留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单向纤维束SiC/SiC复合材料强度统计分布规律与微结构损伤分析

张晨 孙国栋 雷豹 李旭勤 张青 孟志新 高祥云

张晨, 孙国栋, 雷豹, 等. 单向纤维束SiC/SiC复合材料强度统计分布规律与微结构损伤分析[J]. 复合材料学报, 2023, 40(7): 4210-4225. doi: 10.13801/j.cnki.fhclxb.20230217.004
引用本文: 张晨, 孙国栋, 雷豹, 等. 单向纤维束SiC/SiC复合材料强度统计分布规律与微结构损伤分析[J]. 复合材料学报, 2023, 40(7): 4210-4225. doi: 10.13801/j.cnki.fhclxb.20230217.004
ZHANG Chen, SUN Guodong, LEI Bao, et al. Statistical distribution pattern of strength and microstructural damage analysis of unidirectional fiber bundle SiC/SiC composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4210-4225. doi: 10.13801/j.cnki.fhclxb.20230217.004
Citation: ZHANG Chen, SUN Guodong, LEI Bao, et al. Statistical distribution pattern of strength and microstructural damage analysis of unidirectional fiber bundle SiC/SiC composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4210-4225. doi: 10.13801/j.cnki.fhclxb.20230217.004

单向纤维束SiC/SiC复合材料强度统计分布规律与微结构损伤分析

doi: 10.13801/j.cnki.fhclxb.20230217.004
基金项目: 国家自然科学基金(52272034);陕西省重点研发计划(2021 GY-252);陕西省重点研发计划重点产业创新链(群)-工业领域 (2021 ZDLGY14-10);四川省自然科学基金项目(2022 NSFSC0327)
详细信息
    通讯作者:

    孙国栋,博士,副教授,硕士生导师,研究方向为复合材料 E-mail: sunguodong@chd.edu.cn

    李旭勤,博士,副教授,硕士生导师,研究方向为陶瓷基复合材料 E-mail: zslxq1130@qq.com

  • 中图分类号: TB332;V258+.3

Statistical distribution pattern of strength and microstructural damage analysis of unidirectional fiber bundle SiC/SiC composites

Funds: National Natural Science Foundation of China (52272034); Key Research and Development Program of Shaanxi Province (2021 GY-252); Key Industry Innovation Chain (Cluster)-Industrial Field of Shaanxi Province (2021 ZDLGY14-10); Natural Science Fund Project in Sichuan Province (2022 NSFSC0327)
  • 摘要: SiC/SiC复合材料力学性能离散性来源于其结构单元和微结构特征。本文针对结构最简单的单向纤维束SiC/SiC复合材料,通过双参数Weibull分布和中位估计分布分析其强度分布规律,基于该复合材料各组元(基体、界面相、纤维)微结构的深度学习来揭示其离散性。结果表明:小试炉和中试炉制备的单向纤维束SiC/SiC的拉伸强度分别位于(331.02 MPa,407.82 MPa)和(161.09 MPa,540.95 MPa);前者威布尔模数(20.59)比后者(5.01)高出75.7%,表明中试的离散性增大。断口形貌深度学习结果表明:基体开裂、界面偏转和纤维断裂拔出是主要的失效机制,定量分析得到基体裂纹间距分布于(83.2 μm,107.8 μm),通过细观力学公式计算表明基体非均匀性为影响复合材料可靠性的主要原因。

     

  • 图  1  单向纤维束SiC/SiC (Mini-SiC/SiC)复合材料制备示意图

    Figure  1.  Schematic diagram of preparation of unidirectional fiber bundle SiC/SiC (Mini-SiC/SiC) composites

    MTS—Methyltrichlorosilane

    图  2  拉伸测试特定夹具组件

    Figure  2.  Stretch test specific fixture assembly

    F—Force

    图  3  Mini-SiC/SiC复合材料典型的拉伸载荷-位移曲线

    Figure  3.  Typical tensile load-displacement curves of Mini-SiC/SiC composites

    图  4  Mini-SiC/SiC复合材料拉伸强度Weibull分布的线性拟合图

    Figure  4.  Linear fitting diagram of Weibull distribution of tensile strength of Mini-SiC/SiC composites

    Fn(σ)—Failure probability; σ—Strength value

    图  5  Mini-SiC/SiC复合材料Weibull累积分布函数曲线与中位估计数据的对比

    Figure  5.  Weibull cumulative distribution function curve compared with the median estimated data for Mini-SiC/SiC composites

    图  6  Mini-SiC/SiC复合材料断裂位移Weibull分布线性拟合

    Figure  6.  Linear fitting of Weibull distribution for fracture displacement of Mini-SiC/SiC composites

    Da—Cumulative damage factor

    图  7  Mini-SiC/SiC复合材料Weibull累积损伤因子分布函数曲线与中位估计数据的对比

    Figure  7.  Weibull cumulative damage factor distribution function curves for Mini-SiC/SiC composites compared with median estimated data

    图  8  Mini-SiC/SiC复合材料初始态与断口SEM图像

    Figure  8.  SEM images of initial state and fracture of Mini-SiC/SiC composites

    图  9  ORS Dragonfly软件处理Mini-SiC/SiC复合材料断层扫描图像

    Figure  9.  ORS Dragonfly software for processing Mini-SiC/SiC composite tomography images

    图  10  ORS Dragonfly软件提取Mini-SiC/SiC复合材料周期性裂纹间距图

    Figure  10.  Extraction of periodic crack spacing diagram of Mini-SiC/SiC composites by ORS Dragonfly software

    图  11  基体对Mini-SiC/SiC复合材料形状参数m与力学性能离散的影响

    Figure  11.  Matrix effects on the shape parameter m and mechanical property dispersion of Mini-SiC/SiC composites

    表  1  Mini-SiC/SiC复合材料的制备工艺参数

    Table  1.   Process parameters of Mini-SiC/SiC composites

    Material nameDeposition time/h Inside diameter/mm
    BN interfaceSiC matrix
    Mini-SiC/SiC A 100 160 600
    Mini-SiC/SiC B 100 160 1200
    Notes: Mini-SiC/SiC A—Preparation in a small test furnace (Furnace diameter of 600 mm); Mini-SiC/SiC B—Preparation in a pilot test furnace (Furnace diameter of 1200 mm).
    下载: 导出CSV

    表  2  两种Mini-SiC/SiC复合材料拉伸强度双参数Weibull分布的参数和线性相关系数

    Table  2.   Parameters and linear correlation coefficient of two-parameter Weibull distribution for tensile strength of two Mini-SiC/SiC composites

    Name Shape parameter b Scale parameter a/mm r
    Mini-SiC/SiC A 20.59 374.79 0.94
    Mini-SiC/SiC B 5.01 400.74 0.98
    下载: 导出CSV

    表  3  两种Mini-SiC/SiC复合材料在可靠度50%时的可靠拉伸强度与平均拉伸强度

    Table  3.   Reliable tensile strength and average tensile strength of two Mini-SiC/SiC composites at 50% reliability

    NameMean tensile strength/MPaTensile strength of 50% reliability/MPaAbsolute deviation/MPaRelative deviation/%
    Mini-SiC/SiC A 365.08 368.18 3.10 0.8
    Mini-SiC/SiC B 367.78 372.47 4.69 1.2
    下载: 导出CSV

    表  4  两种Mini-SiC/SiC复合材料断裂位移双参数Weibull分布参数、线性相关系数

    Table  4.   Weibull distribution parameters and linear correlation coefficients of two Mini-SiC/SiC composites with two-parameter fracture displacement

    NameShape parameter bScale parameter a/mmr
    Mini-SiC/SiC A 3.09 0.87 0.97
    Mini-SiC/SiC B 2.50 1.16 0.99
    下载: 导出CSV

    表  5  Mini SiC/SiC复合材料的DND60,0.01D60,0.05

    Table  5.   DN and D60,0.01, D60,0.05 of Mini SiC/SiC composites

    NameDND60,0.01D60,0.05
    Mini-SiC/SiC A 0.1139 0.2104 0.1756
    Mini-SiC/SiC B 0.1036 0.2104 0.1756
    Notes: DN—Kolmogorov distance; D60,0.01—Total sample size is 60 and the significance level α is taken as 0.01; D60,0.05—Total sample size is 60 and α is taken as 0.05.
    下载: 导出CSV

    表  6  Mini-SiC/SiC复合材料拉伸应力-应变关系检验过程主要数据

    Table  6.   Main data of the test process of tensile stress-strain relationship of Mini-SiC/SiC composites

    NameMini-SiC/
    SiC A
    Mini-SiC/
    SiC B
    Maximum load P/N128.79132.60
    Fracture displacement xmax/mm0.831.03
    True strength value σ/MPa368.72393.48
    Fracture strain εmax0.01660.0205
    Strength calculation value of con-
    stitutive model/MPa
    373.50366.40
    Error between calculated value
    and real value
    +1.2%–6.8%
    下载: 导出CSV
  • [1] 焦健, 陈明伟. 新一代发动机高温材料—陶瓷基复合材料的制备、性能及应用[J]. 航空制造技术, 2014, 451(7):62-69. doi: 10.3969/j.issn.1671-833X.2014.07.007

    JIAO Jian, CHEN Mingwei. New generation of high-temperature material for engine—Preparation, property and application of ceramic matrix composites[J]. Aviation Manufacturing Technology,2014,451(7):62-69(in Chinese). doi: 10.3969/j.issn.1671-833X.2014.07.007
    [2] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6.

    ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese).
    [3] 左平, 何爱杰, 李万福, 等. 连续纤维增韧陶瓷基复合材料的发展及在航空发动机上的应用[J]. 燃气涡轮试验与研究, 2019, 32(5):47-52.

    ZUO Ping, HE Aijie, LI Wanfu, et al. Application of continuous fiber reinforced ceramic matrix composites on aero-engine[J]. Gas Turbine Experiment and Research,2019,32(5):47-52(in Chinese).
    [4] 陈明伟, 谢巍杰, 邱海鹏. 连续碳化硅纤维增强碳化硅陶瓷基复合材料研究进展[J]. 现代技术陶瓷, 2016, 37(6):393-402.

    CHEN Mingwei, XIE Weijie, QIU Haipeng. Continuous silicon carbide fiber reinforced silicon carbide ceramic based research progress of composite materials[J]. Advanced Ceramics,2016,37(6):393-402(in Chinese).
    [5] 于新民, 周万城, 罗发, 等. SiC/SiC复合材料的力学性能[J]. 航空材料学报, 2009, 29(3):93-97.

    YU Xinmin, ZHOU Wancheng, LUO Fa, et al. Mechanical properties of SiC/SiC composites[J]. Journal of Aeronautical Materials,2009,29(3):93-97(in Chinese).
    [6] 邹芹, 周鑫, 李艳国, 等. SiC复合材料的研究进展与展望[J]. 中南大学学报(自然科学版), 2020, 51(11):3220-3232.

    ZOU Qin, ZHOU Xin, LI Yanguo, et al. Research progress and prospect of SiC composites[J]. Journal of Central South University (Science and Technology),2020,51(11):3220-3232(in Chinese).
    [7] 高魁垠, 李海波, 吴建国, 等. 2D-C/SiC复合材料螺栓连接结构可靠性分析[J]. 强度与环境, 2020, 47(1):33-40.

    GAO Kuiyin, LI Haibo, WU Jianguo, et al. Reliability analysis of 2D-C/SiC composite bolted joints[J]. Structure & Environment Engineering,2020,47(1):33-40(in Chinese).
    [8] 郭飞, 费庆国, 李彦斌, 等. 基于Weibull模型的C/C复合材料销钉剪切强度分布及本构关系[J]. 复合材料学报, 2019, 36(2):461-468.

    GUO Fei, FEI Qingguo, LI Yanbin, et al. Shear strenght distribution and constitutive model of C/C composite pins based on Weibull model[J]. Acta Materiae Compositae Sinica,2019,36(2):461-468(in Chinese).
    [9] 石多奇, 沙景恬, 程震, 等. SiC/SiC mini复合材料拉伸性能分散性的数值仿真方法[J]. 航空动力学报, 2019, 34(5):971-979.

    SHI Duoqi, SHA Jingtian, CHENG Zhen, et al. Numerical simulation method of the variability in tensile properties of SiC/SiC minicomposites[J]. Journal of Aerospace Power,2019,34(5):971-979(in Chinese).
    [10] 袁建宇, 逄锦程, 王影, 等. C/SiC复合材料螺钉拉伸强度分布模型[J]. 宇航材料工艺, 2019, 49(5):74-78.

    YUAN Jianyu, PANG Jincheng, WANG Ying, et al. Tensile strength distribution model of C/SiC composite material bolts[J]. Aerospace Materials & Technology,2019,49(5):74-78(in Chinese).
    [11] 李湘郡, 李彦斌, 郭飞, 等. C/C复合材料的压缩强度分布与可靠性评估[J]. 航空学报, 2019, 40(8):122-130.

    LI Xiangjun, LI Yanbin, GUO Fei, et al. Compression strength distribution and reliability assessment of C/C composites[J]. Acta Aeronautica et Astronautica Sinica,2019,40(8):122-130(in Chinese).
    [12] 韩旭旭, 张程煜, 陈博, 等. 2D-SiCf/SiC复合材料抗拉强度统计分布规律[J]. 复合材料学报, 2019, 36(2):434-440.

    HAN Xuxu, ZHANG Chengyu, CHEN Bo, et al. Statistical distribution of tensile strength of a 2D-SiCf/SiC composite[J]. Acta Materiae Compositae Sinica,2019,36(2):434-440(in Chinese).
    [13] 李辉, 张立同, 曾庆丰, 等. 2D C/SiC复合材料的可靠性评价[J]. 复合材料学报, 2007, 24(4):95-100. doi: 10.3321/j.issn:1000-3851.2007.04.017

    LI Hui, ZHANG Litong, ZENG Qingfeng, et al. Reliability analysis of 2D C/SiC composite[J]. Acta Materiae Compositae Sinica,2007,24(4):95-100(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.04.017
    [14] 陶永强, 矫桂琼, 王波, 等. 2D编织陶瓷基复合材料应力-应变行为: 分析预测[J]. 工程力学, 2009, 26(10):221-227.

    TAO Yongqiang, JIAO Guiqiong, WANG Bo, et al. Stress-strain behavior in 2D weave ceramic matrix composite: Analysis predictions[J]. Engineering Mechanics,2009,26(10):221-227(in Chinese).
    [15] CURTIN W A, AHN B K, TAKEDA N. Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites[J]. Acta Materialia,1998,46(10):3409-3420. doi: 10.1016/S1359-6454(98)00041-X
    [16] 孟志新, 常柯, 郭旭, 等. 不同纤维束下SiC陶瓷基复合材料拉伸强度及拉伸行为研究[J]. 西安航空学院学报, 2019, 37(5):35-42.

    MENG Zhixin, CHANG Ke, GUO Xu, et al. Study on tensile strenght and tensile behavior of SiC ceramic matrix composites under different fiber bundles[J]. Journal of Xi'an Aeronautical University,2019,37(5):35-42(in Chinese).
    [17] VAGAGGINI E, DOMERGUE J, EVANS A G. Relationships between hysteresis measurements and the constituent properties of ceramic matrix composites: I, theory[J]. Journal of the American Ceramic Society,1995,78(10):2709-2720. doi: 10.1111/j.1151-2916.1995.tb08046.x
    [18] MA X, YIN X, CAO X, et al. Effect of heat treatment on the mechanical properties of SiCf/BN/SiC fabricated by CVI[J]. Ceramics International,2016,42(2):3652-3658. doi: 10.1016/j.ceramint.2015.11.030
    [19] 中国国家标准化管理委员会. 单向纤维增强复合材料的力学性能: GB/T 1040.5—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Mechanical properties of unidirectional fiber-reinforced composites: GB/T 1040.5—2008[S]. Beijing: China Standards Press, 2005(in Chinese).
    [20] GAO X Y, LEI B, ZHANG Y, et al. Identification of microstructures and damages in silicon carbide ceramic matrix composites by deep learning[J]. Materials Characterization,2023,196:112608. doi: 10.1016/j.matchar.2022.112608
    [21] 李潘. 二维编织SiC/SiC复合材料本构研究[D]. 西安: 西北工业大学, 2014.

    LI Pan. The constitutive relation of 2D woven SiC/SiC composites[D]. Xi'an: Northwestern Polytechnical University, 2014(in Chinese).
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  207
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-01-17
  • 录用日期:  2023-02-03
  • 网络出版日期:  2023-02-21
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回