Dual pH responsive azoxystrobin controlled release microspheres constructed from porous calcium carbonate and its biosecurity
-
摘要: 刺激响应性农药控释系统为提高农药利用效率和减少环境污染提供了强有力的策略。本研究中,在采用共沉淀法制备多孔碳酸钙微球(CaCO3)的基础上,通过浸渍吸附法获得负载嘧菌酯(Az)的多孔碳酸钙微球(Az/CaCO3),并在复合微球表面进一步包覆单宁酸-Cu2+络合物,构建了一个具有双pH响应性的嘧菌酯控释系统(Az/CaCO3@TA-Cu)。理化性能研究表明成功制备了Az/CaCO3@TA-Cu微球,其载药量为16.42%。模拟释放研究结果表明Az/CaCO3@TA-Cu具有良好的pH控释性能,在pH=7的磷酸缓冲溶液中96 h累积释放率为36.99%,而在pH=5和pH=9条件下的累积释放率分别为74.32%和58.79%。菌丝体生长速率实验表明Az/CaCO3@TA-Cu对禾谷镰刀菌生长具有较好的抑制作用,中值抑制浓度为纯Az和Az/CaCO3的6.58倍和3.28倍。此外,小麦发芽率和斑马鱼存活率统计结果显示,Az/CaCO3@TA-Cu相对于Az/CaCO3和纯Az表现出更优的生物安全性。Abstract: Stimuli-responsive pesticide controlled release systems provide a powerful strategy for improving pesticide utilization efficiency and reducing environmental pollution. In this study, based on the preparation of porous calcium carbonate microspheres (CaCO3) by co-precipitation method, porous calcium carbonate microspheres loaded with pyrimethanil (Az) were obtained by impregnation and adsorption method (Az/CaCO3), and the surface of the composite microspheres was further encapsulated with a tannic acid-Cu2+ complex, which constructed a pyrimethanil controlled-release system with dual pH-responsiveness (Az/CaCO3@TA-Cu). Physicochemical performance studies showed successful preparation of Az/CaCO3@TA-Cu microspheres with 16.42% drug loading. The results of simulated release studies showed that Az/CaCO3@TA-Cu had good pH-controlled release properties, with a cumulative release rate of 36.99% in phosphate buffer solution at pH = 7 for 96 h, whereas the cumulative release rates at pH = 5 and pH = 9 were 74.32% and 58.79%, respectively. Mycelial growth rate experiments showed that Az/CaCO3@TA-Cu had a better inhibitory effect on the growth of Fusarium graminearum, with median inhibitory concentrations of 6.58 and 3.28 times that of pure Az and Az/CaCO3. In addition, wheat germination and zebrafish survival statistics showed that Az/CaCO3@TA-Cu exhibited superior biosafety relative to Az/CaCO3 and pure Az.
-
Key words:
- azoxystrobin /
- calcium carbonate /
- tannic acid /
- drug delivery system /
- controlled release
-
表 1 通过拟合几个动力学方程计算Az/CaCO3@TA-Cu释放Az的参数
Table 1. Parameters for Az/CaCO3@TA-Cu release of Az by fitting several kinetic equations
Model pH values k n r2 Zero-order 5 0.555 — 0.618 7 0.448 — 0.572 9 0.294 — 0.740 First-order 5 0.159 — 0.895 7 0.130 — 0.813 9 0.155 — 0.963 Higuchi 5 6.570 — 0.851 7 3.237 — 0.921 9 5.397 — 0.820 Ritger-Peppas 5 28.416 0.226 0.978 7 11.815 0.259 0.991 9 21.980 0.235 0.951 Notes: k is the release rate constant; n is the release characteristic index; r 2 is the regression coefficient. 表 2 禾谷镰刀菌病原菌抗真菌活性测试结果
Table 2. Results of antifungal activity test of Fusarium graminearum pathogens
Day 3 Sample Toxicity regression equation EC50 /
(mg·L−1)Standard error R2 Pure Az y=0.339x-0.4266 18.19 0.140 0.9696 Az/CaCO3 y=0.394x-0.3035 5.77 0.138 0.9592 Az/CaCO3@TA-Cu y=0.475x-0.1310 1.88 0.136 0.9776 Day 4 Sample Toxicity regression equation EC50/
(mg·L−1)Standard error R2 Pure Az y=0.468x-0.4708 11.41 0.145 0.9040 Az/CaCO3 y=0.439x-0.3869 7.87 0.141 0.9608 Az/CaCO3@TA-Cu y=0.526x-0.2334 2.79 0.140 0.9042 Day 5 Sample Toxicity regression equation EC50/
(mg·L−1)Standard error R2 Pure Az y=0.447x-0.6147 18.40 0.150 0.9648 Az/CaCO3 y=0.556x-0.4176 5.61 0.145 0.9977 Az/CaCO3@TA-Cu y=0.558x-0.245 2.80 0.140 0.9361 Notes: EC50 is median effect concentration; R2 is the regression coefficient. -
[1] WANG G, XIAO Y, XU H, et al. Development of Multifunctional Avermectin Poly(succinimide) Nanoparticles to Improve Bioactivity and Transportation in Rice[J]. Journal of Agricultural and Food Chemistry, 2018, 66(43): 11244-11253. doi: 10.1021/acs.jafc.8b03295 [2] HUANG G, DENG Y, ZHANG Y, et al. Study on long-term pest control and stability of double-layer pesticide carrier in indoor and outdoor environment[J]. Chemical Engineering Journal, 2021, 403: 126342. doi: 10.1016/j.cej.2020.126342 [3] ZHOU Y, WU J, ZHOU J, et al. pH-responsive release and washout resistance of chitosan-based nano-pesticides for sustainable control of plumeria rust[J]. International Journal of Biological Macromolecules, 2022, 222: 188-197. doi: 10.1016/j.ijbiomac.2022.09.144 [4] WAN M, ZHAO Y, LI H, et al. pH and NIR responsive polydopamine-doped dendritic silica carriers for pesticide delivery[J]. Journal of Colloid and Interface Science, 2023, 632: 19-34. doi: 10.1016/j.jcis.2022.11.009 [5] LIU T, LUO J, LIU S, et al. Clothianidin loaded TA/Fe (III) controlled-release granules: improve pesticide bioavailability and alleviate oxidative stress[J]. Journal of Hazardous Materials, 2021, 416: 125861. doi: 10.1016/j.jhazmat.2021.125861 [6] FENG P, CHEN J, FAN C, et al. An eco-friendly MIL-101@CMCS double-coated dinotefuran for long-acting active release and sustainable pest control[J]. Journal of Cleaner Production, 2020, 265: 121851. doi: 10.1016/j.jclepro.2020.121851 [7] MEI M, BAI B, ZHENG D, et al. Application of the photothermal-responsive gelatin-based microspheres for controlled release of imidacloprid by helix-coil structural transition mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652: 129792. doi: 10.1016/j.colsurfa.2022.129792 [8] XU C, SHAN Y, BILAL M, et al. Copper ions chelated mesoporous silica nanoparticles via dopamine chemistry for controlled pesticide release regulated by coordination bonding[J]. Chemical Engineering Journal, 2020, 395: 125093. doi: 10.1016/j.cej.2020.125093 [9] MA Y, LI L, ZHAO R, et al. Nanoencapsulation-based fabrication of eco-friendly pH-responsive pyraclostrobin formulations with enhanced photostability and adhesion to leaves[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109688. doi: 10.1016/j.jece.2023.109688 [10] GAO Z, PANG L, FENG H, et al. Preparation and characterization of a novel imidacloprid microcapsule via coating of polydopamine and polyurea[J]. RSC Advances, 2017, 7(26): 15762-15768. doi: 10.1039/C7RA01527E [11] WU L, PAN H, HUANG W, et al. Self-assembled degradable iron-doped mesoporous silica nanoparticles for the smart delivery of prochloraz to improve plant protection and reduce environmental impact[J]. Environmental Technology & Innovation, 2022, 28: 102890. [12] SUN L, HOU C, WEI N, et al. pH/cellulase dual environmentally responsive nano-metal organic frameworks for targeted delivery of pesticides and improved biosafety[J]. Chemical Engineering Journal, 2023, 478: 147294. doi: 10.1016/j.cej.2023.147294 [13] WU C, LOU X, XU X, et al. Thermodynamics and Kinetics of Pretilachlor Adsorption on Organobentonites for Controlled Release[J]. ACS Omega, 2020, 5(8): 4191-4199. doi: 10.1021/acsomega.9b04025 [14] CHEN H, ZHAN J, MAN L, et al. High foliar retention tannic acid/Fe3+ functionalized Ti-pillared montmorillonite pesticide formulation with pH-responsibility and high UV stability[J]. Applied Surface Science, 2023, 620: 156838. doi: 10.1016/j.apsusc.2023.156838 [15] ZHAO M, LI P, ZHOU H, et al. pH/redox dual responsive from natural polymer-based nanoparticles for on-demand delivery of pesticides[J]. Chemical Engineering Journal, 2022, 435: 134861. doi: 10.1016/j.cej.2022.134861 [16] XIANG Y, HAN J, ZHANG G, et al. Efficient Synthesis of Starch-Regulated Porous Calcium Carbonate Microspheres as a Carrier for Slow-Release Herbicide[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3649-3658. [17] XIAO D, CHENG J, LIANG W, et al. Metal-phenolic coated and prochloraz-loaded calcium carbonate carriers with pH responsiveness for environmentally-safe fungicide delivery[J]. Chemical Engineering Journal, 2021, 418: 129274. doi: 10.1016/j.cej.2021.129274 [18] ZHOU Z, GAO Y, TANG G, et al. Facile preparation of pH/pectinase responsive microcapsules based on CaCO3 using fungicidal ionic liquid as a nucleating agent for sustainable plant disease management[J]. Chemical Engineering Journal, 2022, 446: 137073. doi: 10.1016/j.cej.2022.137073 [19] XU D, JIN T, SONG L, et al. Synthesis of stable calcium carbonate nanoparticles for pH-responsive controlled drug release[J]. Materials Letters, 2023, 333: 133635. doi: 10.1016/j.matlet.2022.133635 [20] YU M, SUN C, XUE Y, et al. Tannic acid-based nanopesticides coating with highly improved foliage adhesion to enhance foliar retention[J]. RSC Advances, 2019, 9(46): 27096-27104. doi: 10.1039/C9RA05843E [21] LI L, CEN J, HUANG L, et al. Fabrication of a dual pH-responsive and photothermal microcapsule pesticide delivery system for controlled release of pesticides[J]. Pest Management Science, 2023, 79(3): 969-979. doi: 10.1002/ps.7265 [22] LIANG Y, WANG S, JIA H, et al. Pectin functionalized metal-organic frameworks as dual-stimuli-responsive carriers to improve the pesticide targeting and reduce environmental risks[J]. Colloids and Surfaces B: Biointerfaces, 2022, 219: 112796. doi: 10.1016/j.colsurfb.2022.112796 [23] XIANG Y, LI J, WANG K, et al. Tannic acid-iron(III) complex functionalized porous calcium carbonate as pesticide carrier for pH-controlled release[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110124. doi: 10.1016/j.jece.2023.110124 [24] ZHANG X, HE Y, YUAN Z, et al. A pH- and enzymatic-responsive nanopesticide to control pea aphids and reduce toxicity for earthworms[J]. Science of The Total Environment, 2023, 861: 160610. doi: 10.1016/j.scitotenv.2022.160610 [25] GAO Y, LIU Y, QIN X, et al. Dual stimuli-responsive fungicide carrier based on hollow mesoporous silica/hydroxypropyl cellulose hybrid nanoparticles[J]. Journal of Hazardous Materials, 2021, 414: 125513. doi: 10.1016/j.jhazmat.2021.125513 [26] DIONISIO G, GAUTAM M and FOMSGAARD I S. Identification of Azoxystrobin Glutathione Conjugate Metabolites in Maize Roots by LC-MS[J]. Molecules, 2019, 24(13): 2473. doi: 10.3390/molecules24132473 [27] LU C, HOU K, ZHOU T, et al. Characterization of the responses of soil micro-organisms to azoxystrobin and the residue dynamics of azoxystrobin in wheat–corn rotation fields over two years[J]. Chemosphere, 2023, 318: 137918. doi: 10.1016/j.chemosphere.2023.137918 [28] SILVA T S, DA FONSECA L F, YAMADA J K, et al. Flutriafol and azoxystrobin: An efficient combination to control fungal leaf diseases in corn crops[J]. Crop Protection, 2021, 140: 105394. doi: 10.1016/j.cropro.2020.105394
计量
- 文章访问数: 45
- HTML全文浏览量: 43
- 被引次数: 0