留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

香蒲衍生Fe/C复合材料的制备及其吸波性能

陈博文 强荣 邵玉龙 杨啸 马茜 薛瑞

陈博文, 强荣, 邵玉龙, 等. 香蒲衍生Fe/C复合材料的制备及其吸波性能[J]. 复合材料学报, 2023, 41(0): 1-12
引用本文: 陈博文, 强荣, 邵玉龙, 等. 香蒲衍生Fe/C复合材料的制备及其吸波性能[J]. 复合材料学报, 2023, 41(0): 1-12
Bowen CHEN, Rong QIANG, Yulong SHAO, Xiao YANG, Qian MA, Rui XUE. Cattail-derived Fe/C composites for efficient microwave absorption[J]. Acta Materiae Compositae Sinica.
Citation: Bowen CHEN, Rong QIANG, Yulong SHAO, Xiao YANG, Qian MA, Rui XUE. Cattail-derived Fe/C composites for efficient microwave absorption[J]. Acta Materiae Compositae Sinica.

香蒲衍生Fe/C复合材料的制备及其吸波性能

基金项目: 国家自然科学基金青年基金(No. 51902359);纺织工业联合会科技指导性项目(No. 2021044);河南省重点研发 与推广专项(No.202102210017);河南省高等学校重点科研项目(No.20A150047);中原工学院青年骨干教师项目(No. 2020XQG02); 中原工学院面上基金项目(K2023MS009 ) 、青年硕导培育计划(20232023)
详细信息
    通讯作者:

    强荣,副教授,博士。主要研究方向为功能导向碳基复合材料的制备及宽频电磁波响应  Email: Casey2009@126.com

  • 中图分类号: TB333

Cattail-derived Fe/C composites for efficient microwave absorption

Funds: Youth Fund of the National Natural Science Foundation of China(No. 51902359); Federation of Textile Industry Science and Technology Steering Project(No.2021044); Henan Province Key R&D and Promotion Special(No.202102210017); Key Research Projects of Henan Higher Education Institutions(No.20A150047); Zhongyuan University of Technology Young Backbone Teacher Programme(No. 2020XQG02); General Program (K2023MS009 ) and Youth Master's Guide Training Program (20232023) of Zhongyuan University of Technology
  • 摘要:   目的  为改善生活中因通信和电子设备的所带来的日趋严重的电磁污染,解决生物质衍生碳基吸波材料制备方法高成本、环境污染大等问题。该项目提出了一种生物质衍生碳基复合吸波材料的设计开发提供借鉴。  方法  选取二维片层结构生物质材料香蒲为原料,Fe为金属源,利用其固有的吸附特性, 经配位自组装和简单的高温还原方法获得香蒲表面均匀负载的三价Fe粒子的前驱体,后经管式炉高温煅烧分别得到700、800和900℃的Fe/C复合材料。  结果  通过扫描电镜(SEM)观察材料的形貌,香蒲作为前驱体经过高温煅烧之后保留了较好的微观形貌,并且可以看出Fe/C复合材料中片状的碳壁结构形态和紧密的附着在碳壁上的Fe纳米粒子,Fe纳米粒子的分布是非常随机且均匀的。Fe/C复合材料TG测试结果得出随着温度的升高,Fe纳米粒子具有较高的化学稳定性,并且Fe/C-800复合材料Fe的相对含量最高。Fe/C复合材料XPS图谱证实Fe元素很好地掺杂到复合材料的碳骨架中。Fe/C复合材料电磁参数测试结果表明介电常数变化上具有频散效应发生,复合材料的介电常数实部和虚部在6至18 GHz频率范围内出现多重共振现象,这是因为随着煅烧温度的升高Fe/C复合材料的中碳组分石墨化程度逐渐升高促进了电导率的增强,复合材料的复磁导率实部在低频范围内具有明显的共振峰。复合材料中的介电损耗能力主要取决于电导损耗、偶极取向极化损耗和界面极化损耗。二维和三维反射损耗图像表明Fe/C复合材料在900 ℃时吸波性能更为优异。阻抗匹配与衰减常数共同决定电磁吸波的吸收性能,综合来看Fe/C-900性能最佳。经电磁波吸收性能研究显示,复合从材料中 RL值小于-10 dB时,意味着90%的电磁波可以转换成其他形式的能,并且生物质衍生碳基复合材料表面均匀的负载上磁性金属制备出了具有双重电磁波损耗机制的复合材料Fe/C,大大提升了电磁波的吸收带宽。  结论  以煅烧后的香蒲为载体,Fe为金属源,经配位自组装和简单的高温还原获得香蒲表面均匀负载的三价铁粒子,复合材料经惰性气氛下高温煅烧得到Fe/C复合材料,从而制备出具有良好吸波性能的复合材料。X 射线衍射测试结果表明,复合材料经高温煅烧后形成了Fe纳米颗粒;热重分析表明,Fe/C复合材料中碳组分含量随温度升高而降低,形成的Fe纳米颗粒在测试温度内较为稳定;反射损耗结果显示,900 ℃的Fe/C复合材料的吸波性能最好,厚度为5 mm 时,最大反射损耗达-35 dB,Fe/C复合材料中生物质衍生碳和Fe纳米颗粒的协同效应在优化阻抗匹配特性和提高电磁波的衰减能力起着至关重要的作用,其次,样品分散在石蜡中以形成电导网络,更多的电子在不同的碳层之间跳跃,网络导电性增强,将更多的电磁波能量转化为热能,体心立方Fe和碳管之间形成大量的异质界面,并且异质界面之间Fe纳米颗粒和碳层有利于在交变电磁场下的自由电荷积累和振荡,从而增强了界面极化;此外,在复合材料中形成了高密度的氮杂取代,可以极大地促进偶极极化,进一步提高了介电损耗能力,提升了复合材料的吸波性能,本文制备的生物质衍生碳基复合材料是一种新型的电磁波吸收复合材料,具有宽带、高效等优良性能。

     

  • 图  1  Fe/C复合材料的制备流程图(a)、SEM图谱(b-c)、吸波测试样品制备流程图(d)、XRD图谱(e)、热重图谱(f)、拉曼图谱(g)、 VSM(h)

    Figure  1.  Fe/C composite Preparation flow chart(a), SEM patterns(b-c),Flow chart for sample preparation for wave absorption testing (d), XRD(e), TG(f), Raman mapping (g), VSM(h)

    图  2  Fe/C复合材料的700 BET图 (a)、800 BET图 (b)、900 BET图 (c)

    Figure  2.  Fe/C composite700 BET (a), 800 BET (b), 900 BET (c)

    图  3  Fe/C复合材料的XPS全谱(a)、C ls (b)、N 1s (c)、O 1s (d)、Fe 2 p (e)

    Figure  3.  Fe/C composite XPS (a), C ls (b), N 1s (c), O 1s (d), Fe 2 p (e)

    图  4  Fe/C复合材料的介电常数实部ε' (a),介电常数虚部ε'' (b),介电损耗正切值$ {tan\delta }_{\epsilon } $(c),复磁导率实部μ' (d),复磁导率虚部μ'' (e),复磁损耗正切值$ \mathrm{tan}{\delta }_{\mu } $(f),Cole-Cole环(g),C0(h),衰减因子谱(i)

    Figure  4.  Fe/C composite Real part of the dielectric constant(a), Imaginary part of the dielectric constant(b), Dielectric loss tangent(c), Complex magnetic permeability real part(d), Complex magnetic permeability imaginary part(e), Complex magnetic loss tangent(f), Cole-Cole(g), C0(h), Attenuation factor mapping(i)

    图  5  Fe/C-700(a)、Fe/C-800(b)、Fe/C-900(c)的二维反射损耗图;Fe/C-700(d)、Fe/C-800(e)、Fe/C-900(f)的三维反射损耗图;Fe/C-700(g)、Fe/C-800(h)、Fe/C-900(i)的阻抗匹配图

    Figure  5.  2 D reflection loss diagrams for Fe/C-700(a), Fe/C-800(b), Fe/C-900(c); 3 D reflection loss diagrams for Fe/C-700(d), Fe/C-800(e), Fe/C-900(f); Impedance matching diagram for Fe/C-700(g), Fe/C-800(h), Fe/C-900(i)

    图  6  Fe/C复合材料吸波机制图

    Figure  6.  Diagram of the wave absorption mechanism of Fe/C composites

  • [1] WANG YANQIN, WANG HUAGAO, YE JINHONG, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption[J]. Chemical Engineering Journal, 2020, 383: 123096
    [2] LI ZHENJIANG, LIN HUI, DING SHIQI, et al. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon[J]. Carbon,2020,167:148-159. doi: 10.1016/j.carbon.2020.05.070
    [3] MOU PENGPENG, ZHAO JINCHUAN, WANG GUIZHEN, et al. BCN nanosheets derived from coconut shells with outstanding microwave absorption and thermal conductive properties[J]. Chemical Engineering Journal,2022,437(2):135285.
    [4] GAO TONG, ZHAO RONGZHI, LI YIXING, et al. Sub-Nanometer Fe Clusters Confined in Carbon Nanocages for Boosting Dielectric Polarization and Broadband Electromagnetic Wave Absorption[J]. Advanced Functional Materials,2022,32(31):2204370. doi: 10.1002/adfm.202204370
    [5] WANG CHUNYU, MA YUAYUAN, QIN ZHAOHUI, et al. Synthesis of hollow spherical MoS2@Fe3O4-GNs ternary composites with enhanced microwave absorption performance[J]. Applied Surface Science,2021,569:150812. doi: 10.1016/j.apsusc.2021.150812
    [6] CUI CE, GUO RONGHUI, REN ERHUI et al. MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave[J]. Chemical Engineering Journal,2021,405:126626. doi: 10.1016/j.cej.2020.126626
    [7] ZHOU XINFENG, JIA ZIRUI, FENG AILING, et al. Synthesis of fish skin-derived 3 D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance[J]. Carbon,2019,152:827-836. doi: 10.1016/j.carbon.2019.06.080
    [8] . DONG SHUN, TANG WEIKANG, HU PEITAO, et al, Achieving Excellent Electromagnetic Wave Absorption Capabilities by Construction of MnO Nanorods on Porous Carbon Composites Derived from Natural Wood via a Simple Route[J]. ACS Sustainable Chemistry & Engineering , 2019 , 11795–11805.
    [9] XU ZHENGJIAN, HE MAN, ZHOU YUMING et al. Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands[J]. Nano Research,2020,14:738-746.
    [10] ZHANG XIANG, DONG YANYAN, P AN FEI, et al. Electrostatic self-assembly construction of 2 D MoS2 wrapped hollow Fe3O4 nanoflowers@1 D carbon tube hybrids for self-cleaning high-performance microwave absorbers[J]. Carbon,2021,177:332-343. doi: 10.1016/j.carbon.2021.02.092
    [11] 朱莉莉, 康帅, 胡祖明, 等. MXene及其复合吸波材料组成与结构的研究进展[J]. 复合材料学报, 2023, 40(6):1-21. doi: 10.13801/j.cnki.fhclxb.20221014.002

    ZHU LILI, KANG SHUAI, HU ZUMING, et al. Research progress in composition and structure of MXene and its composite wave absorbing materials,[J]. Acta Materiae Compositae Sinica,2023,40(6):1-21(in Chinese). doi: 10.13801/j.cnki.fhclxb.20221014.002
    [12] XIONG JUAN, XIANG ZHEN, DENG BAIWEN, et al. Engineering compositions and hierarchical yolk-shell structures of NiCo/GC/NPC nanocomposites with excellent electromagnetic wave absorption properties[J]. Applied Surface Science,2020,513:145778. doi: 10.1016/j.apsusc.2020.145778
    [13] DONG YANYAN, ZHU XIAOJIE, PAN FEI, et al. Mace-like carbon fiber/ZnO nanorod composite derived from Typha orientalis for lightweight and high-efficient electromagnetic wave absorber[J]. Advanced Composites and Hybrid Materials,2021,4:1002-1014. doi: 10.1007/s42114-021-00277-2
    [14] YAN HAI, DONG YANYAN, CAI LEI, et al. Construction of 1 D biomass-derived tubular carbon fiber/Ni nanoparticles composite for broadband and lightweight microwave absorbers[J]. Carbon,2022,200:317-326. doi: 10.1016/j.carbon.2022.08.072
    [15] . DONG YANYAN, ZHU XIAOJIE, PAN FEI, et al. Fire-retardant and thermal insulating honeycomb-like NiS2/SnS2 nanosheets @ 3 D porous carbon hybrids for high-efficiency electromagnetic wave absorption[J]. Chemical Engineering Journal 2021, 426: 131272.
    [16] WANG LEI, HUANG MENGQIU, QIAN XIANG, et al. Confined Magnetic-Dielectric Balance Boosted Electromagnetic Wave Absorption[J]. Small,2021,17(30):2100970. doi: 10.1002/smll.202100970
    [17] SONG ZHIMING, SUN XIN, LI YA, et al. Carbon Fibers Embedded with Aligned Magnetic Particles for Efficient Electromagnetic Energy Absorption and Conversion[J]. ACS Applied Materials & Interfaces,2021,13(4):5266-5274.
    [18] YANG PINAN, HUANG YUXUAN, LI RUI, et al. Optimization of Fe@Ag core–shell nanowires with improved impedance matching and microwave absorption properties[J]. Chemical Engineering Journal,2021,430:132878.
    [19] LIU ZHIKANG, CHEN JIN, QUE MEIDAN, et al. 2 D Ti3C2T MXene/MOFs composites derived CoNi bimetallic nanoparticles for enhanced microwave absorption[J]. Chemical Engineering Journal,2022,450(4):138442.
    [20] YAN XU, HUANG XIAOXIAO, ZHONG BO, et al. Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials[J]. Chemical Engineering Journal,2019,391:123538.
    [21] XIANG JUN, LI JIALE, ZHANG XIONGHUI, et al. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers[J]. Journal of Materials Chemistry A,2014,2:16905-16914. doi: 10.1039/C4TA03732D
    [22] QIANG RONG, DU YUNCHEN, ZHAO HONGTAO, et al. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption[J]. Journal of Materials Chemistry A,2015,3:13426-13434. doi: 10.1039/C5TA01457C
    [23] HU HAILONG, YIN XIAOWEI, HAN MEIKANG, et al. Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave Absorption[J]. ACS Applied Materials & Interfaces,2017,9(7):6332-6341.
    [24] QIAN XIANG, ZHANG YAHUI, WU ZHENGCHEN, et al. Multi-Path Electron Transfer in 1 D Double-Shelled Sn@Mo2 C/C Tubes with Enhanced Dielectric Loss for Boosting Microwave Absorption Performance[J]. Small,2021,17(30):2100283. doi: 10.1002/smll.202100283
    [25] LUO JIALIANG, HAO GAZI, XIAO LEI, et al. Boosting electromagnetic wave absorption properties via the sulfidation strategy of Fe/Fe3C/N-doped carbon nanorods hybrids[J]. Ceramics International,2022,48(8):11346-11355. doi: 10.1016/j.ceramint.2021.12.358
    [26] LI CUIPING, CHEN GUOBO, JIANG WEITING, et al. High-performance electromagnetic wave absorption of FeNi/N, S-codoped carbon composites in 2–40 GHz[J]. Carbon,2021,174:201-213. doi: 10.1016/j.carbon.2020.12.033
    [27] 叶信立, 张俊雄, 项俊锋, 等. 氧化热处理温度对多孔镍泡沫微观结构及吸波性能的影响[J]. 复合材料学报, 2022, 39(8):3794-3803. doi: 10.13801/j.cnki.fhclxb.20211103.002

    YE XINLI, ZHANG JUNXIONG, XIANG JUNFENG, et al. Effect of oxidation heat treatment temperature on microstructure and microwave absorption properties of porous nickel foam[J]. Acta Materiae Compositae Sinica,2022,39(8):3794-3803(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211103.002
    [28] 曹敏, 邓雨, 希徐康, 等. 新型碳基磁性复合吸波材料的研究进展[J]. 复合材料学报, 2019, 6(10):1900119-3016. doi: 10.13801/j.cnki.fhclxb.20200825.002

    CAO MIN, DENG YU, XI XVKANG, et al. Research progress of new carbon based magnetic composite electromagnetic wave absorbing materials[J]. Acta Materiae Compositae Sinica,2019,6(10):1900119-3016(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200825.002
    [29] TIAN HAOYUAN, QIAO JING, YANG YUNFEI, et al. ZIF-67-derived Co/C embedded boron carbonitride nanotubes for efficient electromagnetic wave absorption[J]. Chemical Engineering Journal,2022,450(1):138011.
    [30] . 杨亚楠, 夏龙, 张昕宇, 等. Fe3O4@锂铝硅微晶玻璃/还原氧化石墨烯复合材料的制备和吸波性能[J]. 复合材料学报 2019, 36 (11): 2651-2664.

    YANG YANAN, XIA LONG, ZHANG XIYU, et. al. Preparation and microwave absorbing properties of Fe304@lithium aluminum silicateglass ceramic/reduced graphene oxide composite[J], Acta Materiae Compositae Sinica, 2019, 36 (11): 2651-2664(in Chinese).
  • 加载中
计量
  • 文章访问数:  53
  • HTML全文浏览量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-16
  • 修回日期:  2023-04-10
  • 录用日期:  2023-04-11
  • 网络出版日期:  2023-05-04

目录

    /

    返回文章
    返回