留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单向纤维束SiC/SiC复合材料强度统计分布规律与微结构损伤分析

张晨 孙国栋 雷豹 李旭勤 张青 孟志新 高祥云

张晨, 孙国栋, 雷豹, 等. 单向纤维束SiC/SiC复合材料强度统计分布规律与微结构损伤分析[J]. 复合材料学报, 2023, 40(7): 4208-4222
引用本文: 张晨, 孙国栋, 雷豹, 等. 单向纤维束SiC/SiC复合材料强度统计分布规律与微结构损伤分析[J]. 复合材料学报, 2023, 40(7): 4208-4222
ZHANG Chen, SUN Guodong, LEI Bao, LI Xunqin, ZHANG Qing, MENG Zhixin, GAO Xiangyun. Statistical distribution pattern of strength and microstructural damage analysis of unidirectional fiber bundle SiC/SiC composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4208-4222.
Citation: ZHANG Chen, SUN Guodong, LEI Bao, LI Xunqin, ZHANG Qing, MENG Zhixin, GAO Xiangyun. Statistical distribution pattern of strength and microstructural damage analysis of unidirectional fiber bundle SiC/SiC composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4208-4222.

单向纤维束SiC/SiC复合材料强度统计分布规律与微结构损伤分析

基金项目: 国家自然科学基金(52272034);陕西省重点研发计划(2021 GY-252);陕西省重点研发计划重点产业创新链(群)-工业领域 (2021 ZDLGY14-10);四川省自然科学基金项目(2022 NSFSC0327)
详细信息
    作者简介:

    李旭勤,博士,副教授,硕士生导师,研究方向为陶瓷基复合材料 E-mail: zslxq1130@qq.com

    通讯作者:

    孙国栋,博士,副教授,硕士生导师,研究方向为复合材料 E-mail: sunguodong@chd.edu.cn

  • 中图分类号: TB332;V258+.3

Statistical distribution pattern of strength and microstructural damage analysis of unidirectional fiber bundle SiC/SiC composites

Funds: National Natural Science Foundation of China (52272034);Key Research and Development Program of Shaanxi Province (2021 GY-252); Key Industry Innovation Chain(Cluster)-Industrial Field of Shaanxi Province (2021 ZDLGY14-10); Natural science fund project in Sichuan Province (2022 NSFSC0327)
  • 摘要: 连续碳化硅纤维增韧碳化硅陶瓷基复合材料(SiC/SiC)具备高强度、耐高温、低密度等特点,是国际公认的新型航空发动机优选材料之一。该材料制备工艺会导致其微结构存在非均匀特征,如束内外孔隙、分层、预制体铺层错位和基体开裂等,使其性能离散性较大。以强度为主要参数进行结构设计时,会受其离散性影响限制结构可靠性。该复材已处于工程放大应用阶段,生产制造设备放大会提高微结构的不均匀性,导致其力学性能离散性更显著。本文通过小试炉与中试炉分别制备单向纤维束SiC/SiC(Mini-SiC/SiC)复合材料,评估其拉伸强度可靠性,基于深度学习工具ORS Dragonfly提取微结构特征(基体、裂纹、界面相、纤维),结合纤维强度和基体间距裂纹公式分析离散性。结果表明:复材基体裂纹间距为(83.2μm,107.8μm),体现了制备工艺的影响;界面相均匀包裹每根纤维,界面相滑移应力视为定值;连续纤维承载大于99%,纤维对复材性能离散性影响较小;根据拉伸强度与基体裂纹间距公式,计算得出最小和最大裂纹间距所对应的拉伸强度值分别为376.16和406.14MPa,该值都处于小试Mini-SiC/SiC复材拉伸强度(331.02MPa,407.82MPa)和中试复材拉伸强度(161.10MPa,540.95MPa)范围内。然而,中试Mini-SiC/SiC复材拉伸强度范围大于小试炉,且前者威布尔模数5.01比后者威布尔模数20.59低75.7%,中试分散性更大是由于中试炉尺寸放大所致,基体非均匀性是影响复材可靠性的主要原因。ORS Dragonfly软件处理Mini-SiC/SiC复合材料CT图。

     

  • 图  1  Mini-SiC/SiC复合材料制备示意图

    Figure  1.  Schematic diagram of preparation of Mini-SiC/SiC composites

    图  2  拉伸测试特定夹具组件

    Figure  2.  Stretch test specific fixture assembly

    图  3  Mini-SiC/SiC复合材料典型的拉伸载荷-位移曲线

    Figure  3.  Typical tensile load-displacement curves of Mini-SiC/SiC composites

    图  4  Mini-SiC/SiC复合材料拉伸强度Weibull分布的线性拟合图

    Figure  4.  Linear fitting diagram of Weibull distribution of tensile strength of Mini-SiC/SiC composites

    图  5  Mini-SiC/SiC复合材料Weibull累积分布函数曲线与中位估计数据的对比

    Figure  5.  Weibull cumulative distribution function curve compared with the median estimated data for Mini-SiC/SiC composites

    图  6  Mini-SiC/SiC复合材料断裂位移Weibull分布线性拟合

    Figure  6.  Linear fitting of Weibull distribution for fracture displacement of Mini-SiC/SiC composites

    图  7  Mini-SiC/SiC复合材料Weibull累积损伤因子分布函数曲线与中位估计数据的对比

    Figure  7.  Weibull cumulative damage factor distribution function curves for Mini-SiC/SiC composites compared with median estimated data

    图  8  Mini-SiC/SiC复合材料初始态与断口SEM图像

    Figure  8.  SEM image of initial state and fracture of Mini-SiC/SiC composites

    图  9  ORS Dragonfly软件处理Mini-SiC/SiC复合材料CT

    Figure  9.  ORS Dragonfly software for processing Mini-SiC/SiC composite CT images

    图  10  ORS Dragonfly软件提取Mini-SiC/SiC复合材料周期性裂纹间距图

    Figure  10.  Extraction of periodic crack spacing diagram of Mini-SiC/SiC composites by ORS Dragonfly software

    图  11  基体对Mini-SiC/SiC复合材料形状参数m与力学性能离散的影响

    Figure  11.  Matrix effects on the shape parameter m and mechanical property dispersion of Mini-SiC/SiC composites

    表  1  Mini-SiC/SiC复合材料的制备工艺参数

    Table  1.   Process parameters of Mini-SiC/SiC composites

    Material nameDeposition time /hInside Diam/mm
    BN interfaceSiC matrix
    Mini-SiC/SiC A 100 160 600
    Mini-SiC/SiC B 100 160 1200
    下载: 导出CSV

    表  4  两种Mini-SiC/SiC复合材料断裂位移双参数Weibull分布参数、线性相关系数

    Table  4.   Weibull distribution parameters, and linear correlation coefficients of two Mini-SiC/SiC composites with two-parameter fracture displacement

    NameMini-SiC/SiC AMini-SiC/SiC B
    shape parameter b3.092.50
    scale parameter a/mm0.871.16
    linearly dependent coefficient r0.970.99
    下载: 导出CSV

    表  2  两种Mini-SiC/SiC复合材料拉伸强度双参数Weibull分布的参数和线性相关系数

    Table  2.   Parameter and linear correlation coefficient of two-parameter Weibull distribution for tensile strength of two Mini-SiC/SiC composites

    NameMini-SiC/SiC AMini-SiC/SiC B
    Shape parameter m20.595.01
    Scale parameter σ0/MPa374.79400.74
    Linearly dependent coefficient r0.940.98
    下载: 导出CSV

    表  3  两种Mini-SiC/SiC复合材料在可靠度50%时的可靠拉伸强度与平均拉伸强度

    Table  3.   Reliable tensile strength and average tensile strength of two Mini-SiC/SiC composites at 50% reliability

    NameMini-SiC/SiC AMini-SiC/SiC B
    Mean tensile strengthMPa365.08367.78
    Tensile strength of 50% reliability/MPa368.18372.47
    absolute deviation/MPa3.104.69
    Relative deviation0.8%1.2%
    下载: 导出CSV

    表  5  Mini SiC/SiC复合材料的DND60,0.01D60,0.05

    Table  5.   DN and D60,0.01, D60,0.05 of Mini SiC/SiC composites

    NameMini-SiC/SiC AMini-SiC/SiC B
    DN0.11390.1036
    D60,0.010.21040.2104
    D60,0.050.17560.1756
    Notes: DN—Kolmogorov distance, N—Total number of samples; D60,0.01—Total sample size is 60 and the significance level a is taken as 0.01; D60,0.05—Total sample size is 60 and the significance level a is taken as 0.05.
    下载: 导出CSV

    表  6  Mini-SiC/SiC复合材料拉伸载荷-位移关系检验过程主要数据

    Table  6.   Main data of the test process of tensile load-displacement relationship of Mini-SiC/SiC composites

    NameMini-SiC/SiC AMini-SiC/SiC B
    Maximum load P/N128.79132.60
    Fracture displacement xmax/mm0.831.03
    True strength value σ/MPa368.72393.48
    Fracture strain εmax0.01660.0205
    Strength calculation value of constitutive model σ/MPa373.50366.40
    Error between calculated value and real value+1.2%-6.8%
    下载: 导出CSV
  • [1] 焦健, 陈明伟. 新一代发动机高温材料—陶瓷基复合材料的制备、性能及应用[J]. 航空制造技术, 2014(7):62-69. doi: 10.3969/j.issn.1671-833X.2014.07.007

    JIAO Jian, CHENG Mingwei. New Generation of High-Temperature Material for Engine—Preparation, Property and Application of Ceramic Matrix Composites[J]. Aviation manufacturing technology,2014(7):62-69(in Chinese). doi: 10.3969/j.issn.1671-833X.2014.07.007
    [2] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6.

    ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese).
    [3] 左平, 何爱杰, 李万福, 等. 连续纤维增韧陶瓷基复合材料的发展及在航空发动机上的应用[J]. 燃气涡轮试验与研究, 2019, 32(5):47-52.

    ZUO Ping, HEN Aijie, LI Wanfu, et al. Application of continuous fiber reinforced ceramic matrix composites on aero-engine[J]. Gas Turbine Experiment and Research,2019,32(5):47-52(in Chinese).
    [4] 陈明伟, 谢巍杰, 邱海鹏. 连续碳化硅纤维增强碳化硅陶瓷基复合材料研究进展[J]. 现代技术陶瓷, 2016, 37(6):393-402.

    CHENG Mingwei, XIE Weijie, QIU Haipeng. Continuous silicon carbide fiber reinforced silicon carbide ceramic based Research progress of composite materials[J]. Advanced Ceramics,2016,37(6):393-402(in Chinese).
    [5] 于新民, 周万城, 罗发, 等. SiC/SiC复合材料的力学性能[J]. 航空材料学报, 2009, 29(3):93-97.

    YU Xinmin, ZHOU Wancheng, LUO Fa, et al. Mechanical properties of SiC/SiC composites[J]. Journal of aeronautical materials,2009,29(3):93-97(in Chinese).
    [6] 邹芹, 周鑫, 李艳国, 等. SiC复合材料的研究进展与展望[J]. 中南大学学报(自然科学版), 2020, 51(11):3220-3232.

    ZOU Qin, ZHOU Xin, LI Yanguo, et al. Research progress and prospect of SiC composites[J]. Journal of Central South University (Science and Technology),2020,51(11):3220-3232(in Chinese).
    [7] 高魁垠, 李海波, 吴建国, 等. 2 D-C/SiC复合材料螺栓连接结构可靠性分析[J]. 强度与环境, 2020, 47(1):33-40.

    GAO Kuiyin, LI Haibo, WU Jianguo, et al. Reliability Analysis of 2 D-C/SiC Composite Bolted Joints[J]. Structure & Environment Engineering,2020,47(1):33-40(in Chinese).
    [8] 郭飞, 费庆国, 李彦斌, 等. 基于Weibull模型的C/C复合材料销钉剪切强度分布及本构关系[J]. 复合材料学报, 2019, 36(2):461-468.

    GUO Fei, FEI Qingguo, LI Yanbin, et al. Shear strenght distribution and constitutive model of C/C composite pins based on Weibull model[J]. Acta Materiae Compositae Sinica,2019,36(2):461-468(in Chinese).
    [9] 石多奇, 沙景恬, 程震, 等. SiC/SiC mini复合材料拉伸性能分散性的数值仿真方法[J]. 航空动力学报, 2019, 34(5):971-979.

    SHI Duoqi, SHE Jingtian, CHENG Zhen, et al. Numerical simulation method of the variability in tensile properties of SiC/SiC minicomposites[J]. Journal of Aerospace Power,2019,34(5):971-979(in Chinese).
    [10] 袁建宇, 逄锦程, 王影, 等. C/SiC复合材料螺钉拉伸强度分布模型[J]. 宇航材料工艺, 2019, 49(5):74-78.

    YUAN Jianyu PANG Jincheng, WANG Ying, et al. Tensile Strength Distribution Model of C/SiC Composite Material Bolts[J]. Aerospace Materials & Technology,2019,49(5):74-78(in Chinese).
    [11] 李湘郡, 李彦斌, 郭飞, 等. C/C复合材料的压缩强度分布与可靠性评估[J]. 航空学报, 2019, 40(8):122-130.

    LI Xiangjun, LI Yanbin, GUO Fei, et al. Compression strength distribution and reliability assessment of C/C composites[J]. Acta Aeronautica Et Astronautica Sinica,2019,40(8):122-130(in Chinese).
    [12] 韩旭旭, 张程煜, 陈博, 等. 2 D-SiCf/SiC复合材料抗拉强度统计分布规律[J]. 复合材料学报, 2019, 36(2):434-440.

    HAN Xuxu, ZHANG Chengyu, CHEN Bo, et al. Statistical distribution of tensile strength of a 2 D-SiCf/SiCcomposite[J]. Acta Materiae Compositae Sinica,2019,36(2):434-440(in Chinese).
    [13] 李辉, 张立同, 曾庆丰, 等. 2 D C/SiC复合材料的可靠性评价[J]. 复合材料学报, 2007(4):95-100. doi: 10.3321/j.issn:1000-3851.2007.04.017

    LI Hui, ZHANG Litong, ZENG Qingfeng, et al. Reliability analysis of2 D C/SiC composite[J]. Acta Materiae Compositae Sinica,2007(4):95-100(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.04.017
    [14] 陶永强, 矫桂琼, 王波, 等. 2 D编织陶瓷基复合材料应力-应变行为: 分析预测[J]. 工程力学, 2009, 26(10):221-227.

    TAO Yongqiang, JIAO Guiqiong, WANG Bo, et al. Stress-strain behavior in 2 D weave ceramic matrix composite: analysis predictions[J]. Engineering Mechanics,2009,26(10):221-227(in Chinese).
    [15] Curtin W A, Ahn B K, Takeda N. Modeling brittle and tough stress–strain behavior in unidirectional ceramic matrix composites[J]. Acta Materialia,1998,46(10):3409-3420. doi: 10.1016/S1359-6454(98)00041-X
    [16] 孟志新, 常柯, 郭旭, 等. 不同纤维束下SiC陶瓷基复合材料拉伸强度及拉伸行为研究[J]. 西安航空学院学报, 2019, 37(5):35-42.

    MENG Zhixin, CHANG Ke, GUO Xu, et al. Study on Tensile Strenght and Tensile Behavior of SiC Ceramic Matrix Composites under Different Fiber Bundles[J]. Journal ofXi'an Aeronautical University,2019,37(5):35-42(in Chinese).
    [17] Vagaggini E, Domergue J, Evans A G. Relationships between Hysteresis Measurements and the Constituent Properties of Ceramic Matrix Composites: I, Theory[J]. Journal of the American Ceramic Society,1995,78(10):2709-2720. doi: 10.1111/j.1151-2916.1995.tb08046.x
    [18] Ma X, Yin X, Cao X, et al. Effect of heat treatment on the mechanical properties of SiC f /BN/SiC fabricated by CVI[J]. Ceramics International,2016,42(2):3652-3658. doi: 10.1016/j.ceramint.2015.11.030
    [19] 中国国家标准化管理委员会(标准制定单位). 单向纤维增强复合材料的力学性能: GB/T 1040.5—2008[S]. 北京: 中国标准出版社, 2008. .

    Standardization Administration of the People’s Republic of China. Mechanical properties of unidirectional fiber-reinforced composites: GB/T 1040.5—2008[S]. Beijing: China Standards Press, 2005(in Chinese).
    [20] Xiangyun Gao, Bao Lei, Yi Zhang, et al. Identification of microstructures and damages in silicon carbide ceramic matrix composites by deep learning[J]. Materials Characterization,2023,196:112608. doi: 10.1016/j.matchar.2022.112608
    [21] 李潘. 二维编织SiC/SiC复合材料本构研究[D]. 西安: 西北工业大学, 2014.

    LI Pan. The Constitutive Relation of 2 D Woven SiC/SiC Composites. [D]. Xian: Northwestern Polytechnical University, 2014(in Chinese).
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  54
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-01-17
  • 录用日期:  2023-02-03
  • 网络出版日期:  2023-02-28
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回