Preparation of tannic acid/MXene-enhanced hydrogels and their sensing properties
-
摘要: 水凝胶可用作可穿戴传感器来检测人体运动。然而,现有的水凝胶传感器普遍存在力学性能较差、耐久性不足、低温易冻结等问题,极大地影响了其在可穿戴设备领域的应用。因此,本文在水凝胶中引入MXene作为导电填料,并浸泡于单宁酸/水/甘油二元溶剂中制备得到有机水凝胶AMT。单宁酸分子上的苯三酚和儿茶酚基团以氢键、π-π相互作用、疏水相互作用等方式与聚合物形成物理交联,从而增强水凝胶的力学性能。结果表明,水凝胶的力学性能随着浸泡单宁酸浓度的升高而增强,当单宁酸浸泡浓度为200 mg/mL时水凝胶的拉伸应变达到658.2%,应力为172.2 kPa。二元溶剂的存在使得水凝胶即使在炎热(60℃)和寒冷环境(−20°C)中也能保持良好的稳定性。此外,基于该水凝胶的可穿戴应变传感器对运动及光照均表现出良好的灵敏度,能够实时监测人体喉咙、脉搏、手指、手腕、手臂等不同部位的运动信号,且该传感器能在光照下通过光热转换间接实现对光照的监测。本研究有望扩展水凝胶传感器在户外光照传感领域的应用。Abstract: Hydrogels can be used as wearable sensors to detect human motion. However, extant hydrogel sensors generally suffer from poor mechanical properties, insufficient durability, and simple chilling at low temperatures, which significantly influence their applications in the field of wearable devices. Therefore, in this paper, MXene was introduced as a conductive infill in hydrogels and immersed in a tannic acid/water/glycerol binary solvent to obtain the organo-hydrogel AMT. Benzenetriol and catechol groups on the tannic acid molecule formed physical cross-links with the polymer by means of hydrogen bonding, π-π interactions, hydrophobic interactions, etc., which enhanced the mechanical properties of the hydrogel. The results showed that the mechanical properties of the hydrogel were enhanced with the increase of the soaked tannin concentration, and the tensile strain of the hydrogel reached 658.2% with a tension of 172.2 kPa when the tannin-soaked concentration was 200 mg/mL.The presence of the binary solvent allowed the hydrogel to maintain a decent stability even in heated (60℃) and frigid environments (−20℃). In addition, the wearable strain sensor based on this hydrogel shows good sensitivity to both motion and light, and is able to monitor the motion signals of different parts of the human body, such as throat, pulse,fingers, wrists, and arms, in real time, and the sensor is able to indirectly realize the monitoring of light through photothermal conversion under light. This study is expected to extend the application of hydrogel sensors in outdoor light sensing.
-
Key words:
- tannic acid /
- hydrogel /
- wearable /
- sensing /
- MXene
-
图 2 (a) 不同MXene添加量水凝胶拉伸测试;(b) 不同单宁酸浓度浸泡后水凝胶拉伸测试;(c) 水凝胶韧性比较;(d) 应力-应变压缩曲线;(e) 分布压缩曲线;(f) 分布循环压缩曲线;(g) 循环拉伸曲线;(h)水凝胶的时间扫描曲线;(i) 对猪皮的黏附强度测试; (j) 对金属、塑料、猪皮、橡胶、玻璃黏附
Figure 2. (a) Hydrogel tensile test with varying MXene additions; (b) Hydrogel tensile test with varying tannin concentrations; (c) Hydrogel toughness comparison; (d) Stress-strain compression curves; (e) Distributed compression curves; (f) Distributed cyclic compression curves; (g) Cyclic tensile curves; (h) Time-scan curves of hydrogels; (i) Adhesion strength test to pig skin; (j) Adhesion to metal, plastic pigskin, rubber, and glass.
图 3 (a) 不同温度下水凝胶压缩曲线;(b) 60℃下水凝胶分布压缩曲线;(c) −20℃下水凝胶分布压缩曲线;(d) −20℃下水凝胶压缩回弹;(e) 室温下水凝胶溶剂保持率曲线;(f) 60℃下水凝胶溶剂保持率曲线;(g) 水凝胶不同浓度梯度下的细胞存活率
Figure 3. (a) Hydrogel compression curves at different temperatures; (b) Hydrogel distribution compression curves at 60°C; (c) Hydrogel distribution compression curves at −20°C; (d) Hydrogel compression rebound at −20°C; (e) Hydrogel solvent retention curves at room temperature; (f) Hydrogel solvent retention curves at 60°C; (g) Cell survival under different concentration gradients of hydrogels
图 4 (a) 水凝胶灵敏度; (b) 喉咙吞咽时的传感信号; (c) 握拳时手腕传感信号; (d) 不同幅度下手指重复弯曲运动; (e) 不同频率下手指弯曲运动; (f) 不同幅度下手指弯曲运动; (g) 手腕弯曲运动; (h) 不同频率下手腕弯曲运动; (i) 手肘弯曲运动
Figure 4. (a) Hydrogel sensitivity; (b) Sensing signals during throat swallowing; (c) Wrist sensing signals during fist clenching; (d) Repetitive finger bending motions at different amplitudes; (e) Finger bending motions at different frequencies; (f) Finger bending motions at different amplitudes; (g) Wrist bending motions; (h) Wrist bending motions at different frequencies; (i) Elbow bending motions
图 5 (a) 水凝胶光热转换曲线;(b) 水凝胶光热循环曲线;(c) 水凝胶传感器在30~60℃之间的相对电阻变化;(d) 水凝胶光热过程中红外图像;(e) 水凝胶传感器在30~60℃之间的循环光热相对电阻变化
Figure 5. (a) Hydrogel photothermal conversion curves; (b) Hydrogel photothermal cycling curves; (c) Relative resistance differences of the hydrogel sensor between 30 and 60℃; (d) Infrared images of the hydrogel during the photothermal process; (e) Photothermal relative resistance variations of the hydrogel sensor between 30 and 60℃ cycling
表 1 AMT水凝胶配方表
Table 1. The formulation of AMT composited hydrogel
Group AA /g MXene /mL APS /g MBA /g H2O /mL PAA 6 0 0.05 0.01 24 AM5T0 6 0.5 0.05 0.01 23.5 AM10T0 6 1 0.05 0.01 23 AM20T0 6 2 0.05 0.01 22 Notes: AA is the amount of acrylic acid added; The amount of MXene added is the volume of 0.1% MXene solution added;APS is the amount of ammonium persulphate added;MBA is the amount of N,N'-methylenebisacrylamide added. -
[1] 胡魁, 王映月, 王昊昱, 等. 高强度耐低温纳米纤维素/聚乙烯醇导电复合水凝胶的制备及其在柔性传感中的应用[J]. 复合材料学报, 2022, 40(2): 1060-1070.HU K, WANG Y, WANG H, et al. Preparation of high-strength and low-temperature-resistant nanocellulose/polyvinyl alcohol conductive composite hydrogel and its application in flexible sensing[J]. Acta Materiae Compositae Sinica, 2022, 40(2): 1060-1070 (in Chinese). [2] LIU Z, LIU J, ZHANG J, et al. Highly compressible hydrogel sensors with synergistic long-lasting moisture, extreme temperature tolerance and strain-sensitivity properties[J]. Materials Chemistry Frontiers, 2020, 4(11): 3319-3327. doi: 10.1039/D0QM00566E [3] MA C, MA M, SI C, et al. Flexible MXene-based composites for wearable devices[J]. Advanced Functional Materials, 2021, 31(22): 2009524. doi: 10.1002/adfm.202009524 [4] WANG S, LIU Q, FENG S, et al. A water-retaining, self-healing hydrogel as ionic skin with a highly pressure sensitive properties[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104: 318-329. doi: 10.1016/j.jtice.2019.09.005 [5] LIU Tao, REN X, ZHANG J, et al. Highly compressible lignin hydrogel electrolytes via double-crosslinked strategy for superior foldable supercapacitors[J]. Journal of Power Sources, 2020, 449: 227532. doi: 10.1016/j.jpowsour.2019.227532 [6] 王洋, 吕高金, 夏梦瑶, 等. 生物质基水凝胶功能材料的研究进展[J]. 中国造纸, 2023, 42(4): 123-131. doi: 10.11980/j.issn.0254-508X.2023.04.017WANG Y, LYU G, XIA M, et al. Research Progress of Biomass-based Functional Hydrogel Materials[J]. China Pulp and Paper, 2023, 42(4): 123-131. doi: 10.11980/j.issn.0254-508X.2023.04.017 [7] ZHANG J, LIU T, LIU Z, et al. Facile fabrication of tough photocrosslinked polyvinyl alcohol hydrogels with cellulose nanofibrils reinforcement[J]. Polymer, 2019, 103(31): 103-109. [8] YUK H, VARELA C, NABZDYK C, et al. Dry double-sided tape for adhesion of wet tissues and devices[J]. Nature, 2019, 575(7781): 169-74. doi: 10.1038/s41586-019-1710-5 [9] WANG W, CHEN F, FANG L, et al. Reversibly Stretchable Organohydrogel-Based Soft Electronics with Robust and Redox-Active Interfaces Enabled by Polyphenol-Incorporated Double Networks[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12583-95. [10] LIU Z, ZHANG J, LIU J, et al. Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes[J]. Journal of Materials Chemistry A, 2020, 8(13): 6219-6228. doi: 10.1039/C9TA12424A [11] Wu Y, Xu W, Li J, et al. Influence of tannic acid post-treatment on the degradation and drug release behavior of Schiff base crosslinked konjac glucomannan/chitosan hydrogel[J]. European Polymer Journal, 2024, 202: 112592. doi: 10.1016/j.eurpolymj.2023.112592 [12] LIU J, WANG H, OU R, et al. Anti-bacterial silk-based hydrogels for multifunctional electrical skin with mechanical-thermal dual sensitive integration[J]. Chemical Engineering Journal, 2021, 426: 130722. doi: 10.1016/j.cej.2021.130722 [13] LIU J, WANG H, LIU T, et al. Multimodal Hydrogel-Based Respiratory Monitoring System for Diagnosing Obstructive Sleep Apnea Syndrome[J]. Advanced Functional Materials, 2022, 32(40): 2204686. doi: 10.1002/adfm.202204686 [14] 段茹雪, 唐春怡, 左华江, 等. 纤维素/单宁酸复合材料的应用研究进展[J]. 现代化工, 2022, 42(10): 81-85.DUAN R X, TANG C Y, ZUO H J, et al. Advances in application of cellulose/tannic acid composite materials[J]. Modern Chemical Industry, 2022, 42(10): 81-85. [15] MO J, DAI Y, ZHANG C, et al. Design of ultra-stretchable, highly adhesive and self-healable hydrogels via tannic acid-enabled dynamic interactions[J]. Materials Horizons, 2021, 8(12): 3409-3416. doi: 10.1039/D1MH01324F [16] GE G, ZHANG Y, ZHANG W, et al. Ti3C2Tx MXene-Activated Fast Gelation of Stretchable and Self-Healing Hydrogels: A Molecular Approach[J]. ACS Nano, 2021, 15: 2698-2706. doi: 10.1021/acsnano.0c07998 [17] CHEN T, WANG J, WU X, et al. Ethanediamine Induced Self-Assembly of Long-Range Ordered GO/MXene Composite Aerogel and Its Piezoresistive Sensing Performances[J]. Applied Surface Science, 2021, 566: 150719. doi: 10.1016/j.apsusc.2021.150719 [18] ROSENKRANZ A, PERINI G, AGUILAR-HURTADO J, et al. Laser-Mediated Antibacterial Effects of Few- and Multi-Layer Ti3C2Tx MXenes[J]. Applied Surface Science, 2021, 567: 150795. doi: 10.1016/j.apsusc.2021.150795 [19] ZHONG Q, LI Y, ZHANG G. Two-Dimensional MXene-Based and MXene-Derived Photocatalysts: Recent Developments and Perspectives[J]. Chemical Engineering Journal, 2021, 409: 128099. doi: 10.1016/j.cej.2020.128099 [20] LAVRADOR P, ESTEVES M, GASPAR V, et al. Stimuli-Responsive Nanocomposite Hydrogels for Biomedical Applications[J]. Advanced Functional Materials, 2021, 31: 2005941. doi: 10.1002/adfm.202005941 [21] ZHANG W, WEN J, MA M, et al. Anti-Freezing Water-Retaining Conductive and Strain-Sensitive Hemicellulose/Polypyrrole Composite Hydrogels for Flexible Sensors[J]. Journal of Materials Research and Technology, 2021, 14: 555-566. doi: 10.1016/j.jmrt.2021.06.088 [22] DAI B, CUI T, XU Y, et al. Smart Antifreeze Hydrogels with Abundant Hydrogen Bonding for Conductive Flexible Sensors[J]. Gels, 2022, 8: 374. doi: 10.3390/gels8060374 [23] CHEN K, LAI W, XIAO W, LI L. et al. Low-Temperature Adaptive Dual-Network MXene Nanocomposite Hydrogel as Flexible Wearable Strain Sensors[J]. Micromachines, 2023, 14: 1563. doi: 10.3390/mi14081563 [24] CHENG J, LU L, YANG B, et al. Nitrogen-Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis[J]. Advanced Functional Materials, 2020, 30(47): 2000852. doi: 10.1002/adfm.202000852 [25] QIN M, YUAN W, ZHANG X , et al. Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor[J]. Colloids and Surfaces B: Biointerfaces. 2022, 214: 112482. [26] PARK J, KIM TY, KIM Y, et al. A mechanically resilient and tissue-conformable hydrogel with hemostatic and antibacterial capabilities for wound Care[J]. Advanced Science, 2023, 10(30): 2303651. doi: 10.1002/advs.202303651 [27] FAN H, WANG J, et al. Tough, swelling-resistant, self-healing, and adhesive dual-cross-linked hydrogels based on polymer–tannic acid multiple hydrogen bonds[J]. Macromolecules, 2018, 51(5): 1696-705. doi: 10.1021/acs.macromol.7b02653 [28] WANG W, CHEN F, FANG L, et al. Reversibly stretchable organohydrogel-based soft electronics with robust and redox-active interfaces enabled by polyphenol-incorporated double networks[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12583-95. [29] HAN Z, WANG P, LU Y, et al. A versatile hydrogel network–repairing strategy achieved by the covalent-like hydrogen bond interaction[J]. Science Advances, 2022, 8(8): l5066. doi: 10.1126/sciadv.abl5066 [30] MA W, CAO W, LU T, et al. Healable, adhesive, and conductive nanocomposite hydrogels with ultrastretchability for flexible sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 58048-58058. [31] 谢智晖, 马振萍, 夏志柯, 等. 一种抗冻、可拉伸有机水凝胶的制备及在柔性应变传感器中的应用[J]. 包装学报, 2021, 13(6): 73-80. doi: 10.3969/j.issn.1674-7100.2021.06.010XIE Z, MA Z, XIA Z, et al. Fabrication of a Freezing-Tolerant and Stretchable Composite Organohydrogel for Flexible Strain Sensors[J]. Packaging Journal, 2021, 13(6): 73-80. doi: 10.3969/j.issn.1674-7100.2021.06.010 [32] WU Z, YANG X, WU J. Conductive hydrogel-and organohydrogel-based stretchable sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2128-2144. [33] LIU J, WANG H, LIU T, et al. Multimodal Hydrogel-Based Respiratory Monitoring System for Diagnosing Obstructive Sleep Apnea Syndrome[J]. Advanced Functional Materials, 2022, 32(40): 2204686. doi: 10.1002/adfm.202204686 [34] LI G, LI C, LI G, et al. Development of conductive hydrogels for fabricating flexible strain sensors[J]. Small, 2022, 18(5): 2101518. doi: 10.1002/smll.202101518 [35] 陈 卓, 马振萍, 经 鑫. 锯齿状水凝胶传感器的制备及传感性能[J]. 包装学报, 2021, 13(2): 81-88.CHEN Z, MA Z, JIN X. Preparation and Sensing Performance of Zigzag Hydrogel Sensors[J]. Packaging Journal, 2022, 18 (5): 2101518.
计量
- 文章访问数: 89
- HTML全文浏览量: 28
- 被引次数: 0