留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纳米纤维素/多壁碳纳米管气凝胶和泡沫镍构筑的三维复合材料及其电容性能

王韵 胡少恒 邓阿申 刘宇杰 夏燎原

王韵, 胡少恒, 邓阿申, 等. 基于纳米纤维素/多壁碳纳米管气凝胶和泡沫镍构筑的三维复合材料及其电容性能[J]. 复合材料学报, 2023, 41(0): 1-9
引用本文: 王韵, 胡少恒, 邓阿申, 等. 基于纳米纤维素/多壁碳纳米管气凝胶和泡沫镍构筑的三维复合材料及其电容性能[J]. 复合材料学报, 2023, 41(0): 1-9
Yun WANG, Shaoheng HU, Ashen DENG, Yujie LIU, Liaoyuan XIA. Three-dimensional hybrid material constructed by cellulose nanofibers/ multiwall carbon nanotubes aerogel and foam nickel and its electrochemical capacitance performance[J]. Acta Materiae Compositae Sinica.
Citation: Yun WANG, Shaoheng HU, Ashen DENG, Yujie LIU, Liaoyuan XIA. Three-dimensional hybrid material constructed by cellulose nanofibers/ multiwall carbon nanotubes aerogel and foam nickel and its electrochemical capacitance performance[J]. Acta Materiae Compositae Sinica.

基于纳米纤维素/多壁碳纳米管气凝胶和泡沫镍构筑的三维复合材料及其电容性能

基金项目: 国家自然科学基金 (31530009);湖南省自然科学基金 (2021 JJ30042); 湖南省教育厅科学研究项目 (20 A508)
详细信息
    通讯作者:

    夏燎原,博士,教授,硕士生导师,研究方向为生物质储能材料、电催化、阻燃材料, E-mail: xly1516@126.com

  • 中图分类号: TB333

Three-dimensional hybrid material constructed by cellulose nanofibers/ multiwall carbon nanotubes aerogel and foam nickel and its electrochemical capacitance performance

Funds: National Natural Science Foundation of China (No. (31530009); Hunan Provincial Natural Science Foundation of China (No. 2021 JJ30042); Scientific Research Fund of Hunan Provincial Education Department (No.20 A508)
  • 摘要: 纳米纤维素(CNF)和多壁碳纳米管(MWCNT)因其独特的一维纳米结构和物理特性而广泛应用于柔性电极材料的开发与设计。然而,CNF虽具有高的比表面积以及良好的柔性,却不具备导电性;MWCNT虽具有良好的导电性,却容易团聚、且容量偏低。因而,如何合理设计并利用CNF和MWCNT的固有特性和优势来构筑高性能的电极依然是一个巨大的挑战。本文采用“自下而上”的策略,以CNF-MWCNT冷冻干燥过程中自聚集形成的气凝胶薄片为填充物,镍泡沫(NF)的网状结构为骨架,巧妙构筑了一种具有独特“薄片填充-骨架支撑”结构的三维杂化材料(命名为MCN)。受益于NF三维骨架优异的导电性和增强作用以及CNF/ MWCNT气凝胶薄片高的比表面积,以MCN为负载电活性物质聚吡咯(PPy)的平台,通过优化电沉积时间制备的PPy-MCN自支撑电极具有优异的电化学特性。与设想的一样,在5 mA cm-2的电流密度下该电极的面积比容量高达2217.8 mF cm-2(=869.9 F g-1),经过3000次循环后依然具有90.2%的高容量保持率。基于气凝胶片填充和泡沫镍骨架支撑“自下而上”构筑的三维杂化电极材料

     

  • 图  1  基于MWCNT/CNF气凝胶薄片和NF骨架构筑的3-D杂化电极材料示意图

    Figure  1.  3-D hybrid electrode materials schematic diagram based on MWCNT/CNF aerogel sheets and NF skeleton

    CNF—cellulose nanofibers; MWCNT—multiwall carbon nanotubes; NF—nickel foam

    图  2  PPy-MCN电极C 1s (a)和N 1s (b)的XPS谱图以及选区SEM和相应的C、N元素EDS分布图(c)

    Figure  2.  The XPS spectra of C 1s (a) and N 1s (b) on PPy-MCN electrode, the selected area SEM and the corresponding distribution of C and N EDS (c)

    图  3  不同样品的SEM图片:(a, b) NF, (c, d) MCN平台, (e, f) PPy-NF和(g, h) PPy-MCN;(i, j) MWCNT电沉积PPy后的TEM图片;(k) 大范围制备的MCN;(l) 裁成条状的PPy-MCN电极的柔性演示

    Figure  3.  SEM images of different samples: (a, b) NF, (c, d) MCN platform, (e, f) PPy-NF and (g, h) PPy-MCN; (i, j) TEM images of MWCNT after electrodeposited PPy; (k) Photo of MCN prepared by large scale; (l) Flexibility demonstration of PPy-MCN electrodes

    图  4  MCN在(a)5~100 mV·s−1扫描速度下的CV曲线图,(b)1~40 mA·cm−2电流密度下的充放电曲线图,(c)交流阻抗谱图

    Figure  4.  (a) CV curve of MCN at 5~100 mV·s−1 scanning speed, (b) charge-discharge curve at 1~40 mA·cm−2 current density, (c) Nyquist plots of MCN

    图  5  不同电沉积时间的PPy-MCN电极在(a)100 mV·s−1扫速下收集的CV曲线, (b) 5 mA·cm−2的恒电流充放电CP曲线, (c) PPy负载量和面积比电容与电沉积时间的函数关系,(d) 面积比容量与电流密度的关系,(e) 质量比容量与电流密度的关系和(f) Nyquist阻抗谱图

    Figure  5.  CV curve collected at (a)100 mV·s−1 sweep speed, CP curve of (b)5 mA·cm−2 constant current charge-discharge, (c) functional relationship between PPy load and area specific capacitance and electrodeposition time at different electrodeposition time, (d) area specific capacity versus current density, (e) mass specific capacity versus current density, and (f) Nyquist impedance spectrum

    图  6  不同电极在(a)100 mV·s−1扫速下收集的CV曲线, (b) 5 mA·cm−2的恒电流充放电CP曲线, (c)面积比电容和容量保持率与电流密度的函数关系,(d) PPy-MCN电极在10 mA·cm−2电流密度下的循环稳定性

    Figure  6.  CV curves collected at (a)100 mV·s−1 sweep speed, CP curves of (b) 5 mA·cm−2 constant current charge-discharge, (c) the functional relationship between area specific capacitance and capacity retention and current density, and (d) the cyclic stability of PPy-MCN electrode at 10 mA·cm−2

  • [1] HE J Q, LU C H, JIANG H B. et al. Scalable production of high-performing woven lithium-ion fibre batteries[J]. Nature,2021,597:57-63. doi: 10.1038/s41586-021-03772-0
    [2] WANG X N, ZHOU Z Y, SUN Z J, et al. Atomic Modulation of 3 D Conductive Frameworks Boost Performance of MnO2 for Coaxial Fiber-Shaped Supercapacitor[J]. Nano-Micro Letters,2021,13(1):4-12. doi: 10.1007/s40820-020-00529-8
    [3] LV J, JEERAPAN I, TEHRANI F, et al. Sweat-based wearable energy harvesting-storage hybrid textile devices[J]. Energy Environment Science,2018,11:3431-3442. doi: 10.1039/C8EE02792G
    [4] 张文枭, 左杏薇, 曲丽君, 等. 基于导电纤维的柔性电子器件研究进展[J]. 复合材料学报, 2022, 40(0):1-22.

    ZHANG W X, ZUO X W, QU L J, et al. Research progress of flexible electronic devices based on conductive fibers[J]. Acta Materiae Compositae Sinica,2022,40(0):1-22(in Chinese).
    [5] 聂文琪, 孙江东, 许帅, 等. 纺织基超级电容器研究进展[J]. 复合材料学报, 2022, 39(3):981-992.

    NIE W Q, SUN J D, XU S, et al. Textile-based for supercapacitors: A review[J]. Acta Materiae Compositae Sinica,2022,39(3):981-992(in Chinese).
    [6] BALAMURUGAN J, NGUYEN T T, ARAVINDAN V, et al. Flexible solid-state asymmetric supercapacitors based on nitrogen-doped graphene encapsulated ternary metal-nitrides with ultralong cycle life[J]. Advanced Functional Materials,2018,28(44):1804663. doi: 10.1002/adfm.201804663
    [7] 刘馨月, 齐晓俊, 管宇鹏, 徐阳, 刘红霞. 纤维素纳米纤丝-还原氧化石墨烯/聚苯胺气凝胶柔性电极复合材料的制备与性能[J]. 复合材料学报, 2019, 36(7):1583-1590.

    LIU X Y, QI X J, GUAN Y P, et al. Preparation and properties of cellulose nanofiber-reduced graphene oxide/polyaniline composite aerogels as flexible electrodes[J]. Acta Materiae Compositae Sinica,2019,36(7):1583-1590(in Chinese).
    [8] 赵文誉, 王振祥, 郑玉婴, 等. NiS2/三维多孔石墨烯复合材料作为超级电容器电极材料的电化学性能[J]. 复合材料学报, 2020, 37(2):422-431.

    ZHAO W Y, WANG Z X, ZHENG Y Y, et al. Electrochemical performance of NiS2/3 D porous reduce graphene oxide composite as electrode material for supercapacitors[J]. Acta Materiae Compositae Sinica,2020,37(2):422-431(in Chinese).
    [9] DUBAL, D P, CHODANKAR, N R, KIM, D H, et al. Towards flexible solid-state supercapacitors for smart and wearable electronics[J]. Chemical Society Reviews,2018,47(6):2065-2129. doi: 10.1039/C7CS00505A
    [10] 韩景泉, 王思伟, 岳一莹, 等. 静电纺定向纳米纤维素-碳纳米管/聚乙烯醇复合纤维导电膜及性能[J]. 复合材料学报, 2018, 35(9):2351-2361.

    HAN J Q, WANG S W, YUE Y Y, et al. Preparation and characterization of cellulose nanocrystal-carbon nanotube/polyvinyl alcohol composite conductive membranes with oriented fibers by electrospinning[J]. Acta Materiae Compositae Sinica,2018,35(9):2351-2361(in Chinese).
    [11] LI D L, GONG Y N, WANG M S, et al. Preparation of sandwich-like NiCo2O4/rGO/NiO heterostructure on nickel foam for high-performance supercapacitor electrodes[J]. Nano-Micro Letters,2017,9(2):1-9.
    [12] 董丽攀, 李政, 王福迎, 等. 细菌纤维素@聚吡咯-单壁碳纳米管导电膜的制备与表征[J]. 复合材料学报, 2019, 36(3):723-729.

    DONG L P, LI Z, WANG F Y, et al. Preparation and characterization of bacterial cellulose@polypyrrole-single wall carbon nanotube conductive films[J]. Acta Materiae Compositae Sinica,2019,36(3):723-729(in Chinese).
    [13] 顾升, 王雪, 徐国祺. 基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料[J]. 复合材料学报, 2020, 37(9):2105-2116.

    GU S, WANG X, XU G Q. Construction of nanocellulose-carboxylated carbon nanotube-graphite/polypyrrole flexible electrode composite based on interface interaction[J]. Acta Materiae Compositae Sinica,2020,37(9):2105-2116(in Chinese).
    [14] XIA L Y, LI X L, WU Y Q, et al. Electrodes derived from carbon fiber-reinforced cellulose nanofiber/multiwalled carbon nanotube hybrid aerogels for high-energy flexible asymmetric supercapacitors[J]. Chemical Engineering Journal,2020,379:122325-122334. doi: 10.1016/j.cej.2019.122325
    [15] CHEN W M, ZHANG D T, YANG K, et al. Mxene (Ti3C2Tx) /cellulose nanofiber/porous carbon film as free-standing electrode for ultrathin and flexible supercapacitors[J]. Chemical Engineering Journal,2021,413:127524. doi: 10.1016/j.cej.2020.127524
    [16] ZHANG X Q, HUANG L, QING Y, et al. Fabrication of Robust, Highly Conductive, and Elastic Hybrid Carbon Foam Platform for High-Performance Compressible Asymmetry Supercapacitors[J]. ACS Omega,2021,6:14230-14241. doi: 10.1021/acsomega.1c00952
    [17] ZHOU S Y, KONG X Y, ZHENG B, et al. Cellulose Nanofiber@Conductive Metal-Organic Frame-works for High-Performance Flexible Super-capacitors[J]. ACS Nano,2021,13(8):9578-9586.
    [18] LIU H Y, XU T, CAI C Y, et al. Multifunctional Superelastic, Superhydrophilic, and Ultralight Nanocellulose-Based Composite Carbon Aerogels for Compressive Supercapacitor and Strain Sensor[J]. Advanced Functional Materials,2022:2113082. doi: 10.1002/adfm.202113082
    [19] TIAN W Q, VAHID M A, REID M S, et al. Multifunctional Nanocomposites with High Strength and Capacitance Using 2 D MXene and 1 D Nanocellulose[J]. Advanced Materials,2019,41:1970290.
    [20] QING Y, SABO R, ZHU J Y, et al. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches[J]. Carbohydrate polymers,2013,97:226-234. doi: 10.1016/j.carbpol.2013.04.086
    [21] Zhu M, Huang Y, Deng Q, et al. Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with Mxene[J]. Advanced Energy Materials,2016,6:1600969. doi: 10.1002/aenm.201600969
    [22] FARD L A, OJANI R, RAOOF J B, et al. PdCo porous nanostructures decorated on polypyrrole @ MWCNTs conductive nanocomposite-Modified glassy carbon electrode as a powerful catalyst for ethanol electrooxidation, Applied Surface Science, 2017, 401: 40-48.
  • 加载中
计量
  • 文章访问数:  99
  • HTML全文浏览量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2022-11-29
  • 录用日期:  2022-12-02
  • 网络出版日期:  2023-01-07

目录

    /

    返回文章
    返回