Additive manufacturing for continuous fiber-reinforced polymer composites: A review on processing technique
-
摘要:
近年来,连续纤维增强聚合物复合材料的相关研究已成为材料领域的关注热点,相比于金属、陶瓷等结构材料,其具有更高的设计性、比强度、断裂韧性、疲劳寿命和耐腐蚀特性,在航空航天、轨道交通、风电能源、机械工业等领域具有广阔的应用前景。连续纤维增强聚合物复合材料与增材制造技术的有机结合对于高端装备的轻量化、结构功能一体化制造具有重要意义。文针对连续纤维复材增材制造过程中的挤出与浸渍方式、打印温度、辅助工艺、打印速度、打印间距、几何构建方式等工艺研究的国内外最新进展情况进行了全面的综述,着重论述了各工艺参数对成形件性能的影响,并对目前面临的挑战和未来发展进行展望。 CFRPCs增材制造的要素及应用领域 -
关键词:
- 连续纤维增强聚合物复合材料 /
- 增材制造 /
- 工艺参数 /
- 力学性能
Abstract: Compared with metal, ceramic or other structural materials, continuous fiber-reinforced polymer composites can offer significant advantage for their excellent design tailorability, mechanical properties, fracture toughness, good resistance to corrosion and fatigue, and are widely used in aerospace, transportation, energy, machinery and other fields. The organic combination of continuous fiber-reinforced polymer composites and additive manufacturing technology has the potential to promote new revolution for weight saving and structure-function integrated manufacturing of high-end equipment. This paper reviewed the recent research progress of extrusion and impregnation methods, printing temperature, auxiliary process, printing speed, printing spacing and geometric construction methods in additive manufacturing of continuous fiber composites. The influence of various process parameters on properties of the formed parts was emphatically discussed. Finally, the present challenges and future development directions have been prospected for reference. -
图 5 (a) 离线浸渍后连续纤维增材制造示意图[56];(b) 溶液预浸渍碳纤维束示意图[57];(c) 连续纤维浸渍工艺线示意图[58];(d) 基于微螺杆原位挤压的连续纤维增强复合材料增材制造原理图[59];(e) 预浸渍连续纤维复合材料截面图[63]
Figure 5. (a) Schematic of the 3D printer head using of pre-impregnated continuous fiber composite filament[56]; (b) Schematic of surface preparation[57]; (c) Schematic image of the CFRTP filament impregnation line[58]; (d) Schematic of micro-screw in-situ extrusion based 3D printed continuous fiber reinforced composites[59]; (e) Schematic of interface enhancement mechanism[63]
PVA—Polyvinyl alcohol; l—Length; h—Height; α—Angle; w—Width; L—Layer thickness; H—Hatch spacing; D—Die diameter; θ—Angle; PA6—Polyamides 6; PA845H—Polyamides 845H; CFRTP—Continuous fifiber reinforced thermoplastic
图 6 (a) 打印温度对CCF/PLA复合材料制件弯曲性能的影响;((b)、(d)) 180℃成形件的断裂截面微观形貌;((c)、(e)) 240℃成形件的断裂截面微观形貌;((f)、(g)) 180℃与240℃成形件的断裂截面宏观形貌[53]
Figure 6. (a) Influence of temperature in liquefier on the flexural strength and modulus of the 3D printed CCF/PLA composites; ((b), (d)) Microstructures of fractured cross section with temperature in the printing head of 180℃; ((c), (e)) Microstructures of fractured cross section with temperature in the printing head of 240℃; ((f), (g)) Fracture pattern with temperature in the printing head of 180℃ and 240℃, respectively[53]
图 8 CCF/PEEK复合材料增材成形过程中:(a) 层间温度差导致结合弱示意图;(b) 无激光辅助预热层间键合示意图;(c) 有激光辅助预热层间键合示意图[69]
Figure 8. 3D printed CCF/PEEK composites: (a) Diagram of weak interlayer bonding because of low temperature of printed layer; (b) Diagram of interlayer bonding during extrusion without laser assistance; (c) Diagram of interlayer bonding during extrusion with laser assistance[69]
Tg—Glass transition temperature
图 9 (a) 激光辅助加热工艺[70];(b) 等离子体辅助浸渍工艺[71];(c) 微波辅助加热工艺[73];(d) 热压实辊辅助工艺[75]
Figure 9. (a) Schematic illustration of the laser-assisted printer system[70]; (b) Plasma-assisted preparation of CCF[71]; (c) Schematic diagram of the 3D microwave printing process[73]; (d) Schematic image of the 3D compaction printer head[75]
CCFRP—Continuous carbon fiber reinforced plastics
图 10 (a) CGF/PLA复材在不同打印速度下成形的力学强度和试样实物图[79];(b) 上浆碳纤维(SCF)/PA复材在不同打印速度下成形的弯曲性能和试样实物图[63];(c)复材在不同打印速度下成形的弯曲性能和内部结构微观形貌[60]
Figure 10. (a) Effect of printing speed on the properties of printed CGF/PLA composites and printed samples[79]; (b) Effect of printing speed on the flexural properties of printed sized carbon fiber (SCF)/PA composites and printed samples[63]; (c) Effect of printing speed on the flexural properties of printed composites and micro morphology of internal structures after curing[60]
VCF/PA6—Virgin carbon fiber (VCF) reinforced PA6; E70—Feed rate of filament (70 mm/min); V—Printing speed
图 11 (a)纤维取向排列示意图[69];CCF/PLA弯曲强度与工艺参数关系的三维曲面图(b)与数据表(c)[87]
Figure 11. (a) Diagram of fibre orientation[69]; 3D surface graphs (b) and data table (c) of relationship between flexural strength and printing parameters (printing temperature, printing speed, and layer thickness)[87]
D—Inner line spacing; H—Thickness between adjacent layers
图 12 (a) 打印喷嘴结构图;(b) CGF/PLA复材经不同内径喷嘴(1.0 mm、1.2 mm、1.5 mm、2.0 mm)成形的力学强度; CGF/PLA复材在不同层厚条件下成形的力学强度(c)与断裂截面SEM图像(d)[79]
Figure 12. (a) Scheme of the nozzle and its internal structure; (b) Mechanical strength of printed CGF/PLA composites with different nozzle diameters (1.0 mm, 1.2 mm, 1.5 mm, 2.0 mm); (c) Mechanical strength of printed CGF/PLA composites with different layer thickness; (d) SEM of fractured cross section[79]
b—Nozzle edge width; d—Nozzle diameter
图 13 (a) 复合材料增材成形构建方向示意图[90];(b) 螺栓连接件打印路径优化示意图[98];(c) L型托架样件拓扑结构与打印路径优化过程及仿真示意图[103];(d) 不同芯型夹层结构实物图[26];(e) 超轻承重结构件实物图[108];(f) 独立式网架构件实物图[111]
Figure 13. (a) Scheme of CFRPCs printing orientation[90]; (b) Schematic for the optimization of the fiber trajectories[98]; (c) Graphical summary of the topology and fiber paths design for L-shaped bracket CFRPCs[103]; (d) Photos of various printed core shapes[26]; (e) Photos of ultralightweight load-bearing structures[108]; (f) Photos of printed free-standing lattice truss[111]
表 1 连续纤维复材增材制造典型材料及其性能特征[18, 21, 31, 39-41]
Table 1. Materials used for continuous filament fabrication and properties[18, 21, 31, 39-41]
Material Property Matrix Density/
(g·cm−3)Printing
temperature/℃Tensile
modulus/GPaFlexural
modulus/GPaPA 1.1 235-260 0.94 0.84 PLA 1.25 190-210 2.02 2.392 ABS 1.04 210-250 0.998 1.9 PP 0.92 230-260 1.1-1.6 1.2-1.6 PEEK 1.3 360-450 3.5-3.9 3.7-4.0 Continuous fiber Density/
(g·cm−3)Diameter/
cm (Number of mono
filaments, diameter)Tensile
modulus/GPaFlexural
modulus/GPaCarbon (CCF) 1.4/1.3 0.4(1000, 0.01) 54 51 Glass (CGF) 1.5 0.3(1000, 0.01) 21 22 Kevlar (CKF) 1.2 0.3(1000, 0.012) 27 26 Notes: PA—Polyamides; PLA—Polylactic acid; ABS—Acrylonitrile-butadiene-styrene copolymer; PP—Polypropylene; PEEK—Polyether ether ketone; CCF—Continuous carbon fiber; CGF—Continuous glass fiber; CKF—Continuous Kevlar fiber. -
[1] 田振生, 刘大伟, 李刚, 等. 连续纤维增强热塑性树脂预浸料的研究进展[J]. 复合材料科学与工程, 2013(6):119-124. doi: 10.3969/j.issn.1003-0999.2013.06.025TIAN Zhensheng, LIU Dawei, LI Gang, et al. Research progress of continuous fiber reinforced thermoplastic resin prepreg[J]. Composites Science and Engineering,2013(6):119-124(in Chinese). doi: 10.3969/j.issn.1003-0999.2013.06.025 [2] 何亚飞, 矫维成, 杨帆, 等. 树脂基复合材料成型工艺的发展[J]. 纤维复合材料, 2011(2):7-13. doi: 10.3969/j.issn.1003-6423.2011.02.002HE Yafei, JIAO Weicheng, YANG Fan, et al. Development of resin matrix composite molding process[J]. Fiber Composites,2011(2):7-13(in Chinese). doi: 10.3969/j.issn.1003-6423.2011.02.002 [3] CAMPBELL F. Manufacturing processes for advanced composites[M]. Amsterdam: Elsevier, 2003. [4] MAZUMDAR S. Composites manufacturing: Materials, product, and process engineering[M]. New York: CRC press, 2001. [5] MALLICK P K. Fiber-reinforced composites: Materials, manufacturing, and design[M]. Boca Raton: CRC press, 2007. [6] MORI K, MAENO T, NAKAGAWA Y. Dieless forming of carbon fibre reinforced plastic parts using 3D printer[J]. Procedia Engineering,2014,81:1595-1600. doi: 10.1016/j.proeng.2014.10.196 [7] MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports,2016,6:23058. doi: 10.1038/srep23058 [8] ATTARAN M. The rise of 3D printing: The advantages of additive manufacturing over traditional manufacturing[J]. Business Horizons,2017,60(5):677-688. doi: 10.1016/j.bushor.2017.05.011 [9] COLLINS R. 3D printing composites 2020-2030: Technology and market analysis current and future technologies, and market forecasts[R]. Cambridge: IDTechEx Res, 2020: 122. [10] HOFSTÄTTER T, PEDERSEN D B, TOSELLO G, et al. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies[J]. Journal of Reinforced Plastics and Composites,2017,36(15):1061-1073. doi: 10.1177/0731684417695648 [11] WANG X, JIANG M, ZHOU Z, et al. 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B: Engineering,2017,110:442-458. doi: 10.1016/j.compositesb.2016.11.034 [12] BETTINI P, ALITTA G, SALA G, et al. Fused deposition technique for continuous fiber reinforced thermoplastic[J]. Journal of Materials Engineering and Performance,2017,26(2):843-848. doi: 10.1007/s11665-016-2459-8 [13] LI J, DURANDET Y, HUANG X, et al. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities[J]. Journal of Materials Science & Technology,2022,119:219-244. [14] PANDELIDI C, BATEMAN S, PIEGERT S, et al. The technology of continuous fibre-reinforced polymers: A review on extrusion additive manufacturing methods[J]. The International Journal of Advanced Manufacturing Technology,2021,113(11):3057-3077. [15] ZHANG H, HUANG T, JIANG Q, et al. Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: A review[J]. Journal of Materials Science,2021,56(23):12999-13022. doi: 10.1007/s10853-021-06111-w [16] ZHUO P, LI S, ASHCROFT I A, et al. Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook[J]. Composites Part B: Engineering,2021,224:109143. doi: 10.1016/j.compositesb.2021.109143 [17] MASHAYEKHI F, BARDON J, BERTHÉ V, et al. Fused filament fabrication of polymers and continuous fiber-reinforced polymer composites: Advances in structure optimization and health monitoring[J]. Polymers,2021,13(5):789. doi: 10.3390/polym13050789 [18] KABIR S M F, MATHUR K, SEYAM A F M. A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties[J]. Composite Structures,2020,232:111476. doi: 10.1016/j.compstruct.2019.111476 [19] TIAN X, TODOROKI A, LIU T, et al. 3D printing of continuous fiber reinforced polymer composites: Development, application, and prospective[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers,2022,1(1):100016. doi: 10.1016/j.cjmeam.2022.100016 [20] SAFARI F, KAMI A, ABEDINI V. 3D printing of continuous fiber reinforced composites: A review of the processing, pre- and post-processing effects on mechanical properties[J]. Polymers and Polymer Composites,2022,30:09673911. doi: 10.1177/09673911221098734 [21] WU H, FAHY W P, KIM S, et al. Recent developments in polymers/polymer nanocomposites for additive manufacturing[J]. Progress in Materials Science,2020,111:100638. doi: 10.1016/j.pmatsci.2020.100638 [22] SHANMUGAM V, RAJENDRAN D J J, BABU K, et al. The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing[J]. Polymer Testing,2021,93:106925. doi: 10.1016/j.polymertesting.2020.106925 [23] BLOK L G, LONGANA M L, YU H, et al. An investigation into 3D printing of fibre reinforced thermoplastic composites[J]. Additive Manufacturing,2018,22:176-186. doi: 10.1016/j.addma.2018.04.039 [24] RÁTHY I, KUKI Á, BORDA J, et al. Preparation and characterization of poly (vinyl chloride)-continuous carbon fiber composites[J]. Journal of Applied Polymer Science,2012,124(1):190-194. doi: 10.1002/app.33617 [25] DICKSON A N, BARRY J N, MCDONNELL K A, et al. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing[J]. Additive Manufacturing,2017,16:146-152. doi: 10.1016/j.addma.2017.06.004 [26] SUGIYAMA K, MATSUZAKI R, UEDA M, et al. 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension[J]. Composites Part A: Applied Science and Manufacturing,2018,113:114-121. doi: 10.1016/j.compositesa.2018.07.029 [27] DICKSON A N, DOWLING D P. Enhancing the bearing strength of woven carbon fibre thermoplastic composites through additive manufacturing[J]. Composite Structures,2019,212:381-388. doi: 10.1016/j.compstruct.2019.01.050 [28] NARANJO-LOZADA J, AHUETT-GARZA H, ORTA-CASTAÑÓN P, et al. Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing[J]. Additive Manufacturing,2019,26:227-241. doi: 10.1016/j.addma.2018.12.020 [29] CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Composites Part B: Engineering,2018,148:93-103. doi: 10.1016/j.compositesb.2018.04.054 [30] RAHIM T N A T, ABDULLAH A M, AKIL H M, et al. The improvement of mechanical and thermal properties of polyamide 12 3D printed parts by fused deposition modelling[J]. Express Polymer Letters,2017,11(12):963-982. doi: 10.3144/expresspolymlett.2017.92 [31] CHACÓN J M, CAMINERO M A, GARCÍA-PLAZA E, et al. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection[J]. Materials & Design,2017,124:143-157. [32] ALAIMO G, MARCONI S, COSTATO L, et al. Influence of meso-structure and chemical composition on FDM 3D-printed parts[J]. Composites Part B: Engineering,2017,113:371-380. doi: 10.1016/j.compositesb.2017.01.019 [33] ZHAO F, LI D, JIN Z. Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications[J]. Materials,2018,11(2):288. doi: 10.3390/ma11020288 [34] RINALDI M, GHIDINI T, CECCHINI F, et al. Additive layer manufacturing of poly(ether ether ketone) via FDM[J]. Composites Part B: Engineering,2018,145:162-172. doi: 10.1016/j.compositesb.2018.03.029 [35] LEE C U, VANDENBRANDE J, GOETZ A E, et al. Room temperature extrusion 3D printing of polyether ether ketone using a stimuli-responsive binder[J]. Additive Manufacturing,2019,28:430-438. doi: 10.1016/j.addma.2019.05.008 [36] GEBISA A W, LEMU H G. Investigating effects of fused-deposition modeling (FDM) processing parameters on flexural properties of ULTEM 9085 using designed experiment[J]. Materials,2018,11(4):500. doi: 10.3390/ma11040500 [37] TAYLOR G, WANG X, MASON L, et al. Flexural behavior of additively manufactured Ultem 1010: Experiment and simulation[J]. Rapid Prototyping Journal,2018,24(6):1003-1011. doi: 10.1108/RPJ-02-2018-0037 [38] WU H, SULKIS M, DRIVER J, et al. Multi-functional ULTEM™ 1010 composite filaments for additive manufacturing using fused filament fabrication (FFF)[J]. Additive Manufacturing,2018,24:298-306. doi: 10.1016/j.addma.2018.10.014 [39] KOTLINSK J. Mechanical properties of commercial rapid prototyping materials[J]. Rapid Prototyping Journal,2014,20(6):499-510. doi: 10.1108/RPJ-06-2012-0052 [40] LANZOTTI A, GRASSO M, STAIANO G, et al. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3D printer[J]. Rapid Prototyping Journal,2015,21(5):604-617. doi: 10.1108/RPJ-09-2014-0135 [41] LI W, SANG L, JIAN X, et al. Influence of sanding and plasma treatment on shear bond strength of 3D-printed PEI, PEEK and PEEK/CF[J]. International Journal of Adhesion and Adhesives,2020,100:102614. doi: 10.1016/j.ijadhadh.2020.102614 [42] KARGER-KOCSIS J, MAHMOOD H, PEGORETTI A. Recent advances in fiber/matrix interphase engineering for polymer composites[J]. Progress in Materials Science,2015,73:1-43. doi: 10.1016/j.pmatsci.2015.02.003 [43] YANG C, TIAN X, LIU T, et al. 3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance[J]. Rapid Prototyping Journal,2017,23(1):209-215. doi: 10.1108/RPJ-08-2015-0098 [44] ZHANG Y C, WANG X. Thermal effects on interfacial stress transfer characteristics of carbon nanotubes/polymer composites[J]. International Journal of Solids and Structures,2005,42(20):5399-5412. doi: 10.1016/j.ijsolstr.2005.02.038 [45] GOH G D, YAP Y L, AGARWALA S, et al. Recent progress in additive manufacturing of fiber reinforced polymer composite[J]. Advanced Materials Technologies,2019,4(1):1800271. doi: 10.1002/admt.201800271 [46] ZHAO H, LIU X, ZHAO W, et al. An overview of research on FDM 3D printing process of continuous fiber reinforced composites[C]//International Conference on Advanced Algorithms and Control Engineering, ICAACE 2019—Electronics Engineering and Process Control. Guilin: IOP Publishing, 2019, 1213(5): 052037. [47] TURNER B N, STRONG R, GOLD S A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling[J]. Rapid Prototyping Journal,2014,20(3):192-204. doi: 10.1108/RPJ-01-2013-0012 [48] AKHOUNDI B, BEHRAVESH A H, BAGHERI SAED A. An innovative design approach in three-dimensional printing of continuous fiber-reinforced thermoplastic composites via fused deposition modeling process: In-melt simultaneous impregnation[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2020,234(1-2):243-259. doi: 10.1177/0954405419843780 [49] MATSCHINSKI A. Integration of continuous fibers in additive manufacturing processes[C]//Virtual Symposium on AFP and AM. Canberra: Technical University of Munich and Australian National University, 2020. [50] KÖHLER T, RÖDING T, GRIES T, et al. An overview of impregnation methods for carbon fibre reinforced thermoplastics[C]//Key Engineering Materials. Switzerland: Trans Tech Publications Ltd, 2017, 742: 473-481. [51] CARNEVALE P. Fibre-matrix interfaces in thermoplastic composites: A meso-level approach[D]. Holland: Technische Universiteit Delft, 2014. [52] WANG F, WANG G, NING F, et al. Fiber-matrix impregnation behavior during additive manufacturing of continuous carbon fiber reinforced polylactic acid composites[J]. Additive Manufacturing,2021,37:101661. doi: 10.1016/j.addma.2020.101661 [53] TIAN X, LIU T, YANG C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A: Applied Science and Manufacturing,2016,88:198-205. doi: 10.1016/j.compositesa.2016.05.032 [54] OMURO R, MATSUZAKI R, HIRANO Y, et al. Mechanical testing of a 3D-printed continuous carbon fiber reinforced polylactic acid composite by in-nozzle impregnation fused-deposition modelling[J]. SAMPE Journal,2018,54:12-20. [55] JUSTO J, TÁVARA L, GARCÍA-GUZMÁN L, et al. Characterization of 3D printed long fibre reinforced composites[J]. Composite Structures,2018,185:537-548. doi: 10.1016/j.compstruct.2017.11.052 [56] GOH G D, DIKSHIT V, NAGALINGAM A P, et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics[J]. Materials & Design,2018,137:79-89. doi: 10.1016/j.matdes.2017.10.021 [57] HEIDARI-RARANI M, RAFIEE-AFARANI M, ZAHEDI A M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites[J]. Composites Part B: Engineering,2019,175:107147. doi: 10.1016/j.compositesb.2019.107147 [58] UŞUN A, GÜMRÜK R. The mechanical performance of the 3D printed composites produced with continuous carbon fiber reinforced filaments obtained via melt impregnation[J]. Additive Manufacturing,2021,46:102112. doi: 10.1016/j.addma.2021.102112 [59] LIU T, TIAN X, ZHANG Y, et al. High-pressure interfacial impregnation by micro-screw in-situ extrusion for 3D printed continuous carbon fiber reinforced nylon composites[J]. Composites Part A: Applied Science and Manufacturing,2020,130:105770. doi: 10.1016/j.compositesa.2020.105770 [60] MING Y, ZHANG S, HAN W, et al. Investigation on process parameters of 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites[J]. Additive Manufacturing,2020,33:101184. doi: 10.1016/j.addma.2020.101184 [61] MING Y, XIN Z, ZHANG J, et al. Fabrication of continuous glass fiber-reinforced dual-cure epoxy composites via UV-assisted fused deposition modeling[J]. Composites Communications,2020,21:100401. doi: 10.1016/j.coco.2020.100401 [62] LUO H, TAN Y, ZHANG F, et al. Selectively enhanced 3D printing process and performance analysis of continuous carbon fiber composite material[J]. Materials,2019,12(21):3529. doi: 10.3390/ma12213529 [63] LIU T, TIAN X, ZHANG M, et al. Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PA6 composites[J]. Composites Part A: Applied Science and Manufacturing,2018,114:368-376. doi: 10.1016/j.compositesa.2018.09.001 [64] WANG Y, KONG D, ZHANG Q, et al. Process parameters and mechanical properties of continuous glass fiber reinforced composites-polylactic acid by fused deposition modeling[J]. Journal of Reinforced Plastics and Composites,2021,40(17-18):686-698. doi: 10.1177/0731684421998017 [65] BRENKEN B, BAROCIO E, FAVALORO A, et al. Fused filament fabrication of fiber-reinforced polymers: A review[J]. Additive Manufacturing,2018,21:1-16. doi: 10.1016/j.addma.2018.01.002 [66] BRENKEN B, FAVALORO A, BAROCIO E, et al. Development of a model to predict temperature history and crystallization behavior of 3D printed parts made from fiber-reinforced thermoplastic polymers[C]//SAMPE Conference Proceedings. Long Beach: Society for the Advancement of Material and Process Engineering, 2016: 23-26. [67] ZHOU Y, NYBERG T, XIONG G, et al. Temperature analysis in the fused deposition modeling process[C]//2016 3rd International Conference on Information Science and Control Engineering (ICISCE). Beijing: IEEE, 2016: 678-682. [68] COSTA S F, DUARTE F M, COVAS J A. Thermal conditions affecting heat transfer in FDM/FFE: A contribution towards the numerical modelling of the process: This paper investigates convection, conduction and radiation phenomena in the filament deposition process[J]. Virtual and Physical Prototyping,2015,10(1):35-46. doi: 10.1080/17452759.2014.984042 [69] LUO M, TIAN X, SHANG J, et al. Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites[J]. Composites Part A: Applied Science and Manufacturing,2019,121:130-138. doi: 10.1016/j.compositesa.2019.03.020 [70] LUO M, TIAN X, ZHU W, et al. Controllable interlayer shear strength and crystallinity of PEEK components by laser-assisted material extrusion[J]. Journal of Materials Research,2018,33(11):1632-1641. doi: 10.1557/jmr.2018.131 [71] LUO M, TIAN X, SHANG J, et al. Bi-scale interfacial bond behaviors of CCF/PEEK composites by plasma-laser cooperatively assisted 3D printing process[J]. Composites Part A: Applied Science and Manufacturing,2020,131:105812. doi: 10.1016/j.compositesa.2020.105812 [72] NAKAGAWA Y, MORI K, YOSHINO M. Laser-assisted 3D printing of carbon fibre reinforced plastic parts[J]. Journal of Manufacturing Processes,2022,73:375-384. doi: 10.1016/j.jmapro.2021.11.025 [73] LI N, LINK G, JELONNEK J. Rapid 3D microwave printing of continuous carbon fiber reinforced plastics[J]. CIRP Annals,2020,69(1):221-224. doi: 10.1016/j.cirp.2020.04.057 [74] LI N, LINK G, JELONNEK J. 3D microwave printing temperature control of continuous carbon fiber reinforced composites[J]. Composites Science and Technology,2020,187:107939. doi: 10.1016/j.compscitech.2019.107939 [75] UEDA M, KISHIMOTO S, YAMAWAKI M, et al. 3D compaction printing of a continuous carbon fiber reinforced thermoplastic[J]. Composites Part A: Applied Science and Manufacturing,2020,137:105985. doi: 10.1016/j.compositesa.2020.105985 [76] KISHORE V, AJINJERU C, NYCZ A, et al. Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components[J]. Additive Manufacturing,2017,14:7-12. doi: 10.1016/j.addma.2016.11.008 [77] PARTAIN S C. Fused deposition modeling with localized pre-deposition heating using forced air[D]. Bozeman: Montana State University-Bozeman, College of Engineering, 2007. [78] SHAFFER S, YANG K, VARGAS J, et al. On reducing anisotropy in 3D printed polymers via ionizing radiation[J]. Polymer,2014,55(23):5969-5979. doi: 10.1016/j.polymer.2014.07.054 [79] CHEN K, YU L, CUI Y, et al. Optimization of printing parameters of 3D-printed continuous glass fiber reinforced polylactic acid composites[J]. Thin-Walled Structures,2021,164:107717. doi: 10.1016/j.tws.2021.107717 [80] CHANG B, PARANDOUSH P, LI X, et al. Ultrafast printing of continuous fiber-reinforced thermoplastic composites with ultrahigh mechanical performance by ultrasonic-assisted laminated object manufacturing[J]. Polymer Composites,2020,41(11):4706-4715. doi: 10.1002/pc.25744 [81] CHU Q, LI Y, XIAO J, et al. Processing and characterization of the thermoplastic composites manufactured by ultrasonic vibration-assisted automated fiber placement[J]. Journal of Thermoplastic Composite Materials,2018,31(3):339-358. doi: 10.1177/0892705717697781 [82] LIU S J, CHANG I T, HUNG S W. Factors affecting the joint strength of ultrasonically welded polypropylene composites[J]. Polymer Composites,2001,22(1):132-141. doi: 10.1002/pc.10525 [83] ANITHA R, ARUNACHALAM S, RADHAKRISHNAN P. Critical parameters influencing the quality of prototypes in fused deposition modelling[J]. Journal of Materials Processing Technology,2001,118(1-3):385-388. doi: 10.1016/S0924-0136(01)00980-3 [84] NANCHARAIAH T, RAJU D R, RAJU V R. An experimental investigation on surface quality and dimensional accuracy of FDM components[J]. International Journal on Emerging Technologies,2010,1(2):106-111. [85] CARNEIRO O S, SILVA A F, GOMES R. Fused deposition modeling with polypropylene[J]. Materials & Design,2015,83:768-776. [86] CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Polymer Testing,2018,68:415-423. doi: 10.1016/j.polymertesting.2018.04.038 [87] HU Q, DUAN Y, ZHANG H, et al. Manufacturing and 3D printing of continuous carbon fiber prepreg filament[J]. Journal of Materials Science,2018,53(3):1887-1898. doi: 10.1007/s10853-017-1624-2 [88] RANKOUHI B, JAVADPOUR S, DELFANIAN F, et al. Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation[J]. Journal of Failure Analysis and Prevention,2016,16(3):467-481. doi: 10.1007/s11668-016-0113-2 [89] SHUBHAM P, SIKIDAR A, CHAND T. The influence of layer thickness on mechanical properties of the 3D printed ABS polymer by fused deposition modeling[C]//Key Engineering Materials. Switzerland: Trans Tech Publications Ltd, 2016, 706: 63-67. [90] CHACÓN J M, CAMINERO M A, NÚÑEZ P J, et al. Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties[J]. Composites Science and Technology,2019,181:107688. doi: 10.1016/j.compscitech.2019.107688 [91] SANEI S H R, POPESCU D. 3D-printed carbon fiber reinforced polymer composites: A systematic review[J]. Journal of Composites Science,2020,4(3):98. doi: 10.3390/jcs4030098 [92] ARAYA-CALVO M, LÓPEZ-GÓMEZ I, CHAMBERLAIN-SIMON N, et al. Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology[J]. Additive Manufacturing,2018,22:157-164. doi: 10.1016/j.addma.2018.05.007 [93] VAN DER KLIFT F, KOGA Y, TODOROKI A, et al. 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens[J]. Open Journal of Composite Materials,2016,6(1):18. doi: 10.4236/ojcm.2016.61003 [94] PYL L, KALTEREMIDOU K A, VAN HEMELRIJCK D. Exploration of specimen geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix composites[J]. Polymer Testing,2018,71:318-328. doi: 10.1016/j.polymertesting.2018.09.022 [95] WANG K, LI S, RAO Y, et al. Flexure behaviors of ABS-based composites containing carbon and Kevlar fibers by material extrusion 3D printing[J]. Polymers,2019,11(11):1878. doi: 10.3390/polym11111878 [96] DING Q, LI X, ZHANG D, et al. Anisotropy of poly(lactic acid)/carbon fiber composites prepared by fused deposition modeling[J]. Journal of Applied Polymer Science,2020,137(23):48786. doi: 10.1002/app.48786 [97] SANEI S H R, ARNDT A, DOLES R. Open hole tensile testing of 3D printed continuous carbon fiber reinforced composites[J]. Journal of Composite Materials,2020,54(20):2687-2695. doi: 10.1177/0021998320902510 [98] SUGIYAMA K, MATSUZAKI R, MALAKHOV A V, et al. 3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber[J]. Composites Science and Technology,2020,186:107905. doi: 10.1016/j.compscitech.2019.107905 [99] HOU Z, TIAN X, ZHANG J, et al. Optimization design and 3D printing of curvilinear fiber reinforced variable stiffness composites[J]. Composites Science and Technology,2021,201:108502. doi: 10.1016/j.compscitech.2020.108502 [100] SHANG J, TIAN X, LUO M, et al. Controllable inter-line bonding performance and fracture patterns of continuous fiber reinforced composites by sinusoidal-path 3D printing[J]. Composites Science and Technology,2020,192:108096. doi: 10.1016/j.compscitech.2020.108096 [101] WANG T, LI N, LINK G, et al. Load-dependent path planning method for 3D printing of continuous fiber reinforced plastics[J]. Composites Part A: Applied Science and Manufacturing,2021,140:106181. doi: 10.1016/j.compositesa.2020.106181 [102] PAPAPETROU V S, PATEL C, TAMIJANI A Y. Stiffness-based optimization framework for the topology and fiber paths of continuous fiber composites[J]. Composites Part B: Engineering,2020,183:107681. doi: 10.1016/j.compositesb.2019.107681 [103] FERNANDES R R, VAN DE WERKEN N, KOIRALA P, et al. Experimental investigation of additively manufactured continuous fiber reinforced composite parts with optimized topology and fiber paths[J]. Additive Manufacturing,2021,44:102056. doi: 10.1016/j.addma.2021.102056 [104] VAN DE WERKEN N, HURLEY J, KHANBOLOUKI P, et al. Design considerations and modeling of fiber reinforced 3D printed parts[J]. Composites Part B: Engineering,2019,160:684-692. doi: 10.1016/j.compositesb.2018.12.094 [105] LIU G, XIONG Y, ZHOU L. Additive manufacturing of continuous fiber reinforced polymer composites: Design opportunities and novel applications[J]. Composites Communications,2021,27:100907. doi: 10.1016/j.coco.2021.100907 [106] CHENG P, PENG Y, LI S, et al. 3D printed continuous fiber reinforced composite lightweight structures: A review and outlook[J]. Composites Part B: Engineering,2023,250:110450. doi: 10.1016/j.compositesb.2022.110450 [107] HUANG Y, TIAN X, ZHENG Z, et al. Multiscale concurrent design and 3D printing of continuous fiber reinforced thermoplastic composites with optimized fiber trajectory and topological structure[J]. Composite Structures,2022,285:115241. doi: 10.1016/j.compstruct.2022.115241 [108] EICHENHOFER M, WONG J C H, ERMANNI P. Continuous lattice fabrication of ultra-lightweight composite structures[J]. Additive Manufacturing,2017,18:48-57. doi: 10.1016/j.addma.2017.08.013 [109] WANG Z, LUAN C, LIAO G, et al. Mechanical and self-monitoring behaviors of 3D printing smart continuous carbon fiber-thermoplastic lattice truss sandwich structure[J]. Composites Part B: Engineering,2019,176:107215. doi: 10.1016/j.compositesb.2019.107215 [110] LIU S, LI Y, LI N. A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures[J]. Materials & Design,2018,137:235-244. [111] LI N, LINK G, MA J, et al. LiDAR based multi-robot cooperation for the 3D printing of continuous carbon fiber reinforced composite structures[C]//12th International Conference on Manufacturing Research (ICMR2014). Amsterdam: IOS Press, 2021: 125-132. [112] CHABAUD G, CASTRO M, DENOUAL C, et al. Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications[J]. Additive Manufacturing,2019,26:94-105. doi: 10.1016/j.addma.2019.01.005 [113] 秦若森, 孙守政, 韩振宇, 等. 3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17):196-204.QIN Ruosen, SUN Shouzheng, HAN Zhenyu, et al. 3D printing for continuous fiber-reinforced thermoplastic composites: A review on molding quality[J]. Materials Reports,2022,36(17):196-204(in Chinese). [114] 陈向明, 姚辽军, 果立成, 等. 3D打印连续纤维增强复合材料研究现状综述[J]. 航空学报, 2021, 42(10):167-191.CHEN Xiangming, YAO Liaojun, GUO Licheng, et al. 3D printed continuous fiber-reinforced composites: State of the art and perspectives[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):167-191(in Chinese). [115] 田小永. 纤维增强树脂基复合材料增材制造技术[M]. 北京: 国防工业出版社, 2021: 86-119.TIAN Xiaoyong. Additive manufacturing technologies for fiber reinforced polymer matrix composites[M]. Beijing: National Defense Industry Press, 2021: 86-119(in Chinese). [116] 夏正付. 纤维增强复合材料增材制造技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.XIA Zhengfu. Study on additive manufacturing of fiber reinforced thermo-plastic composites[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese). -