Statistical distribution pattern of strength and microstructural damage analysis of unidirectional fiber bundle SiC/SiC composites
-
摘要:
连续碳化硅纤维增韧碳化硅陶瓷基复合材料(SiC/SiC)具备高强度、耐高温、低密度等特点,是国际公认的新型航空发动机优选材料之一。该材料制备工艺会导致其微结构存在非均匀特征,如束内外孔隙、分层、预制体铺层错位和基体开裂等,使其性能离散性较大。以强度为主要参数进行结构设计时,会受其离散性影响限制结构可靠性。该复材已处于工程放大应用阶段,生产制造设备放大会提高微结构的不均匀性,导致其力学性能离散性更显著。本文通过小试炉与中试炉分别制备单向纤维束SiC/SiC(Mini-SiC/SiC)复合材料,评估其拉伸强度可靠性,基于深度学习工具ORS Dragonfly提取微结构特征(基体、裂纹、界面相、纤维),结合纤维强度和基体间距裂纹公式分析离散性。结果表明:复材基体裂纹间距为(83.2μm,107.8μm),体现了制备工艺的影响;界面相均匀包裹每根纤维,界面相滑移应力视为定值;连续纤维承载大于99%,纤维对复材性能离散性影响较小;根据拉伸强度与基体裂纹间距公式,计算得出最小和最大裂纹间距所对应的拉伸强度值分别为376.16和406.14MPa,该值都处于小试Mini-SiC/SiC复材拉伸强度(331.02MPa,407.82MPa)和中试复材拉伸强度(161.10MPa,540.95MPa)范围内。然而,中试Mini-SiC/SiC复材拉伸强度范围大于小试炉,且前者威布尔模数5.01比后者威布尔模数20.59低75.7%,中试分散性更大是由于中试炉尺寸放大所致,基体非均匀性是影响复材可靠性的主要原因。 ORS Dragonfly软件处理Mini-SiC/SiC复合材料CT图。 -
关键词:
- 单向纤维束SiC/SiC /
- 微结构 /
- Weibull分布 /
- 深度学习 /
- 拉伸性能
Abstract: The discrete mechanical properties of SiC/SiC composites originate from their structural units and microstructural features. In this paper, for the unidirectional fiber bundle SiC/SiC composites with the simplest structure, the strength distribution pattern was analyzed by the two-parameter Weibull distribution and the median estimated distribution, and the discrete nature was revealed based on the deep learning of the microstructure of each group element (matrix, interface phase, and fiber) of the composites. The results show that the tensile strengths of the unidirectional fiber bundle SiC/SiC prepared in the small and medium test furnaces are located at (331.02 MPa, 407.82 MPa) and (161.09 MPa, 540.95 MPa), respectively; the former Weibull modulus (20.59) is 75.7% higher than the latter (5.01), indicating an increase in the dispersion of the medium test. The results of deep learning of fracture morphology show that matrix cracking, interface deflection and fiber fracture pullout are the main failure mechanisms, and due to the distribution of matrix crack spacing at (83.2 μm, 107.8 μm), the calculation by the micromechanical equation indicates that matrix nonuniformity is the main reason affecting the reliability of the composites. -
表 1 Mini-SiC/SiC复合材料的制备工艺参数
Table 1. Process parameters of Mini-SiC/SiC composites
Material name Deposition time /h Inside Diam/mm BN interface SiC matrix Mini-SiC/SiC A 100 160 600 Mini-SiC/SiC B 100 160 1200 表 4 两种Mini-SiC/SiC复合材料断裂位移双参数Weibull分布参数、线性相关系数
Table 4. Weibull distribution parameters, and linear correlation coefficients of two Mini-SiC/SiC composites with two-parameter fracture displacement
Name Mini-SiC/SiC A Mini-SiC/SiC B shape parameter b 3.09 2.50 scale parameter a/mm 0.87 1.16 linearly dependent coefficient r 0.97 0.99 表 2 两种Mini-SiC/SiC复合材料拉伸强度双参数Weibull分布的参数和线性相关系数
Table 2. Parameter and linear correlation coefficient of two-parameter Weibull distribution for tensile strength of two Mini-SiC/SiC composites
Name Mini-SiC/SiC A Mini-SiC/SiC B Shape parameter m 20.59 5.01 Scale parameter σ0/MPa 374.79 400.74 Linearly dependent coefficient r 0.94 0.98 表 3 两种Mini-SiC/SiC复合材料在可靠度50%时的可靠拉伸强度与平均拉伸强度
Table 3. Reliable tensile strength and average tensile strength of two Mini-SiC/SiC composites at 50% reliability
Name Mini-SiC/SiC A Mini-SiC/SiC B Mean tensile strengthMPa 365.08 367.78 Tensile strength of 50% reliability/MPa 368.18 372.47 absolute deviation/MPa 3.10 4.69 Relative deviation 0.8% 1.2% 表 5 Mini SiC/SiC复合材料的DN与D60,0.01、D60,0.05
Table 5. DN and D60,0.01, D60,0.05 of Mini SiC/SiC composites
Name Mini-SiC/SiC A Mini-SiC/SiC B DN 0.1139 0.1036 D60,0.01 0.2104 0.2104 D60,0.05 0.1756 0.1756 Notes: DN—Kolmogorov distance, N—Total number of samples; D60,0.01—Total sample size is 60 and the significance level a is taken as 0.01; D60,0.05—Total sample size is 60 and the significance level a is taken as 0.05. 表 6 Mini-SiC/SiC复合材料拉伸载荷-位移关系检验过程主要数据
Table 6. Main data of the test process of tensile load-displacement relationship of Mini-SiC/SiC composites
Name Mini-SiC/SiC A Mini-SiC/SiC B Maximum load P/N 128.79 132.60 Fracture displacement xmax/mm 0.83 1.03 True strength value σ/MPa 368.72 393.48 Fracture strain εmax 0.0166 0.0205 Strength calculation value of constitutive model σ/MPa 373.50 366.40 Error between calculated value and real value +1.2% -6.8% -
[1] 焦健, 陈明伟. 新一代发动机高温材料—陶瓷基复合材料的制备、性能及应用[J]. 航空制造技术, 2014(7):62-69. doi: 10.3969/j.issn.1671-833X.2014.07.007JIAO Jian, CHENG Mingwei. New Generation of High-Temperature Material for Engine—Preparation, Property and Application of Ceramic Matrix Composites[J]. Aviation manufacturing technology,2014(7):62-69(in Chinese). doi: 10.3969/j.issn.1671-833X.2014.07.007 [2] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6.ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese). [3] 左平, 何爱杰, 李万福, 等. 连续纤维增韧陶瓷基复合材料的发展及在航空发动机上的应用[J]. 燃气涡轮试验与研究, 2019, 32(5):47-52.ZUO Ping, HEN Aijie, LI Wanfu, et al. Application of continuous fiber reinforced ceramic matrix composites on aero-engine[J]. Gas Turbine Experiment and Research,2019,32(5):47-52(in Chinese). [4] 陈明伟, 谢巍杰, 邱海鹏. 连续碳化硅纤维增强碳化硅陶瓷基复合材料研究进展[J]. 现代技术陶瓷, 2016, 37(6):393-402.CHENG Mingwei, XIE Weijie, QIU Haipeng. Continuous silicon carbide fiber reinforced silicon carbide ceramic based Research progress of composite materials[J]. Advanced Ceramics,2016,37(6):393-402(in Chinese). [5] 于新民, 周万城, 罗发, 等. SiC/SiC复合材料的力学性能[J]. 航空材料学报, 2009, 29(3):93-97.YU Xinmin, ZHOU Wancheng, LUO Fa, et al. Mechanical properties of SiC/SiC composites[J]. Journal of aeronautical materials,2009,29(3):93-97(in Chinese). [6] 邹芹, 周鑫, 李艳国, 等. SiC复合材料的研究进展与展望[J]. 中南大学学报(自然科学版), 2020, 51(11):3220-3232.ZOU Qin, ZHOU Xin, LI Yanguo, et al. Research progress and prospect of SiC composites[J]. Journal of Central South University (Science and Technology),2020,51(11):3220-3232(in Chinese). [7] 高魁垠, 李海波, 吴建国, 等. 2 D-C/SiC复合材料螺栓连接结构可靠性分析[J]. 强度与环境, 2020, 47(1):33-40.GAO Kuiyin, LI Haibo, WU Jianguo, et al. Reliability Analysis of 2 D-C/SiC Composite Bolted Joints[J]. Structure & Environment Engineering,2020,47(1):33-40(in Chinese). [8] 郭飞, 费庆国, 李彦斌, 等. 基于Weibull模型的C/C复合材料销钉剪切强度分布及本构关系[J]. 复合材料学报, 2019, 36(2):461-468.GUO Fei, FEI Qingguo, LI Yanbin, et al. Shear strenght distribution and constitutive model of C/C composite pins based on Weibull model[J]. Acta Materiae Compositae Sinica,2019,36(2):461-468(in Chinese). [9] 石多奇, 沙景恬, 程震, 等. SiC/SiC mini复合材料拉伸性能分散性的数值仿真方法[J]. 航空动力学报, 2019, 34(5):971-979.SHI Duoqi, SHE Jingtian, CHENG Zhen, et al. Numerical simulation method of the variability in tensile properties of SiC/SiC minicomposites[J]. Journal of Aerospace Power,2019,34(5):971-979(in Chinese). [10] 袁建宇, 逄锦程, 王影, 等. C/SiC复合材料螺钉拉伸强度分布模型[J]. 宇航材料工艺, 2019, 49(5):74-78.YUAN Jianyu PANG Jincheng, WANG Ying, et al. Tensile Strength Distribution Model of C/SiC Composite Material Bolts[J]. Aerospace Materials & Technology,2019,49(5):74-78(in Chinese). [11] 李湘郡, 李彦斌, 郭飞, 等. C/C复合材料的压缩强度分布与可靠性评估[J]. 航空学报, 2019, 40(8):122-130.LI Xiangjun, LI Yanbin, GUO Fei, et al. Compression strength distribution and reliability assessment of C/C composites[J]. Acta Aeronautica Et Astronautica Sinica,2019,40(8):122-130(in Chinese). [12] 韩旭旭, 张程煜, 陈博, 等. 2 D-SiCf/SiC复合材料抗拉强度统计分布规律[J]. 复合材料学报, 2019, 36(2):434-440.HAN Xuxu, ZHANG Chengyu, CHEN Bo, et al. Statistical distribution of tensile strength of a 2 D-SiCf/SiCcomposite[J]. Acta Materiae Compositae Sinica,2019,36(2):434-440(in Chinese). [13] 李辉, 张立同, 曾庆丰, 等. 2 D C/SiC复合材料的可靠性评价[J]. 复合材料学报, 2007(4):95-100. doi: 10.3321/j.issn:1000-3851.2007.04.017LI Hui, ZHANG Litong, ZENG Qingfeng, et al. Reliability analysis of2 D C/SiC composite[J]. Acta Materiae Compositae Sinica,2007(4):95-100(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.04.017 [14] 陶永强, 矫桂琼, 王波, 等. 2 D编织陶瓷基复合材料应力-应变行为: 分析预测[J]. 工程力学, 2009, 26(10):221-227.TAO Yongqiang, JIAO Guiqiong, WANG Bo, et al. Stress-strain behavior in 2 D weave ceramic matrix composite: analysis predictions[J]. Engineering Mechanics,2009,26(10):221-227(in Chinese). [15] Curtin W A, Ahn B K, Takeda N. Modeling brittle and tough stress–strain behavior in unidirectional ceramic matrix composites[J]. Acta Materialia,1998,46(10):3409-3420. doi: 10.1016/S1359-6454(98)00041-X [16] 孟志新, 常柯, 郭旭, 等. 不同纤维束下SiC陶瓷基复合材料拉伸强度及拉伸行为研究[J]. 西安航空学院学报, 2019, 37(5):35-42.MENG Zhixin, CHANG Ke, GUO Xu, et al. Study on Tensile Strenght and Tensile Behavior of SiC Ceramic Matrix Composites under Different Fiber Bundles[J]. Journal ofXi'an Aeronautical University,2019,37(5):35-42(in Chinese). [17] Vagaggini E, Domergue J, Evans A G. Relationships between Hysteresis Measurements and the Constituent Properties of Ceramic Matrix Composites: I, Theory[J]. Journal of the American Ceramic Society,1995,78(10):2709-2720. doi: 10.1111/j.1151-2916.1995.tb08046.x [18] Ma X, Yin X, Cao X, et al. Effect of heat treatment on the mechanical properties of SiC f /BN/SiC fabricated by CVI[J]. Ceramics International,2016,42(2):3652-3658. doi: 10.1016/j.ceramint.2015.11.030 [19] 中国国家标准化管理委员会(标准制定单位). 单向纤维增强复合材料的力学性能: GB/T 1040.5—2008[S]. 北京: 中国标准出版社, 2008. .Standardization Administration of the People’s Republic of China. Mechanical properties of unidirectional fiber-reinforced composites: GB/T 1040.5—2008[S]. Beijing: China Standards Press, 2005(in Chinese). [20] Xiangyun Gao, Bao Lei, Yi Zhang, et al. Identification of microstructures and damages in silicon carbide ceramic matrix composites by deep learning[J]. Materials Characterization,2023,196:112608. doi: 10.1016/j.matchar.2022.112608 [21] 李潘. 二维编织SiC/SiC复合材料本构研究[D]. 西安: 西北工业大学, 2014.LI Pan. The Constitutive Relation of 2 D Woven SiC/SiC Composites. [D]. Xian: Northwestern Polytechnical University, 2014(in Chinese). -