留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性水滑石调控聚乳酸-马来酸酐接枝聚丙烯复合材料及其性能

黎晓杰 成晓琼 段书谦 袁婷 辛佳礼 付海

黎晓杰, 成晓琼, 段书谦, 等. 改性水滑石调控聚乳酸-马来酸酐接枝聚丙烯复合材料及其性能[J]. 复合材料学报, 2022, 39(12): 5711-5726. doi: 10.13801/j.cnki.fhclxb.20211217.002
引用本文: 黎晓杰, 成晓琼, 段书谦, 等. 改性水滑石调控聚乳酸-马来酸酐接枝聚丙烯复合材料及其性能[J]. 复合材料学报, 2022, 39(12): 5711-5726. doi: 10.13801/j.cnki.fhclxb.20211217.002
LI Xiaojie, CHENG Xiaoqiong, DUAN Shuqian, et al. Properties of polylactic acid/maleic anhydride grafted polypropylene composites regulated by modified hydrotalcite[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5711-5726. doi: 10.13801/j.cnki.fhclxb.20211217.002
Citation: LI Xiaojie, CHENG Xiaoqiong, DUAN Shuqian, et al. Properties of polylactic acid/maleic anhydride grafted polypropylene composites regulated by modified hydrotalcite[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5711-5726. doi: 10.13801/j.cnki.fhclxb.20211217.002

改性水滑石调控聚乳酸-马来酸酐接枝聚丙烯复合材料及其性能

doi: 10.13801/j.cnki.fhclxb.20211217.002
基金项目: 国家自然科学基金地区项目(21764004);贵州省科学计划项目黔科合平台人才[2017]5726;黔科合基础[2016]1100
详细信息
    通讯作者:

    付海,博士,副教授,研究方向为功能复合材料 E-mail:599726614@qq.com

  • 中图分类号: TB332

Properties of polylactic acid/maleic anhydride grafted polypropylene composites regulated by modified hydrotalcite

  • 摘要: 为了研究水滑石复合材料的力学性能、热稳定性、动态热机械性能、结晶行为和界面相容性等,通过共沉淀法制备镁铝水滑石,再将水滑石进行焙烧,得到焙烧镁铝水滑石,以控制变量法考察温度和时间对水滑石层间结构的影响,利用TG、SEM、XRD分别表征测试了300℃下焙烧后的水滑石(LDHs(300))的形貌和热稳定性,证实其层间水已经大部分除去,且保持层状结构而不损害其原有的性能。利用FTIR、XRD表征测试了十二烷基苯磺酸钠(SDBS)能成功插层改性焙烧后的水滑石。再采用熔融共混法,将不同表面改性的水滑石颗粒添加到聚乳酸-马来酸酐接枝聚丙烯(PLA-PP-g-MAH)得到不同的复合材料。结果表明,焙烧改性后的水滑石复合材料的性能最优。通过SEM进行的形态分析表明,随着水滑石添加到PLA-PP-g-MAH中,PP-g-MAH颗粒相畴尺寸显著减小,PP-g-MAH相具有更好的润湿性,从而产生更高的冲击强度,冲击性能与纯PLA相比提高了37.72%。从流变行为发现,焙烧改性后的水滑石复合材料的流变性能比PLA显著增加。DMA表明,在PLA-PP-g-MAH共混物中添加焙烧改性后的水滑石,PLA的玻璃化转变温度$ \left({T}_{\mathrm{g}}\right) $升高和冷结晶温度$ {(T}_{\mathrm{c}\mathrm{c}}) $降低。从DSC和POM表明,焙烧改性后的水滑石复合材料提高了结晶速率,结晶度比PLA提高了62.8%。

     

  • 图  1  不同温度下焙烧水滑石24 h的热重曲线

    Figure  1.  Thermogravimetric diagram of hydrotalcite calcined at different temperatures for 24 h

    DTG—Differential thermogravimetric

    图  2  (a) 300℃焙烧4 h和24 h的水滑石热重曲线; (b) 300℃焙烧24 h和300℃焙烧24 h后放置两周的水滑石热重曲线

    Figure  2.  (a) Thermogravimetric curves of hydrotalcite calcined at 300℃ for 4 h and 24 h; (b) Thermogravimetric curves of hydrotalcite calcined at 300℃ for 24 h and placed for 2 weeks

    图  3  未焙烧水滑石和300℃下焙烧水滑石SEM图像:((a)、(c)) 未焙烧Mg-Al水滑石;((b)、(d)) 300℃下焙烧24 h Mg-Al水滑石

    Figure  3.  SEM images of unburned hydrotalcite and calcined hydrotalcite at 300℃: ((a), (c)) Unburned Mg-Al hydrotalcite; ((b), (d)) Mg-Al hydrotalcite calcined at 300℃ for 24 h

    图  4  未焙烧水滑石和250℃、300℃、350℃及400℃下焙烧水滑石XRD图谱

    Figure  4.  XRD patterns of unburned hydrotalcite and calcined hydrotalcite at 250℃, 300℃, 350℃ and 400℃

    图  5  LDHs(300)和LDHs(300)-十二烷基苯磺酸钠(SDBS)的FTIR图谱

    Figure  5.  FTIR spectra of LDHs(300)和LDHs(300)-sodium dodecyl benzene sulfonate (SDBS)

    图  6  LDHs(300)和LDHs(300)-SDBS的XRD图谱,其中扫描范围为2°~70°

    Figure  6.  XRD patterns of LDHs(300) and LDHs(300)-SDBS scanned from 2° to 70°

    图  7  水滑石复合材料的纯样品及共混物的SEM图像:(a) PLA-PP-g-MAH;(b) LDHs(300)-SDBS/PLA-PP-g-MAH;(c) LDHs(300)/PLA-PP-g-MAH;(d) LDHs-SDBS/PLA-PP-g-MAH;(e) LDHs/PLA-PP-g-MAH;(f) Neat PLA;((a′)~(f′)) 对应的局部放大图

    Figure  7.  SEM images of the pure samples and blends of hydrotalcite composites: (a) PLA-PP-g-MAH; (b) LDHs(300)-SDBS/PLA-PP-g-MAH; (c) LDHs(300)/PLA-PP-g-MAH; (d) LDHs-SDBS/PLA-PP-g-MAH; (e) LDHs/PLA-PP-g-MAH; (f) Neat PLA; ((a′)~(f′)) Corresponding local enlarged view

    图  8  水滑石复合材料的纯样及共混物的热重图

    Figure  8.  Thermogravimetry of the pure samples and blends of hydrotalcite composites

    图  9  不同频率下PLA-PP-g-MAH、LDHs(300)-SDBS/PLA-PP-g-MAH、LDHs(300)/PLA-PP-g-MAH、LDHs-SDBS/PLA-PP-g-MAH、LDHs/PLA-PP-g-MAH和纯PLA的储能模量G′(a)、损耗模量G′′ (b) 和复数黏度η* (c)

    Figure  9.  Storage modulus G′ (a), loss modulus G′′ (b) and complex viscosity η* (c) of PLA-PP-g-MAH, LDHs(300)-SDBS/PLA-PP-g-MAH, LDHs(300)/PLA-PP-g-MAH, LDHs-SDBS/PLA-PP-g-MAH, LDHs/PLA-PP-g-MAH and neat PLA at different frequencies

    图  10  水滑石复合材料的纯样及共混物的储能模量 (a)、损耗模量 (b) 和损耗因子tanδ (c)

    Figure  10.  Storage modulus (a), loss modulus (b) and loss factor (c) of pure samples and blends of hydrotalcite composites

    图  11  纯PLA、PLA-PP-g-MAH及LDHs(300)-SDBS/PLA-PP-g-MAH复合材料的DSC降温 (a) 和升温 (b) 曲线

    Figure  11.  DSC cooling (a) and heating (b) curves of neat PLA, PLA-PP-g-MAH and LDHs(300)-SDBS/PLA-PP-g-MAH composite

    图  12  纯PLA (a)、PLA-PP-g-MAH (b)、LDHs(300)-SDBS/PLA-PP-g-MAH (c)的POM图像

    Figure  12.  Polarizing images of neat PLA (a), PLA-PP-g-MAH (b) and LDHs(300)-SDBS/PLA-PP-g-MAH (c)

    图  13  PLA-PP-g-MAH、LDHs(300)-SDBS/PLA-PP-g-MAH、LDHs(300)/PLA-PP-g-MAH、LDHs-SDBS/PLA-PP-g-MAH、LDHs/PLA-PP-g-MAH和纯PLA的力学性能:(a) 冲击性能;(b) 拉伸强度

    Figure  13.  Mechanical properties of PLA-PP-g-MAH, LDHs(300)-SDBS/PLA-PP-g-MAH, LDHs(300)/PLA-PP-g-MAH, LDHs-SDBS/PLA-PP-g-MAH, LDHs/PLA-PP-g-MAH and neat PLA: (a) Impact strength; (b) Tensile strength

    表  1  不同温度焙烧后的水滑石(LDHs)

    Table  1.   Hydrotalcite (LDHs) calcined at different temperatures

    Sample Calcination temperature/℃
    LDHs(200) 200
    LDHs(250) 250
    LDHs(300) 300
    LDHs(350) 350
    LDHs(400) 400
    下载: 导出CSV

    表  2  不同温度下焙烧水滑石24 h的集中热分解温度

    Table  2.   Concentrated thermal decomposition temperature of hydrotalcite calcined at different temperatures for 24 h

    SampleT1max of stage 1/℃T2max of stage 2/℃Tmax of stage 1/℃Residual quantity/wt%
    LDHs(200) 87.5 453.4 64.20
    LDHs(250) 90.0 391.3 2.5 63.76
    LDHs(300) 93.7 523.8 6.2 68.96
    LDHs(350) 96.2 397.7 8.7 76.00
    LDHs(400) 108.8 495.9 21.3 84.01
    Notes: T1max and T2max—Maximum decomposition temperature in the first and second stage; ∆TmaxT1maxT1max (LDHs(200)).
    下载: 导出CSV

    表  3  水滑石复合材料的纯样及共混物的集中热分解温度

    Table  3.   Temperature of concentrated thermal decomposition of the pure samples and blends of hydrotalcite composites

    SampleTmax of stage 1/℃Tmax of stage 1/℃Char residue at 600℃/wt%
    PLA-PP-g-MAH 364.5 −21.9 0.52
    LDHs(300)-SDBS/PLA-PP-g-MAH 342.6 1.96
    LDHs(300)/PLA-PP-g-MAH 327.3 15.3 1.46
    LDHs-SDBS/PLA-PP-g-MAH 308.6 34.1 6.94
    LDHs/PLA-PP-g-MAH 338.9 3.7 1.46
    Neat PLA 363.9 −21.3 0.52
    Notes: Tmax—Maximum decomposition temperature in the first stage.
    下载: 导出CSV

    表  4  水滑石复合材料纯样及共混物的玻璃转化温度Tg

    Table  4.   Glass transition temperature Tg of pure samples and blends of hydrotalcite composites

    Sample$ {T}_{\mathrm{g}} $(PLA)/
    $ {T}_{\mathrm{g}} $(PP-g-MAH)/
    PLA-PP-g-MAH64.386.9
    LDHs(300)-SDBS/PLA-PP-g-MAH65.283.1
    LDHs(300)/PLA-PP-g-MAH65.583.9
    LDHs-SDBS/PLA-PP-g-MAH65.885.0
    LDHs/PLA-PP-g-MAH67.689.7
    Neat PLA64.9
    下载: 导出CSV

    表  5  纯PLA、PLA-PP-g-MAH及LDHs(300)-SDBS/PLA-PP-g-MAH复合材料的DSC所得参数

    Table  5.   DSC parameters of neat PLA, PLA-PP-g-MAH and LDHs(300)-SDBS/PLA-PP-g-MAH composites

    Sample$ {T}_{\mathrm{g}}/{}^\circ \text{C} $$ {T}_{\mathrm{c}\mathrm{c}} /{}^\circ \text{C}$$ {T}_{\mathrm{m}}/{}^\circ \text{C} $$ {\mathrm{\Delta }H}_{\mathrm{c}\mathrm{c}}\text{/}\left( \text{kJ}\cdot \text{mo}{{\text{l}}^{{-1}}} \right) $$ {\mathrm{\Delta }H}_{\mathrm{m}} \text{/}\left( \text{kJ}\cdot \text{mo}{{\text{l}}^{{-1}}} \right) $${\chi }_{\mathrm{c} }$/%
    Neat PLA56.6117.4149.4−22.5223.541.09
    PLA-PP-g-MAH59.4110.7147.1−22.1324.871.24
    LDHs(300)-SDBS/PLA-PP-g-MAH59.4110.0147.1−25.9428.412.93
    Notes: $ {T}_{\mathrm{c}\mathrm{c}} $—Cold crystallization peak; $ {\mathrm{\Delta }H}_{\mathrm{c}\mathrm{c}} $—Cold crystallization enthalpy; $ {\mathrm{\Delta }H}_{\mathrm{m}} $—Melt crystallization; $ {\chi }_{\mathrm{c}} $—Degree of crystallinity; Tm—Meliling temperature.
    下载: 导出CSV
  • [1] HASHIMA K, NISHITSUJI S, INOUE T. Structure-properties of super-tough PLA alloywith excellent heat resistance[J]. Polymer,2010,51(17):3934-3939. doi: 10.1016/j.polymer.2010.06.045
    [2] OYAMA H T. Super tough poly (lactic acid)mat prials: Reactive blending with ethylene copolymer[J]. Polymer,2009,50(3):747-751. doi: 10.1016/j.polymer.2008.12.025
    [3] LI Y J, SHIMIZU H. Improvement in toughness of poly (L-lac-tide) (PLLA) through reactive blending with acrylonitrile-bu-tadiene styrene copolymer (ABS): Morphology and properties[J]. European Polymer Journal,2009,45(3):738-746. doi: 10.1016/j.eurpolymj.2008.12.010
    [4] YU T, LI Y, REN J, et al. Preparation and properties of short natural fiber reinforced poly(lactic acid) composites[J]. Transactions of Nonferrous Metals Society of China,2009,19(s3):s651-s655.
    [5] RAHIMIPOUR S, BAHRI-LALEH N, EHSANI M, et al. Preparation and properties of enhanced bio-based PLA/PA6/graphene nanocomposites in the presence of an ester–amide exchange catalyst[J]. Journal of Polymers and the Environment,2021,29(7):2302-2309.
    [6] HUDA M S, DRZAL L T, MOHANTY A K, et al. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf[J]. Composites Science and Technology,2008,68(2):424-432. doi: 10.1016/j.compscitech.2007.06.022
    [7] PAPAGEORGIOU G Z, ACHILIASD S, NANAKI S, et al. PLA nanocomposites: Effect of filler type on non-isothermal crystallization[J]. Thermochimica Acta,2010,511(1-2):129-139. doi: 10.1016/j.tca.2010.08.004
    [8] BAI H, HUANG C, XIU H, et al. Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent[J]. Polymer,2014,55(26):6924-6934. doi: 10.1016/j.polymer.2014.10.059
    [9] XU Y, DELGADO P, TODD A D, et al. Lightweight micro-cellular plastics from polylactide/polyolefin hybrids[J]. Polymer,2016,102:73-83. doi: 10.1016/j.polymer.2016.08.102
    [10] ZHAO P, LIU W, WU Q, et al. Preparation, mechanical, and thermal properties of biodegradable polyesters/poly (lactic acid) blends[J]. Journal of Nanomaterials,2010,2010:287082.
    [11] MOMENI S, REZVANI G E, SHAKIBA M, et al. The effect of poly (ethylene glycol) emulation on the degradation of PLA/starch composites[J]. Polymers,2021,13(7):1019. doi: 10.3390/polym13071019
    [12] ROBLES E, URRUZOLA I, LABIDI J, et al. Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites[J]. Industrial Crops and Products,2015,71:44-53. doi: 10.1016/j.indcrop.2015.03.075
    [13] MAD DESA M S Z, HASSAN A, ARSAD A, et al. The effect of natural rubber toughening on mechanical properties of poly (lactic acid)/multiwalled carbon nanotube nanocomposite[J]. Advanced Materials Research,2013,747:639-642.
    [14] YU W, WANG X, FERRARIS E, et al. Melt crystallization of PLA/talc in fused filament fabrication[J]. Materials & Design,2019,182:108013.
    [15] AGRAWAL P, ARAUJO A P M, BRITO G F, et al. Rheological and mechanical properties of poly (lactic acid)/bio-based polyethylene/clay biocomposites containing montmorillonite and vermiculite clays[J]. Journal of Polymers and the Environment,2021,29(6):1777-1788. doi: 10.1007/s10924-020-02015-z
    [16] LI S, LIAO X, XIAO W, et al. The improved foaming behavior of PLA caused by the enhanced rheology properties and crystallization behavior via synergistic effect of carbon nanotubes and graphene[J]. Journal of Applied Polymer Science,2022,139(13):51874.
    [17] SABZI M, JIANG L, ATAI M, et al. PLA/sepiolite and PLA/calcium carbonate nanocomposites: A comparison study[J]. Journal of Applied Polymer Science,2013,129(4):1734-1744. doi: 10.1002/app.38866
    [18] NUNEZ K, ROSALES C, PERERA R, et al. Nanocomposites of PLA/PP blends based on sepiolite[J]. Polymer Bulletin,2011,67(9):1991-2016. doi: 10.1007/s00289-011-0616-7
    [19] AYRILMIS N. Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament[J]. Polymer Testing,2018,71:163-166. doi: 10.1016/j.polymertesting.2018.09.009
    [20] KOMAL U K, LILA M K, SINGH I, et al. PLA/banana fiber based sustainable biocomposites: A manufacturing perspective[J]. Composites Part B: Engineering,2020,180:107535. doi: 10.1016/j.compositesb.2019.107535
    [21] WU G, LIU S, JIA H, et al. Preparation and properties of heat resistant polylactic acid (PLA)/nano-SiO2 composite filament[J]. Journal of Wuhan University of Technology Materials Science Edition,2016,31(1):164-171. doi: 10.1007/s11595-016-1347-2
    [22] HUANG S M, HWANG J J, LIU H J, et al. A characteristic study of polylactic acid/organic modified montmorillonite (PLA/OMMT) nanocomposite materials after hydrolyzing[J]. Crystals,2021,11(4):376. doi: 10.3390/cryst11040376
    [23] 黄博文, 吕荥宾, 陈建钧, 等. 镁铝水滑石的合成及其在废水脱磷中的应用研究[J]. 高校化学工程学报, 2018, 32(3):683-689.

    HUANG Bowen, LV Xingbin, C Jianjun, et al. Synthesis of Mg Al hydrotalcite and its application in wastewater dephosphorization[J]. Journal of Chemical Engineering,2018,32(3):683-689(in Chinese).
    [24] 张永, 张延武, 朱艳青, 等. 水滑石类化合物的研究进展[J]. 河南化工, 2007, 24(12):9-12.

    ZHANG Yong, ZHANG Yanwu, ZHU Yanqing, et al. Research progress of hydrotalcite compounds[J]. Henan Chemical Industry,2007,24(12):9-12(in Chinese).
    [25] 郭志强, 倪哲明, 方彩萍, 等. 铜钴作为二价金属的类水滑石对NOx吸附性能研究[J]. 浙江工业大学学报, 2005(1):102-104.

    GUO Zhiqiang, NI Zheming, FANG Caiping, et al. Study on NOx adsorption performance of Cu Co hydrotalcite like compounds as divalent metals[J]. Journal of Zhejiang University of Technology,2005(1):102-104(in Chinese).
    [26] MEILI L, LINS P V, ZANTA C, et al. MgAl-LDH/biochar composites for methylene blue removal by adsorption[J]. Applied Clay Science,2019,168:11-20. doi: 10.1016/j.clay.2018.10.012
    [27] DU J Z, JIN L, ZENG H Y, et al. Facile preparation of an efficient flame retardant and its application in ethylene vinyl acetate[J]. Applied Clay Science,2019,168:96-105. doi: 10.1016/j.clay.2018.11.004
    [28] 荆秋叶, 彭冬, 袁小亚, 等. 煅烧型锌铝水滑石光还原Cr(Ⅵ)[J]. 材料导报, 2018, 32(14):2345-2350. doi: 10.11896/j.issn.1005-023X.2018.14.004

    JING Qiuye, PENG Dong, YUAN Xiaoya, et al. Photoreduction of Cr(Ⅵ) by calcined zinc aluminum hydrotalcite[J]. Materials Guide,2018,32(14):2345-2350(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.14.004
    [29] ZHANG L, LV S, SUN C, et al. Effect of MAH-g-PLA on the properties of wood fiber/polylactic acid composites[J]. Polymers,2017,9(11):591. doi: 10.3390/polym9110591
    [30] 何飞雄, 卞军, 蔺海兰, 等. 功能化纳米石墨烯片/PP-PP-g-MAH复合材料的制备与表征[J]. 复合材料学报, 2015, 32(1):47-53.

    HE Feixiong, BIAN Jun, LIN Hailan, et al. Preparation and characterization of functionalized nano graphene sheet/PP-PP-g-MAH composites[J]. Acta Materiae Compositea Sinica,2015,32(1):47-53(in Chinese).
    [31] WANG W, ZHANG W, LIANG B. The influences of multiple factors for flexural performance of polypropylene: Crystallization, crystal evolution, nanoparticles[J]. Journal of Materials Science,2021,56(28):15667-15683. doi: 10.1007/s10853-021-06243-z
    [32] 中国国家标准化管理委员会. 塑料薄膜拉伸性能试验方法: GB 13022—91[S]. 北京: 中国标准出版社, 1991.

    Standardization Administration of the People’s Republic of China. Test method for tensile properties of plastic films: GB 13022—91[S]. Beijing: China Standards Press, 1991(in Chinese).
    [33] 中国国家标准化管理委员会. 塑料薄膜抗摆锤冲击试验方法: GB/T 8809—2015[S]. 北京: 中国标准出版社, 2015.

    Standardization Administration of the People’s Republic of China. Test method for pendulum impact resistance of plastic films: GB/T 8809—2015[S]. Beijing: China Standards Press, 2005(in Chinese).
    [34] CHAILLOT D, BENNICI S, BRENDLE J, et al. Layered double hydroxides and LDH-derived materials in chosen environmental applications: A review[J]. Environmental Science and Pollution Research,2021,28(19):24375-24405. doi: 10.1007/s11356-020-08498-6
    [35] WANG L, SU S, CHEN D, et al. Variation of anions in layered double hydroxides: effects on dispersion and fire properties[J]. Polymer Degradation and Stability,2009,94(5):770-781. doi: 10.1016/j.polymdegradstab.2009.02.003
    [36] HONG J S, NAMKUNG H, AHN K H, et al. The role of organically modified layered silicate in the breakup and coalescence of droplets in PBT/PE blends[J]. Polymer,2006,47(11):3967-3975. doi: 10.1016/j.polymer.2006.03.077
    [37] DHARAIYA D P, JANA S C. Nanoclay-induced morphology development in chaotic mixing of immiscible polymers[J]. Journal of Polymer Science Part B: Polymer Physics,2005,43(24):3638-3651. doi: 10.1002/polb.20657
    [38] KIM Y F, CHANG N C, KIM Y D, et al. Compatibilization of immiscible poly(L-lactide) and low density polyethylene blends[J]. Fibers & Polymers, 2004, 5(4): 270-274.
    [39] DELPOUVE N, SAITERR-FOURCIN A, COIAI S, et al. Effects of organo-LDH dispersion on thermal stability, crystallinity and mechanical features of PLA[J]. Polymer,2020,208:122952. doi: 10.1016/j.polymer.2020.122952
    [40] CAM D, MARUCCI M. Influence of residual monomers and metals on poly (L-lactide)thermal stability[J]. Polymer,1997,38:1879-1884. doi: 10.1016/S0032-3861(96)00711-2
    [41] WEI B, CHEN D, WANG H, et al. In-situ grafting of carboxylic acid terminated poly (methyl methacrylate) onto ethylene-glycidyl methacrylate copolymers: One-pot strategy to compatibilize immiscible poly (vinylidene fluoride)/low density polyethylene blends[J]. Polymer,2019,160:162-169. doi: 10.1016/j.polymer.2018.11.042
    [42] WANG Q, ZHANG X, WANG C J, et al. Polypropylene/layered double hydroxide nanocomposites[J]. Journal of Materials Chemistry,2012,22(36):19113-19121. doi: 10.1039/c2jm33493c
    [43] MANGIACAPRA P, RAIMONDO M, TAMMARO L, et al. Nanometric dispersion of a Mg/Al layered double hydroxide into a chemically modified polycaprolactone[J]. Biomacromolecules,2007,8(3):773-779. doi: 10.1021/bm0605964
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  1058
  • HTML全文浏览量:  591
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 修回日期:  2021-12-02
  • 录用日期:  2021-12-03
  • 网络出版日期:  2021-12-20
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回