留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢纤维橡胶混凝土工作性能及力学性能

董硕 史奉伟 李朋 陈海涛 丁婧楠

董硕, 史奉伟, 李朋, 等. 钢纤维橡胶混凝土工作性能及力学性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 董硕, 史奉伟, 李朋, 等. 钢纤维橡胶混凝土工作性能及力学性能[J]. 复合材料学报, 2024, 42(0): 1-11.
DONG Shuo, SHI Fengwei, LI Peng, et al. Workability and mechanical properties of steel fiber reinforced rubberized concrete[J]. Acta Materiae Compositae Sinica.
Citation: DONG Shuo, SHI Fengwei, LI Peng, et al. Workability and mechanical properties of steel fiber reinforced rubberized concrete[J]. Acta Materiae Compositae Sinica.

钢纤维橡胶混凝土工作性能及力学性能

基金项目: 山东省自然科学基金 (ZR2023QE307); 中国博士后科学基金(2023M742143); 国家资助博士后研究人员计划(GZC20231497)
详细信息
    通讯作者:

    史奉伟,博士,讲师,硕士生导师,研究方向为新材料及新结构体系关键技术 E-mail: shifengwei@sdust.edu.cn

  • 中图分类号: TU528.31TU528.572

Workability and mechanical properties of steel fiber reinforced rubberized concrete

Funds: Natural Science Foundation of Shandong Province (ZR2023QE307); China Postdoctoral Science Foundation (2023M742143); Postdoctoral Fellowship Program of CPSF (GZC20231497)
  • 摘要: 本文以橡胶颗粒等体积替代砂率(0~20%)和钢纤维体积掺量(0~1.5%)为变量制备150个试件,分别进行立方体及轴心抗压强度试验、劈裂抗拉试验、弯曲抗折试验、双面剪切试验及扫描电子显微镜(SEM)观测,研究橡胶颗粒和钢纤维的掺入对钢纤维橡胶混凝土力学性能及微观结构影响。 结果表明:掺入橡胶颗粒和钢纤维会显著降低钢纤维橡胶混凝土的工作性能;随着橡胶掺量的增加,混凝土各项力学性能指标均呈明显下降趋势;与橡胶混凝土不同,钢纤维橡胶混凝土的各项力学性能破坏模式均呈延性破坏,且随着钢纤维掺量的增加,混凝土各项强度指标均有不同程度的增加,其中抗剪强度增幅最为明显,橡胶掺量10%混凝土中掺入1.5%掺量钢纤维,抗剪强度增幅可达78%。 根据试验结果并综合考虑橡胶和钢纤维的影响,提出了钢纤维橡胶混凝土基本强度指标的计算公式及其相互之间关系。

     

  • 图  1  不同掺料对钢纤维橡胶混凝土拌合物塌落度影响

    Figure  1.  Effect of different admixtures on slump of SF-R/C

    图  2  各项力学性能试验的典型破坏模式

    Figure  2.  Typical failure mode of each test

    图  3  不同掺料及掺量对钢纤维橡胶混凝土立方体和轴心抗压强度的影响

    Figure  3.  Effect of different admixtures and content on cubic compression strength and axial compression strength of SF-R/C

    图  4  钢纤维橡胶混凝土立方体抗压强度的试验值与拟合值的对比

    Figure  4.  Comparison of cube compression strength of SF-R/C specimens between test and predicted results

    图  5  钢纤维橡胶混凝土轴心抗压强度与立方体抗压强度的关系

    Figure  5.  Relationship between axial compression strength and cube compression strength of SF-R/C specimens

    图  6  钢纤维橡胶混凝土 fc / fcu 与立方体抗压强度的关系

    Figure  6.  Relationship between fc / fcu and cube compression strength of SF-R/C specimens

    图  7  不同掺料及掺量对钢纤维橡胶混凝土劈裂抗拉强度的影响

    Figure  7.  Effect of different admixtures and content on splitting tensile strength of SF-R/C

    图  8  钢纤维劈裂抗拉强度增强系数的试验与拟合值对比

    Figure  8.  Comparison between test and predicted results of splitting tensile strength enhancement coefficient of steel fiber

    图  9  普通及橡胶混凝土劈裂抗拉强度与立方体抗压强度的关系

    Figure  9.  Relationship between splitting tensile strength and cube compression strength of NC and R/C

    图  10  不同掺料对钢纤维橡胶混凝土弯曲抗折强度的影响

    Figure  10.  Effect of different admixtures on flexural strength of SF-R/C

    图  11  钢纤维弯曲抗折强度强度增强系数的试验值与拟合值对比

    Figure  11.  Comparison between test and predicted results of flexural strength enhancement coefficient of steel fiber

    图  12  普通及橡胶混凝土弯曲抗折强度与立方体抗压强度的关系

    Figure  12.  Relationship between flexural strength and cube compression strength of NC and R/C

    图  13  不同掺料对钢纤维橡胶混凝土抗剪强度的影响

    Figure  13.  Effect of different admixtures on shear strength of SF-R/C

    图  14  钢纤维橡胶混凝土抗剪强度的试验值与拟合值对比

    Figure  14.  Comparison of shear strength of SF-R/C specimens between test and predicted results

    图  15  普通及橡胶混凝土抗剪强度与立方体抗压强度的关系

    Figure  15.  Relationship between shear strength and cube compression strength of NC and R/C

    图  16  试件断口SEM微观形貌

    Figure  16.  SEM microscopic morphology of specimens interface

    表  1  试件混凝土配合比设计

    Table  1.   Concrete mix design of specimens

    Specimen denotation Water-binder ratio SF/kg R/kg W/kg C/kg FA/kg CA/kg SP/kg
    NC 0.340 0 0 160 470 820 960 4.7
    10%R/C 0.340 0 34.17 160 470 738 960 4.7
    20%R/C 0.340 0 68.33 160 470 656 960 4.7
    0.5%SF/C 0.340 39.25 0 160 470 820 960 4.7
    1.0%SF/C 0.340 78.5 0 160 470 820 960 4.7
    1.5%SF/C 0.340 117.75 0 160 470 820 960 4.7
    0.5%SF-10%R/C 0.340 39.25 34.17 160 470 738 960 4.7
    1.0%SF-10%R/C 0.340 78.5 34.17 160 470 738 960 4.7
    1.5%SF-10%R/C 0.340 117.75 34.17 160 470 738 960 4.7
    1.0%SF-20%R/C 0.340 78.5 68.33 160 470 656 960 4.7
    Notes: NC-Normal Concrete; R/C-Rubberized Concrete; SF/C - Steel fiber reinforced concrete; SF-R/C–Steel fiber reinforced rubberized concrete; SF–Steel fiber, 0.5%SF, 1.0%SF, 1.5%SF– Steel fiber volume fraction ratios of 0.5%, 1.0%, 1.5%, respectively; R-Rubber particles, 10%R, 20%R – Rubber particles volume substitution ratios of 10% and 20%, respectively; W-Water; C-Cement; FA-Fine aggregate; CA-Coarse aggregate; SP-Superplasticizer.
    下载: 导出CSV

    表  2  抗压和劈裂抗拉试验结果

    Table  2.   Test result of compression and split tensile strength

    Specimen denotation fcu fc,cu fc fc /fcu fts fc,ts ff fc,f fs fc,s
    NC 68.70 68.70 46.22 0.67 4.13 4.11 6.77 6.71 8.03 7.95
    10%R/C 58.50 56.73 41.30 0.71 3.30 3.32 5.93 6.02 6.76 6.83
    20%R/C 46.50 44.76 32.05 0.69 2.45 2.44 5.20 5.17 5.53 5.49
    0.5%SF/C 72.10 72.15 48.31 0.67 4.92 4.96 7.12 7.09 9.53 9.44
    1.0%SF/C 74.70 75.60 50.94 0.68 5.05 5.11 7.74 7.70 10.59 10.47
    1.5%SF/C 78.90 79.05 54.40 0.69 5.15 5.20 8.39 8.43 12.35 12.23
    0.5%SF-10%R/C 60.20 60.18 42.70 0.71 4.02 4.01 6.35 6.37 9.29 9.09
    1.0%SF-10%R/C 61.40 63.63 42.23 0.69 4.20 4.12 6.85 6.91 9.94 9.98
    1.5%SF-10%R/C 65.70 67.08 46.10 0.70 4.25 4.20 7.60 7.57 12.03 11.49
    1.0%SF-20%R/C 48.93 51.66 34.17 0.70 4.24 3.03 5.96 5.93 9.07 8.82
    Notes: fcu-Cube compressive strength; fc,cu-Calculation value of cube compressive strength; fc-Compressive strength; fts-Splitting tensile strength; fc,ts- Calculation value of splitting tensile strength; ff-Flexural strength; fc,f -Calculation value of flexural strength; fs-Shear strength; fc,s- Calculation value of shear strength.
    下载: 导出CSV
  • [1] HAN Qinhua, YANG Guang, XU Jie, et al. Acoustic emission data analyses based on crumb rubber concrete beam bending tests[J]. Engineering Fracture Mechanics, 2019, 210: 189-202. doi: 10.1016/j.engfracmech.2018.05.016
    [2] 薛刚, 朱浩君, 许胜, 等. 橡胶混凝土单轴受压疲劳性能研究[J]. 工程力学, 2022, 39(11): 203-211.

    XUE Gang, ZHU Haojun, XU Sheng, et al. The uniaxial compression fatigue performance of rubber concrete[J]. Engineering Mechanics, 2022, 39(11): 203-211 (in Chinese).
    [3] 姚韦靖, 刘雨姗, 王婷雅, 等. 橡胶/混凝土盐冻循环后性能劣化及微观结构[J]. 复合材料学报, 2021, 38(12): 4294-4304.

    YAO Weijing, LIU Yushan, WANG Tianya, et al. Performance degradation and microscopic structure of rubber/concrete after salt freeze-thaw cycles[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4294-4304(in Chinese).
    [4] XUE James, SHINOZUKA Masanobu. Rubberized concrete: A green structural material with enhanced energy-dissipation capability[J]. Construction and Building Materials, 2013, 42(may): 196-204.
    [5] TURATSINZE A. , BONNET S. , GRANJU J. L. Potential of rubber aggregates to modify properties of cement based-mortars: Improvement in cracking shrinkage resistance[J]. Construction and Building Materials, 2007, 21(1): 176-181.
    [6] 胡艳丽, 高培伟, 李富荣, 等. 不同取代率的橡胶混凝土力学性能试验研究[J]. 建筑材料学报, 2020, 23(1): 85-92. doi: 10.3969/j.issn.1007-9629.2020.01.013

    HU Yanli, GAO Peiwei, LI Furong, et al. Experimental study on mechanical properties of rubber concrete with different substitution rates[J]. Journal of Building Materials, 2020, 23(1): 85-92 (in Chinese). doi: 10.3969/j.issn.1007-9629.2020.01.013
    [7] RAFFOUL S. , GARCIA R. , PILAKOUTAS K. , et al. Optimisation of rubberised concrete with high rubber content: An experimental investigation[J]. Construction and Building Materials, 2016, 124: 391-404.
    [8] SHAO Jianwen, ZHU Han, ZUO Xian, et al. Effect of waste rubber particles on the mechanical performance and deformation properties of epoxy concrete for repair[J]. Construction and Building Materials, 241 (2020), 118008.
    [9] HUANG Baoshan, LI Guoqiang, PANG Suseng, et al. Investigation into waste tire rubber-filled concrete[J]. Journal of Materials in Civil Engineering, 2004, 16(3): 187-194. doi: 10.1061/(ASCE)0899-1561(2004)16:3(187)
    [10] ISSA Camille A. , SALEM George . Utilization of recycled crumb rubber as fine aggregates in concrete mix design[J]. Construction and Building Materials, 2013, 42(may): 48-52.
    [11] ALWESABI E. H. A. , ABU BAKAR, B. H. ALSHAIKH I. M. H. , et al. Experimental investigation on mechanical properties of plain and rubberised concretes with steel–polypropylene hybrid fibre[J]. Construction and Building Materials, 2020, 233: 117194.
    [12] WANG Jiaqing, DAI Qingli, SI Ruizhe, et al. Fresh and mechanical performance and freeze-thaw durability of steel fiber-reinforced rubber self-compacting concrete (SRSCC)[J]. Journal of cleaner production, 2020, 277: 123180. doi: 10.1016/j.jclepro.2020.123180
    [13] KARIMIPOUR A. , GHALEHNOVI M. , BRITO de J. Mechanical and durability properties of steel fibre-reinforced rubberised concrete[J]. Construction and Building Materials, 2020, 257: 119463.
    [14] 赵秋红, 董硕, 朱涵. 钢纤维-橡胶/混凝土单轴受压全曲线试验及本构模型[J]. 复合材料学报, 2021, 38(7): 2359-2369.

    ZHAO Qiuhong, DONG Shuo, ZHU Han. Experiment on stress-strain behavior and constitutive model of steel fiber-rubber/concrete subjected to uniaxial compression[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2359-2369.
    [15] DONG Shuo, ZHAO Qiuhong, ZHU Han. Mechanical properties and constitutive model of steel fiber-reinforced rubberized concrete[J]. Construction and Building Materials, 2021, 327: 126720.
    [16] NOAMAN A. T. , BAKAR B. H. A. , ALIL H. M. Experimental investigation on compression toughness of rubberized steel fibre concrete[J]. Construction and Building Materials, 2016, 115: 163-170.
    [17] LI Y. , LI Y. Q. Experimental study on performance of rubber particle and steel fiber composite toughening concrete[J]. Construction and Building Materials, 2017, 146: 267-275.
    [18] EISA A. S. , ELSHAZLI M. T. , NAWAR M. T. Experimental investigation on the effect of using crumb rubber and steel fibers on the structural behavior of reinforced concrete beams[J]. Construction and Building Materials, 2020, 252: 119078.
    [19] 徐颖, 刘家兴, 杨荣周, 等. 超高强度橡胶混凝土的力学特性及能量演化[J]. 建筑材料学报, 2023, 26(6): 612-622.

    XU Ying, LIU Jiaxing, YANG Rongzhou, et al. Mechanical properties and energy evolution of ultra high strength rubber concrete.[J]. Journal of Building Materials, 2023, 26(6): 612-622 (in Chinese).
    [20] ALSAIF A. , KOUTAS L. , BERNAL S. A. , et al. Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements[J]. Construction and Building Materials, 2018, 172(may): 533-543.
    [21] CARROLL J. C. , HELMINGER N. Fresh and Hardened Properties of Fiber-Reinforced Rubber Concrete[J]. Journal of Materials in Civil Engineering, 2016, 28 (7): 4016027.
    [22] FU Chuanqing, YE Hailong, WANG Kejin, et al. Evolution of mechanical properties of steel fiber-reinforced rubberized concrete (FR-RC)[J]. Composites Part B:Engineering, 2019, 160: 158-166. doi: 10.1016/j.compositesb.2018.10.045
    [23] 中华人民共和国建设部. 普通混凝土力学性能试验方法标准GB/T 50081-2002[S]. 北京: 中国建筑工业出版社, 2002.

    Ministry of Construction of the People’s Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081-2002[S]. Beijing: China Architecture & Building Press, 2002 (in Chinese).
    [24] 中国工程建设行业协会. 纤维混凝土试验方法标准 CECS 13: 2009 [S]. 北京: 中国计划出版社, 2010.

    China Engineering Construction Industry Association. Standard test methods for fiber reinforced concrete: CECS 13: 2009 [S]. Beijing: China Planning Press, 2004 (in Chinese).
    [25] 电子探针定量分析方法通则 GB/T 15074—2008[S]. 北京: 中国标准出版社, 2009

    General guide of quantitative analysis by EPMA: GB/T 15074—2008[S]. Beijing: Standards Press of China, 2009. of China, 2009(in Chinese).
    [26] 赵顺波, 杜晖, 钱晓军, 等. 钢纤维高强混凝土配合比直接设计方法研究[J]. 土木工程学报, 2008, (7): 1-6. doi: 10.3321/j.issn:1000-131X.2008.07.001

    ZHAO Shunbo, DU Hui, QIAN Xiaojun, et al. Study on direct mix design method for steel fiber reinforced high-strength concrete[J]. China Civil Engineering Journal, 2008, (7): 1-6. doi: 10.3321/j.issn:1000-131X.2008.07.001
  • 加载中
计量
  • 文章访问数:  107
  • HTML全文浏览量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-26
  • 修回日期:  2024-02-22
  • 录用日期:  2024-03-19
  • 网络出版日期:  2024-04-22

目录

    /

    返回文章
    返回