留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚硅氧烷改性环氧树脂对玻璃纤维/酚醛复合材料高温残余强度的影响

李晨阳 李书欣 冀运东 曹东风 胡海晓 陈震

李晨阳, 李书欣, 冀运东, 等. 聚硅氧烷改性环氧树脂对玻璃纤维/酚醛复合材料高温残余强度的影响[J]. 复合材料学报, 2023, 40(12): 6619-6629. doi: 10.13801/j.cnki.fhclxb.20230301.001
引用本文: 李晨阳, 李书欣, 冀运东, 等. 聚硅氧烷改性环氧树脂对玻璃纤维/酚醛复合材料高温残余强度的影响[J]. 复合材料学报, 2023, 40(12): 6619-6629. doi: 10.13801/j.cnki.fhclxb.20230301.001
LI Chenyang, LI Shuxin, JI Yundong, et al. Effect of polysiloxane modified epoxy on high temperature residual strength of glass fiber/phenolic composites[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6619-6629. doi: 10.13801/j.cnki.fhclxb.20230301.001
Citation: LI Chenyang, LI Shuxin, JI Yundong, et al. Effect of polysiloxane modified epoxy on high temperature residual strength of glass fiber/phenolic composites[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6619-6629. doi: 10.13801/j.cnki.fhclxb.20230301.001

聚硅氧烷改性环氧树脂对玻璃纤维/酚醛复合材料高温残余强度的影响

doi: 10.13801/j.cnki.fhclxb.20230301.001
基金项目: 国家自然科学基金(52273080);先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室)开放基金(XHT2020-002);中央高校基本科研业务费专项资金(WUT2021IVA068;2020Ⅲ028GX;2021III015JC)
详细信息
    通讯作者:

    冀运东,博士,副教授,硕士生导师,研究方向为复合材料阻燃与残余强度 E-mail: jiyundong@whut.edu.cn

  • 中图分类号: TB332

Effect of polysiloxane modified epoxy on high temperature residual strength of glass fiber/phenolic composites

Funds: National Natural Science Foundation of China (52273080); Open Fund for Advanced Energy Science and Technology Guangdong Provincial Laboratory Foshan Branch (Foshan Xianhu Laboratory)(XHT2020-002); Special Funds for Basic Scientific Research Business Expenses of Central Universities (WUT2021IVA068; 2020Ⅲ028GX; 2021III015JC)
  • 摘要: ASTM 3059-18标准将高温残余力学性能纳入树脂基复合材料阻燃指标,突破了复合材料传统化学阻燃概念,标志着结构阻燃概念得到了设计方的重视。本文将自制的聚硅氧烷改性环氧树脂(EP-Si)与酚醛树脂(PF)共混,并辅以无机粉料和玻璃纤维增强体,通过力学性能、热失重(TGA)、锥形量热(CCT)和扫描电镜(SEM)等测试方法,研究了EP-Si和无机粉料对玻璃纤维/酚醛复合材料高温残余强度的影响。实验结果表明:当EP-Si用量为40wt%,复合材料的常温及高温残余弯曲强度分别为384.4 MPa、53.3 MPa,相比PF复合材料提高了78.7%、85.1%;辅以适当比例无机粉料,高温残余弯曲强度最高可达85.1 MPa,相比PF复合材料提升了195.5%。高温处理后含硅PF复合材料厚度膨胀而PF复合材料厚度收缩;含硅PF复合材料的热解残留率更高,表层氧化降解更快,但内层生成CO含量低于PF复合材料;含硅树脂基体的无机热解产物保护了内层树脂和纤维,原位热解无机产物分布更均匀、与无机粉料相容性好及可能存在的共烧结作用进一步隔离了氧气侵入,提高了结构完整性和高温残余强度。

     

  • 图  1  试样升温曲线

    Figure  1.  Heating curve of samples

    图  2  高温处理后环氧树脂(EP)、酚醛树脂(PF)、EP(40)/PF、聚硅氧烷改性环氧树脂(EP-Si)和EP-Si(40)/PF复合材料试样的宏观形貌

    Figure  2.  Macroscopic morphology of epoxy resin (EP), phenolic resin (PF), EP(40)/PF, self-made polysiloxane modified epoxy resin (EP-Si) and EP-Si(40)/PF composite samples after high temperature treatment

    图  3  EP、EP-Si、EP(40)/PF、PF和EP-Si(x)/PF复合材料试样常温及高温残余弯曲强度

    Figure  3.  Flexural strength and high temperature residual flexural strength of EP, EP-Si, EP(40)/PF, PF and EP-Si(x)/PF composite samples

    图  4  PF、EP(40)/PF和EP-Si(40)/PF树脂TGA (a) 和DTG (b) 曲线

    Figure  4.  TGA (a) and DTG (b) curves of PF, EP(40)/PF and EP-Si(40)/PF resin

    图  5  PF和EP-Si(40)/PF复合材料试样锥形量热仪总耗氧量 (a) 和氧含量 (b) 曲线

    Figure  5.  Cone calorimeter total oxygen consumed (a) and oxygen content (b) curves of PF and EP-Si(40)/PF composite samples

    图  6  PF和EP-Si(40)/PF复合材料试样锥形量热仪CO (a) 和CO2 (b) 含量曲线

    Figure  6.  Cone calorimeter CO (a) and CO2 (b) content curves of PF and EP-Si(40)/PF composite samples

    图  7  EP-Si(40)/PF和PF试样热解层和热影响层两相结构模型

    Figure  7.  Two-phase structure model of pyrolysis layer and heat-affected layer of EP-Si(40)/PF and PF samples

    图  8  热处理后复合材料试样断面SEM图像

    Figure  8.  SEM images of composite sample section after heat treatment

    Powder is composed of kaolin, flyash and silica; Mass ratio is 20:10:1

    表  1  EP(40)/PF和EP-Si(x)/PF的命名

    Table  1.   Naming of EP(40)/PF and EP-Si(x)/PF

    Sample Mass ratio of EP
    (Total mass of resin
    matrix is 100)
    Mass ratio of EP-Si
    (Total mass of resin
    matrix is 100)
    EP(40)/PF 40
    EP-Si(10)/PF 10
    EP-Si(20)/PF 20
    EP-Si(30)/PF 30
    EP-Si(40)/PF 40
    EP-Si(50)/PF 50
    下载: 导出CSV

    表  2  粉料成分及含量对复合材料弯曲强度的影响

    Table  2.   Effect of powder composition and content on flexural strength of composite

    Kaolin/wt%Flyash
    /wt%
    Silica
    /wt%
    EP-Si
    /wt%
    PF
    /wt%
    Resin residual rate/%Residual flexural
    strength/MPa
    Flexural
    strength
    /MPa
    0 0 0 0 100 21.8 28.8 215.1
    10 20 0 0 100 30.8 34.4 177.3
    10 20 1 0 100 31.5 37.1 150.0
    10 20 5 0 100 29.7 36.3 120.8
    0 0 0 40 60 23.6 53.3 384.4
    10 20 0 40 60 33.0 74.7 340.3
    10 20 1 40 60 37.0 85.1 330.8
    10 20 5 40 60 36.6 80.6 310.3
    下载: 导出CSV

    表  3  PF、EP(40)/PF和EP-Si(40)/PF树脂热重分析数据

    Table  3.   Thermogravimetric analysis data of PF, EP(40)/PF and EP-Si(40)/PF resin

    AtmosphereSampleT−5%/℃Tmax1/℃Tmax2/℃R800/%
    AirPF297.5623.01.5
    EP(40)/PF244.8410.7591.01.4
    EP-Si(40)/PF277.5412.5633.58.2
    Notes: T−5%—Thermal degradation temperature at 5wt% mass loss; Tmax1 and Tmax2—Maximum thermal degradation temperature in the first and second stage; R800—Pyrolysis residue rate at 800℃.
    下载: 导出CSV

    表  4  EP-Si(40)/PF试样断面热解残留物表面元素原子分数

    Table  4.   Surface element atomic percentages of pyrolysis residue of EP-Si(40)/PF sample cross section

    SampleC/at%O/at%Si/at%
    181.0618.750.19
    272.6926.101.21
    Notes: Sample 1—EP-Si(40)/PF composite at room temperature; Sample 2—EP-Si(40)/PF composite after heat treatment.
    下载: 导出CSV
  • [1] 杨晓光, 贾旭宏, 徐松涛, 等. 酚醛树脂/玻璃纤维型飞机货舱衬板复合材料火灾危险性评价[J]. 消防科学与技术, 2022, 41(3):367-370. doi: 10.3969/j.issn.1009-0029.2022.03.018

    YANG Xiaoguang, JIA Xuhong, XU Songtao, et al. Fire hazard evaluation of phenolic resin/glass fiber aircraft cargo lining composite material[J]. Fire Science and Technology,2022,41(3):367-370(in Chinese). doi: 10.3969/j.issn.1009-0029.2022.03.018
    [2] REN X W, ZHU Y P, WANG F, et al. Flame-retardant properties of polyester fabrics reinforced phenolic resin modified with silazanes composites[J]. Advanced Materials Research,2015,1120-1121(1):519-522.
    [3] AVILA M B, DEMBSEY N A, DORE C. Effect of resin type and glass content on the reaction to fire characteristics of typical FRP composites[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(9): 1503-1511.
    [4] ASTM Committee. Standard spec-ification for fiber-reinforced polymer (FRP) gratings used in marine construction and shipbuilding: ASTM F3059-18[S]. West Conshehoken: ASTM, 2018.
    [5] 华幼卿, 金日光. 高分子物理[M]. 北京: 化学工业出版社, 2013.

    HUA Youqing, JIN Riguang. Polymer physics[M]. Beijing: Chemical Industry Press, 2013(in Chinese).
    [6] ZHANG X P, ZHANG L X, ZHANG D X, et al. Mechanism of the temperature-responsive material regulating porous morphology on epoxy phenolic novolac resin microcapsule surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,593:124581.
    [7] KNOP A, PILATO L A. Phenolic resins: Chemistry, applications and performance[M]. Berlin: Springer Science & Business Media, 2013: 139-147.
    [8] 严侃, 黄朋. 复合材料在海洋工程中的应用[J]. 玻璃钢/复合材料, 2017(12):99-104. doi: 10.3969/j.issn.1003-0999.2017.12.018

    YAN Kan, HUANG Peng. Application of composite materials in marine engineering[J]. Fiber Reinforced Plastics/Composites,2017(12):99-104(in Chinese). doi: 10.3969/j.issn.1003-0999.2017.12.018
    [9] SUTHERLAND L S. A review of impact testing on marine composite materials: Part I-Marine impacts on marine composites[J]. Composite Structures,2018,188:197-208. doi: 10.1016/j.compstruct.2017.12.073
    [10] 石锦坤, 刘辉, 张西伟, 等. 复合材料水下防护结构在海洋油气开发的应用[J]. 复合材料科学与工程, 2021(12):78-81,128. doi: 10.19936/j.cnki.2096-8000.20211228.012

    SHI Jinkun, LIU Hui, ZHANG Xiwei, et al. Application of composite materials protector in the subsea of offshore oil[J]. Composites Science and Engineering,2021(12):78-81,128(in Chinese). doi: 10.19936/j.cnki.2096-8000.20211228.012
    [11] GU P, ASARO R J. Structural buckling of polymer matrix composites due to reduced stiffness from fire damage[J]. Composite Structures,2005,69(1):65-75.
    [12] MOURITZ A P, MATHYS Z. Post-fire mechanical properties of marine polymer composites[J]. Composite Structures,1999,47(1):643-653.
    [13] GARDINER C P, MATHYS Z, MOURITZ A P. Post-fire structural properties of burnt GRP plates[J]. Marine Structures,2004,17(1):53-73. doi: 10.1016/j.marstruc.2004.03.003
    [14] SHI S B, LIANG J, GU L X, et al. Degradation in compres-sive strength of silica/phenolic composites subjected to thermal and mechanical loading[J]. Journal of Reinforced Plastics and Composites,2016,35(7):579-588. doi: 10.1177/0731684415624769
    [15] GIBSON A G, HUMPHREY J K, DI-MODICA P, et al. Post-fire integrity of composite gratings for offshore platforms[J]. Journal of Reinforced Plastics and Compo-sites,2014,33(6):543-555. doi: 10.1177/0731684413495933
    [16] MOURITZ A P, MATHYS Z. Mechanical properties of fire-damaged glass-reinforced phenolic composites[J]. Fire and Materials,2000,24(2):67-75. doi: 10.1002/1099-1018(200003/04)24:2<67::AID-FAM720>3.0.CO;2-0
    [17] RALLINI M, TORRE L, KENNY J M, et al. Effect of boron carbide nanoparticles on the thermal stability of carbon/phenolic composites[J]. Polymer Composites,2017,38(9):1819-1827. doi: 10.1002/pc.23752
    [18] RALLINI M, WU H, NATALI M, et al. Nanostructured phenolic matrices: Effect of different nanofillers on the thermal degradation properties and reaction to fire of a resol[J]. Fire and Materials,2017,41(7):817-825. doi: 10.1002/fam.2425
    [19] NAJAFABADIE P, KHANEGHAHI M H, AMIRI H A, et al. Experimental investigation and probabilistic models for residual mechanical properties of GFRP pultruded profiles exposed to elevated temperatures[J]. Composite Structures,2019,211:610-629. doi: 10.1016/j.compstruct.2018.12.032
    [20] KATSOULIS C, KANDOLA B K, MYLER P, et al. Post-fire flexural performance of epoxy-nanocomposite matrix glass fibre composites containing conventional flame retardants[J]. Composites Part A: Applied Science and Manufacturing,2012,43(8):1389-1399.
    [21] DING J, HUANG Z, LUO H, et al. Preparation and thermal stability of boron-containing phenolic resin/microcrystalline muscovite composites[J]. Materials Research Innovations,2015,19(S8):440-444.
    [22] 刘强, 赵玉, 张兴刚, 等. 船舶与海洋工程用高耐火复合材料格栅研究[J]. 材料开发与应用, 2022, 37(3):45-51.

    LIU Qiang, ZHAO Yu, ZHANG Xinggang, et al. Development of high fire resistant composites grating for ship and ocean engineering[J]. Development and Application of Materials,2022,37(3):45-51(in Chinese).
    [23] 徐博, 丁杰, 王兵, 等. AlB2对高硅氧纤维/可瓷化酚醛树脂复合材料及其裂解产物力学性能的影响[J]. 复合材料学报, 2021, 38(1):129-136.

    XU Bo, DING Jie, WANG Bing, et al. Effects of AlB2 on mechanical properties of high silica fiber/ceramicizable phenolic resin composites and their pyrolysis products[J]. Acta Materiae Compositae Sinica,2021,38(1):129-136(in Chinese).
    [24] 李志强, 江艳艳, 冀运东, 等. 聚硅氧烷改性环氧树脂及其热解残留物研究[J]. 热固性树脂, 2022, 37(4):1-8. doi: 10.13650/j.cnki.rgxsz.2022.04.006

    LI Zhiqiang, JIANG Yanyan, JI Yundong, et al. Study on polysiloxane modified epoxy resin and its pyrolysis residue[J]. Thermosetting Resin,2022,37(4):1-8(in Chinese). doi: 10.13650/j.cnki.rgxsz.2022.04.006
    [25] 文钦, 刘博伟, 冀运东. 端羟基聚二甲基硅氧烷改性环氧树脂研究[J]. 热固性树脂, 2020, 35(1):25-28. doi: 10.13650/j.cnki.rgxsz.2020.01.005

    WEN Qin, LIU Bowei, JI Yundong. Study on the hydroxylterminated polydimethylsiloxane modified epoxy resins[J]. Thermosetting Resin,2020,35(1):25-28(in Chinese). doi: 10.13650/j.cnki.rgxsz.2020.01.005
    [26] 冀运东, 江艳艳, 曹东风, 等. 聚硅氧烷改性环氧/酚醛共混物热氧降解残留物的结构及组分演变[J]. 高分子材料科学与工程, 2022, 38(10):90-97.

    JI Yundong, JIANG Yanyan, CAO Dongfeng, et al. Structure and composition evolution of polysiloxane modified epoxy/phenolic blends under the condition of hot oxygen[J]. Polymer Materials Science and Engineering,2022,38(10):90-97(in Chinese).
    [27] 中国国家标准化管理委员会. 玻璃纤维增强塑料树脂含量试验方法: GB/T 2577—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Test method for resin content of glass fiber reinforced plastics: GB/T 2577—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [28] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites—Determination of flexural properties: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [29] International Organization for Standarization. Reaction-to-fire tests-Heat release, smoke production and mass loss rate-Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement) ISO 5660-1: 2015[S]. Geneva: International Organization for Standarization, 2015.
    [30] PENG Y L, ZENG L. Study on the phenolic-epoxy resin system[J]. Advanced Materials Research,2015,1088:439-443. doi: 10.4028/www.scientific.net/AMR.1088.439
    [31] VORONKOV M G, YUZHELEVSKII Y A, MILESHKEVICH V P. The siloxane bond and its influence on the structure and physical properties of organosilicon compounds[J]. Russian Chemical Reviews,1975,44(4):355-372. doi: 10.1070/RC1975v044n04ABEH002273
    [32] NATALI M, KENNY J M, TORRE L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review[J]. Progress in Materials Science,2016,84:192-275. doi: 10.1016/j.pmatsci.2016.08.003
    [33] LI S, HAN Y, CHEN F H, et al. The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin[J]. Polymer Degradation and Stability,2016,124:68-76. doi: 10.1016/j.polymdegradstab.2015.12.010
    [34] TRICK K A, SALIBA T E. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite[J]. Carbon,1995,33(11):1509-1515. doi: 10.1016/0008-6223(95)00092-R
    [35] QIAN X D, SONG L, HU Y, et al. Thermal degradation and flammability of novel organic/inorganic epoxy hybrids containing organophosphorus-modified oligosiloxane[J]. Thermochimica Acta,2013,552:87-97. doi: 10.1016/j.tca.2012.11.010
    [36] JIA P, LIU H C, LIU Q, et al. Thermal degradation mechanism and flame retardancy of MQ silicone/epoxy resin composites[J]. Polymer Degradation and Stability,2016,134:144-150. doi: 10.1016/j.polymdegradstab.2016.09.029
    [37] MCKEON T. Ablative degradation of a silicone foam[J]. Journal of Macromolecular Science: Part A-Chemistry,1969,3(4):585-612. doi: 10.1080/10601326908053831
    [38] WU C S, LIU Y L, CHIU Y S. Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents[J]. Polymer,2002,43(15):4277-4284. doi: 10.1016/S0032-3861(02)00234-3
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  618
  • HTML全文浏览量:  223
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 修回日期:  2023-02-24
  • 录用日期:  2023-02-25
  • 网络出版日期:  2023-03-01
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回