAN K, et al. Preparation and characterization of VO2(M)-SnO2 thermochromic films for application as energy-saving smart coatings[J]. Journal of Colloid and Interface Science, 2015, 456: 166-173. doi: 10.1016/j.jcis.2015.06.013
    [27] CHEN Y, ZENG X, ZHU J, et al. High performance and enhanced durability of thermochromic films using VO2@ZnO core-shell nanoparticles[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 27784-27791.
    [28] LI Y, JI S, GAO Y, et al. Modification of mott phase transition characteristics in VO2@TiO2 core/shell nanostructures by misfit-strained heteroepitaxy[J]. ACS Applied Materials & Interfaces, 2013, 5(14): 6603-6614.
    [29] XIE Y M, ZHAO X P, MOFID S A, et al. Influence of shell materials on the optical performance of VO2 core-shell nanoparticle-based thermochromic films[J]. Materials Today Nano, 2021, 13: 100102. doi: 10.1016/j.mtnano.2020.100102
    [30] DU Z, LI M, ZOU F, et al. VO2@SiO2 nanoparticle-based films with localized surface plasmon resonance for smart windows[J]. ACS Applied Nano Materials, 2022, 5: 12972-12979. doi: 10.1021/acsanm.2c02788
    [31] CHEN Y, SHAO Z, YANG Y, et al. Electrons-donating derived dual-resistant crust of VO2 nano-particles via ascorbic acid treatment for highly stable smart windows applications[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41229-41237.
    [32] GUO X, XU H, MA X, et al. Photothermal polydopamine coated VO2 nanoparticle thin film with enhanced optical property and stability[J]. Vacuum, 2022, 196: 110776. doi: 10.1016/j.vacuum.2021.110776
    [33] ZHAO S, TAO Y, CHEN Y, et al. Room-temperature synthesis of inorganic-organic hybrid coated VO2 nanoparticles for enhanced durability and flexible temperature-responsive near-Infrared modulator application[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 10254-10261.
    [34] ZHU J, ZHOU Y, WANG B, et al. Vanadium dioxide nanoparticle-based thermochromic smart coating: High luminous transmittance, excellent solar regulation efficiency, and near room temperature phase transition[J]. ACS Applied Materials & Interfaces, 2015, 7(50): 27796-27803.
    [35] 呼啸, 李文婷, 付勍玮, 等. VO2@PMMA 微胶囊的原位制备及其热致变色涂层性能[J]. 复合材料学报, 2022, 40(8): 1-14.

    HU X, LI W, FU Q, et al. In situ preparation of VO2@PMMA microcapsule and thermochromic properties of its coating[J]. Acta Materiae Compositae Sinica, 2022, 40(8): 1-14(in Chinese).
    [36] ZHAO X, SUN J, MA J, et al. Combining reversible addition-fragmentation chain transfer polymerization and thiol-ene click reaction for application of core-shell structured VO2@polymer nanoparticles to smart window[J]. Sustainable Materials and Technologies, 2022, 32: e00420. doi: 10.1016/j.susmat.2022.e00420
    [37] LAAKSONEN K, LI S Y, PUISTO S R, et al. Nanoparticles of TiO2 and VO2 in dielectric media: Conditions for low optical scattering, and comparison between effective medium and four-flux theories[J]. Solar Energy Materials and Solar Cells, 2014, 130: 132-137. doi: 10.1016/j.solmat.2014.06.036
    [38] LI S Y, NIKLASSON G A, GRANQVIST C G. Nanothermochromics: Calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation[J]. Journal of Applied Physics, 2010, 108(6): 063525. doi: 10.1063/1.3487980
    [39] ZHOU Y, HUANG A, LI Y, et al. Surface plasmon resonance induced excellent solar control for VO2@SiO2 nanorods-based thermochromic foils[J]. Nanoscale, 2013, 5(19): 9208-9213. doi: 10.1039/c3nr02221h
    [40] CAO C, GAO Y, LUO H. Pure single-crystal rutile vanadium dioxide powders: synthesis, mechanism and phase-transformation property[J]. The Journal of Physical Chemistry C, 2008, 112(48): 18810-18814. doi: 10.1021/jp8073688
    [41] ZHOU Y, CAI Y, HU X, et al. VO2/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission[J]. Journal of Materials Chemistry A, 2015, 3(3): 1121-1126. doi: 10.1039/C4TA05035E
    [42] ZHU J, HUANG A, MA H, et al. Composite film of vanadium dioxide nanoparticles and Ionic liquid-nickel-chlorine complexes with excellent visible thermochromic performance[J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29742-29748.
    [43] CHEN Y, ZHU J, MA H, et al. VO2/Nickel-bromine-ionic liquid composite film for thermochromic application[J]. Solar Energy Materials and Solar Cells, 2019, 196: 124-130. doi: 10.1016/j.solmat.2019.03.047
    [44] ZHU J, HUANG A, MA H, et al. Solar-thermochromism of a hybrid film of VO2 nanoparticles and Co II-Br-TMP complexes[J]. RSC Advances, 2016, 6(71): 67396-67399. doi: 10.1039/C6RA14232J
    [45] XU F, CAO X, ZHU J, et al. Broadband thermochromic VO2-based composite film with ultra-high solar modulation ability[J]. Materials Letters, 2018, 222: 62-65. doi: 10.1016/j.matlet.2018.03.176
    [46] ZHAO X, HU X, SUN J, et al. VO2-based composite films with exemplary thermochromic and photochromic performance[J]. Journal of Applied Physics, 2020, 128(18): 185107. doi: 10.1063/5.0015382
    [47] CAO X, WANG N, LAW J Y, et al. Nanoporous thermochromic VO2 (M) thin films: controlled porosity, largely enhanced luminous transmittance and solar modulating ability[J]. Langmuir, 2014, 30(6): 1710-1715. doi: 10.1021/la404666n
    [48] LONG S, CAO X, HUANG R, et al. Self-template synthesis of nanoporous VO2-based films: localized surface plasmon resonance and enhanced optical performance for solar glazing application[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22692-22702.
    [49] YAO L, QU Z, PANG Z, et al. Three-layered hollow nanospheres based coatings with ultrahigh-performance of energy-saving, antireflection, and self-cleaning for smart windows[J]. Small, 2018, 14(34): 1801661. doi: 10.1002/smll.201801661
    [50] QU Z, YAO L, LI J, et al. Bifunctional template-induced VO2@SiO2 dual-shelled hollow nanosphere-based coatings for smart windows[J]. ACS Applied Materials & Interfaces, 2019, 11(17): 15960-15968.
    [51] XU H, GUO X, WANG S, et al. Double in-situ synthesis of highly dispersed VO2-Mg1.5VO4 porous film with excellent optical performance and durability for advanced smart windows[J]. Applied Surface Science, 2023, 622: 156851. doi: 10.1016/j.apsusc.2023.156851
    [52] ZHAO X, YAO W, SUN J, et al. Thermochromic composite film of VO2 nanoparticles and [(C2H5)2NH2]2NiBr4@SiO2 nanospheres for smart window applications[J]. Chemical Engineering Journal, 2023, 460: 141715. doi: 10.1016/j.cej.2023.141715
    [53] 秦成远, 高迎, 王程, 等. 二氧化钒-1, 4-双 (苯并噁唑-2-基) 萘复合薄膜及其热致变色和发光性能[J]. 复合材料学报, 2021, 38(10): 3412-3423.

    QIN C, GAO Y, WANG C, et al. Vanadium dioxide-1, 4-bis (benzoxazol-2-yl) naphthalene composite films and their thermochromic and photoluminescent property[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3412-3423(in Chinese).
    [54] 王彬彬, 高阳, 杨帅军, 等. 二氧化钒-聚二乙炔热致变色复合薄膜及其调光性能[J]. 复合材料学报, 2023, 40(6): 3417-3427.

    WANG B, GAO Y, YANG S, et al. Vanadium dioxide-polydiacetylene thermochromic composite films and their solar regulation properties[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3417-3427(in Chinese).
    [55] GUZMAN G, MORINEAU R, LIVAGE J. Synthesis of vanadium dioxide thin films from vanadium alkoxides[J]. Materials Research Bulletin, 1994, 29(5): 509-515. doi: 10.1016/0025-5408(94)90039-6
    [56] FITZGERALD J V. Anelasticity of glass: II, internal friction and sodium ion diffusion in tank plate glass, a typical soda-lime-silica glass[J]. Journal of the American Ceramic Society, 1951, 34(11): 339-342. doi: 10.1111/j.1151-2916.1951.tb13481.x
    [57] KOO H, YOU H, KO K-E, et al. Thermochromic properties of VO2 thin film on SiNx buffered glass substrate[J]. Applied Surface Science, 2013, 277: 237-241. doi: 10.1016/j.apsusc.2013.04.031
    [58] NAGASHIMA K, YANAGIDA T, TANAKA H, et al. Interface effect on metal-insulator transition of strained vanadium dioxide ultrathin films[J]. Journal of Applied Physics, 2007, 101(2): 026103-026103-3. doi: 10.1063/1.2424321
    [59] ZHANG Z, GAO Y, LUO H, et al. Solution-based fabrication of vanadium dioxide on F: SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications[J]. Energy & Environmental Science, 2011, 4(10): 4290-4297.
    [60] KANG L, GAO Y, LUO H, et al. Thermochromic properties and low emissivity of ZnO: Al/VO2 double-layered films with a lowered phase transition temperature[J]. Solar Energy Materials and Solar Cells, 2011, 95(12): 3189-3194. doi: 10.1016/j.solmat.2011.06.047
    [61] KANG L, GAO Y, CHEN Z, et al. Pt/VO2 double-layered films combining thermochromic properties with low emissivity[J]. Solar Energy Materials and Solar Cells, 2010, 94(12): 2078-2084. doi: 10.1016/j.solmat.2010.06.023
    [62] CHEN Z, GAO Y, KANG L, et al. VO2-based double-layered films for smart windows: Optical design, all-solution preparation and improved properties[J]. Solar Energy Materials and Solar Cells, 2011, 95(9): 2677-2684. doi: 10.1016/j.solmat.2011.05.041
    [63] ZHU M, QI H, WANG B, et al. Thermochromism of vanadium dioxide films controlled by the thickness of ZnO buffer layer under low substrate temperature[J]. Journal of Alloys and Compounds, 2018, 740: 844-851. doi: 10.1016/j.jallcom.2018.01.066
    [64] GU J, WEI H, REN F, et al. VO2-based infrared radiation regulator with excellent dynamic thermal management performance[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 2683-2690.
    [65] REN F, WEI H, GU J, et al. In Situ Preparation of VO2 Films with Controlled Ionized Flux Density in HiPIMS and Their Regulation of Thermal Radiance[J]. ACS Applied Electronic Materials, 2020, 2(7): 2203-2210. doi: 10.1021/acsaelm.0c00383
    [66] KOO H, XU L, KO K-E, et al. Effect of oxide buffer layer on the thermochromic properties of VO2 thin films[J]. Journal of Materials Engineering and Performance, 2013, 22(12): 3967-3973. doi: 10.1007/s11665-013-0696-7
    [67] LONG S, CAO X, SUN G, et al. Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability[J]. Applied Surface Science, 2018, 441: 764-772. doi: 10.1016/j.apsusc.2018.02.083
    [68] XU G, JIN P, TAZAWA M, et al. Optimization of antireflection coating for VO2-based energy efficient window[J]. Solar Energy Materials and Solar Cells, 2004, 83(1): 29-37. doi: 10.1016/j.solmat.2004.02.014
    [69] KOO H, SHIN D, BAE S-H, et al. The effect of CeO2 antireflection layer on the optical properties of thermochromic VO2 film for smart window system[J]. Journal of Materials Engineering and Performance, 2014, 23: 402-407. doi: 10.1007/s11665-013-0740-7
    [70] JIN P, XU G, TAZAWA M, et al. Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings[J]. Applied Physics A: Materials Science & Processing. 2003, 77: 455-459.
    [71] CHANG T, CAO X, Li N, et al. Facile and low-temperature fabrication of thermochromic Cr2O3/VO2 smart coatings: enhanced solar modulation ability, high luminous transmittance and UV-shielding function[J]. ACS applied Materials & Interfaces, 2017, 9(31): 26029-26037.
    [72] LEE M-H, CHO J-S. Better thermochromic glazing of windows with anti-reflection coating[J]. Thin Solid Films, 2000, 365(1): 5-6. doi: 10.1016/S0040-6090(99)01112-8
    [73] JIN, PING, XU, et al. A VO2-based multifunctional window with highly improved luminous transmittance : Surfaces, interfaces, and films[J]. Japanese Journal of Applied Physics. 2002, 41(3): L278-L280.
    [74] SAITZEK S, GUINNETON F, SAUQUES L, et al. Thermochromic CeO2-VO2 bilayers: Role of ceria coating in optical switching properties[J]. Optical Materials, 2007, 30(3): 407-415. doi: 10.1016/j.optmat.2006.11.067
    [75] WU W, WANG C, CHEN C, et al. Design of antireflection and enhanced thermochromic properties of TiO2/VO2 thin films[J]. Advanced Materials Interfaces, 2023, 10(15): 2202506. doi: 10.1002/admi.202202506
    [76] DOU S, WANG Y, ZHANG X, et al. Facile preparation of double-sided VO2 (M) films with micro-structure and enhanced thermochromic performances[J]. Solar Energy Materials and Solar Cells, 2017, 160: 164-173. doi: 10.1016/j.solmat.2016.10.025
    [77] DOU S, ZHAO J, ZHANG W, et al. A universal approach to achieve high luminous transmittance and solar modulating ability simultaneously for vanadium dioxide smart coatings via double-sided localized surface plasmon resonances[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7302-7309.
    [78] XU F, CAO X, SHAO Z, et al. Highly enhanced thermochromic performance of VO2 film using “movable” antireflective coatings[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 4712-4718.
    [79] POWELL M J, QUESADA-CABRERA R, TAYLOR A, et al. Intelligent multifunctional VO2/SiO2/TiO2 coatings for self-cleaning, energy-saving window panels[J]. Chemistry of Materials, 2016, 28(5): 1369-1376. doi: 10.1021/acs.chemmater.5b04419
    [80] ZHENG J, BAO S, JIN P. TiO2(R)/VO2(M)/TiO2(A) multilayer film as smart window: Combination of energy-saving, antifogging and self-cleaning functions[J]. Nano Energy, 2015, 11: 136-145. doi: 10.1016/j.nanoen.2014.09.023
    [81] GAGAOUDAKIS E, APERATHITIS E, MICHAIL G, et al. Low-temperature rf sputtered VO2 thin films as thermochromic coatings for smart glazing systems[J]. Solar Energy, 2018, 165: 115-121. doi: 10.1016/j.solener.2018.03.010
    [82] JI Y, MATTSSON A, NIKLASSON G A, et al. Synergistic TiO2/VO2 window coating with thermochromism, enhanced luminous transmittance, and photocatalytic activity[J]. Joule, 2019, 3(10): 2457-2471. doi: 10.1016/j.joule.2019.06.024
    [83] CHANG T, CAO X, LI N, et al. Mitigating deterioration of vanadium dioxide thermochromic films by interfacial encapsulation[J]. Matter, 2019, 1(3): 734-744. doi: 10.1016/j.matt.2019.04.004
    [84] LIU C, WANG S, ZHOU Y, et al. Index-tunable anti-reflection coatings: Maximizing solar modulation ability for vanadium dioxide-based smart thermochromic glazing[J]. Journal of Alloys and Compounds, 2018, 731: 1197-1207. doi: 10.1016/j.jallcom.2017.10.045
    [85] LONG S, CAO X, LI N, et al. Application-oriented VO2 thermochromic coatings with composite structures: Optimized optical performance and robust fatigue properties[J]. Solar Energy Materials and Solar Cells, 2019, 190: 138-148.
    [86] CHANG T, CAO X, DEDON L R, et al. Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings[J]. Nano Energy, 2018, 44: 256-264. doi: 10.1016/j.nanoen.2017.11.061
    [87] 高迎, 秦成远, 聂永, 等. 二氧化钒-荧光增白剂-有机聚合物三层多功能复合薄膜[J]. 复合材料学报. 2022, 39(8): 3828-3844.

    GAO Y, QIN C, Nie Y, et al. Three-layer multifunctional vanadium dioxide-fluorescent brightener-organic polymer composite films[J]. Acta Materiae Compositae Sinica. 2021, 565: 150610(in Chinese).
    [88] ZHAN Y, LU Y, XIAO X, et al. Tuning thermochromic performance of VOx-based multilayer films by controlling annealing pressure[J]. Ceramics International, 2020, 46(2): 2079-2085. doi: 10.1016/j.ceramint.2019.09.188
    [89] MLYUKA N R, NIKLASSON G A, GRANQVIST C G. Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance[J]. Solar Energy Materials and Solar Cells, 2009, 93(9): 1685-1687. doi: 10.1016/j.solmat.2009.03.021
    [90] YAO L, QU Z, SUN R, et al. Long-lived multilayer coatings for smart windows: Integration of energy-saving, antifogging, and self-healing functions[J]. ACS Applied Energy Materials, 2019, 2(10): 7467-7473. doi: 10.1021/acsaem.9b01382
  • 加载中
计量
  • 文章访问数:  50
  • HTML全文浏览量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-10
  • 修回日期:  2024-05-20
  • 录用日期:  2024-05-25
  • 网络出版日期:  2024-06-22

目录

    /

    返回文章
    返回