留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC复合吸波材料的研究进展

邢原铭 杨涛 王恩会 刘成 侯新梅

邢原铭, 杨涛, 王恩会, 等. SiC复合吸波材料的研究进展[J]. 复合材料学报, 2023, 40(9): 4880-4892. doi: 10.13801/j.cnki.fhclxb.20230428.001
引用本文: 邢原铭, 杨涛, 王恩会, 等. SiC复合吸波材料的研究进展[J]. 复合材料学报, 2023, 40(9): 4880-4892. doi: 10.13801/j.cnki.fhclxb.20230428.001
XING Yuanming, YANG Tao, WANG Enhui, et al. Research progress of SiC composite microwave absorbing materials[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4880-4892. doi: 10.13801/j.cnki.fhclxb.20230428.001
Citation: XING Yuanming, YANG Tao, WANG Enhui, et al. Research progress of SiC composite microwave absorbing materials[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4880-4892. doi: 10.13801/j.cnki.fhclxb.20230428.001

SiC复合吸波材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20230428.001
基金项目: 国家杰出青年科学基金(52025041);国家自然科学基金(51902020;51974021;52250091)
详细信息
    通讯作者:

    杨涛,博士,特聘教授,博士生导师,研究方向为冶金电化学与无机非金属材料的功能化 E-mail: yangtaoustb@ustb.edu.cn

  • 中图分类号: TB332;TB34

Research progress of SiC composite microwave absorbing materials

Funds: National Science Foundation for Distinguished Young Scholars (52025041); National Natural Science Foundation of China (51902020; 51974021; 52250091)
  • 摘要:   目的  吸波材料作为防雷达探测、电磁干扰和电磁污染的有效屏障得到了快速的发展。SiC是一种应用广泛的吸波材料,其具有一定的介电性能和出众的稳定性、耐腐蚀性,但也存在阻抗匹配不佳等缺点。构建SiC基复合吸波材料是提高其吸波性能的重要方法。本文综述了SiC的吸波性能和SiC基复合吸波材料的研究进展,并展望了SiC基复合吸波材料的发展方向。  方法  对SiC及其复合吸波材料的制备与性能进行归纳总结:(1)SiC的吸波性能和提高吸波性能的方法。SiC吸波材料主要依赖于介电损耗,内部缺陷、界面和表面、厚度和温度等因素会影响SiC的吸波性能。为克服SiC材料阻抗匹配不佳、损耗机制单一等不足,常用的方法有:掺杂改性和制备SiC复合材料。(2)SiC复合材料的制备策略:零维SiC纳米颗粒、一维SiC纳米线、三维结构SiC材料分别与导电材料、介电材料和磁性材料相复合,以提高SiC基材料的介电性能、丰富吸收机制、优化阻抗匹配,进而提高吸波性能。  结果  SiC的吸波性能主要来自于介电弛豫损耗,并受到内部缺陷、界面和表面、厚度和温度的影响:SiC内部缺陷作为极化中心引起极化弛豫,提高介电常数;SiC的比表面积增大,会增加偶极极化和界面极化,促进多次反射;吸收体厚度为1/4波长的奇数倍时会产生干涉而衰减电磁波;温度的升高会降低SiC电阻率,进而提高其对电磁波吸收率。为提高SiC的吸波性能,可采用掺杂改性和制备SiC复合材料的  方法  对SiC的掺杂改性可以调控载流子浓度、提高介电性能;SiC复合吸波材料可以调节电磁参数、优化阻抗匹配、丰富损耗机制,提高吸收强度。不同维度的SiC用于吸波材料的优势有:SiC纳米颗粒抗氧化性能更好,更耐高温,纳米颗粒有效改善了SiC的电磁特性且制备方法较为成熟;SiC纳米线具有一维结构,比表面积较大,易于形成三维导电网络,具有较高的介电性能;三维SiC材料可通过不同的实验方法制备,多孔网络结构对电磁波产生反射、散射、干涉作用引起衰减。按照损耗类型分类,SiC复合材料主要分为三类:SiC与导电材料复合、SiC与介电材料复合、SiC与磁性材料复合。①导电材料以碳材料为代表,具有导电性高、密度小、稳定性好、易于调控的优势。导电材料与SiC相复合,促进了异质界面的形成,引入了导电路径,可以丰富损耗机制,优化阻抗匹配。②介电材料包括各种陶瓷材料,大多具有较高的力学性能和耐腐蚀性能。介电材料与SiC相复合,可以调控材料的介电性能,进一步提高介电损耗,并有在高温下服役的潜力。③磁性材料包括金属微粉和金属氧化物等,通过涡流损耗和自然共振等方式进行磁损耗,有些磁性材料也同时具备介电损耗,具有很高的吸波特性。磁性材料与SiC相复合,可以丰富损耗机制,提高吸波性能。  结论  本文综述了SiC复合吸波材料的最新研究进展:介绍了SiC的结构、吸波机理和影响因素,并根据SiC材料维度和损耗机理对复合材料进行分类总结和分析。最后对SiC基复合吸波材料的发展前景进行了展望,这为SiC基复合吸波材料的研究提供参考。

     

  • 图  1  ((a),(b)) SiC原子结构;((c)~(e)) 常见的SiC结构示意图[9]

    Figure  1.  ((a),(b)) Atomic structure of SiC; ((c)-(e)) Schematic diagram of common SiC structure[9]

    图  2  吸波材料的基本机制

    Figure  2.  Basic mechanism of absorbing materials

    图  3  纳米SiC@C复合粒子的TEM图像 (a) 和高倍率TEM图像 (b)[25]

    Figure  3.  TEM images (a) and high magnification TEM images (b) of SiC@C composite nanoparticles[25]

    dSiC(101)—Lattice stripe spacings correspond to the SiC (101) planes

    图  4  退火温度为1650℃ (a) 和1800℃ (b) 时,匹配厚度为2或1.5~4 mm的范围内,退火态硅硼碳氮(SiBCN)的吸波性能和反射系数(RC)[27];(c) 匹配厚度为3 mm的SiOC和n-SiC/SiOC的吸收系数[29]

    Figure  4.  Reflection coefficient (RC) of the as-annealed siliconboron carbonitride (SiBCN) at 1650℃ (a) and 1800℃ (b) as a function of frequency at a matching thickness range of 2 or 1.5-4 mm[27]; (c) Absorption coefficients of SiOC and n-SiC/SiOC with a matching thickness of 3 mm[29]

    图  5  Fe3O4/氧化还原石墨烯(rGO)复合材料 (a) 与SiC/Fe3O4/rGO复合材料 (b) 吸波性能的对比[30]

    Figure  5.  Comparison of absorbing properties of Fe3O4/reduced graphene oxide (rGO) (a) and SiC/Fe3O4/rGO (b)[30]

    图  6  (a) 单个竹节状SiC纳米线TEM图像;(b) 竹节处对应的HRTEM图像;(c) 匹配厚度为2.0 mm和2.5 mm时材料的反射损耗(RL)值[33]

    Figure  6.  (a) TEM images of a single nanowire; (b) HRTEM image of bamboo joint region; (c) Reflection loss (RL) values of nanowires-paraffin composite with the matching thickness of 2.0 mm and 2.5 mm[33]

    图  7  SiC纳米线低放大TEM图像 (a)、高放大TEM图像( b);(c)为图(b)中划出区域的HRTEM图像;((d), (e)) 对应(c)中含缺陷1和无缺陷2区的FFT衍射图[37]; SiC 纳米线(NWs) (f) 和SiC@石墨烯 (g) 的SEM图像、SiC NWs (h) 和SiC@石墨烯 (i) 的TEM图像(插图为相应的HRTEM图像);(j) 不同厚度SiC@石墨烯的RL值[42]

    Figure  7.  SiC nanowires low-magnified TEM image (a), high-magnified TEM image (b) showing high-density stacking faults and micro-twins within nanowires; (c) HRTEM image recorded from the white square area in Fig.(b); ((d), (e)) Corresponding the FFT diffraction patterns obtained from defect-containing (1) and defect-free (2) regions in (c), respectively[37]; SEM images of nanowires (NWs) (f) and SiC@graphene (g); TEM images of SiC NWs (h) and SiC@graphene (i) (insets are corresponding HRTEM images); (j) RL values of SiC@graphene with various thicknesses[42]

    TB—Twin boundaries; SF—Stacking faults; VG—Vertically oriented graphene; NW—Nanowire

    图  8  (a) SiC纳米线上珠状SiO2的SEM图像[45];(b) SiC/SiO2核壳纳米线结构和吸波机制图[48]

    Figure  8.  (a) SEM image of beaded SiO2 on SiC nanowires[45]; (b) Structure and wave absorption schematic diagram of SiC/SiO2 core-shell nanowires[48]

    图  9  ((a), (b)) 包埋法制备的BC/SiC复合材料的SEM图像[54];(c) 经1300℃、1400℃、 1500℃热处理的3种样品(S-1300、S-1400、S-1500)的RL三维表征[55]

    Figure  9.  ((a), (b)) SEM images of BC/SiC composites by investing method; (c) Three-dimensional presentations of RL of 3 kinds of samples were heat treated at 1300℃, 1400℃ and 1500℃ (S-1300, S-1400, S-1500)[55]

    图  10  两种不同组分气凝胶的微观结构:(a) SiC/Si3N4复合气凝胶[64];(b) SiC/C复合气凝胶[65]

    Figure  10.  Microstructure of two aerogels with different components: (a) SiC/Si3N4 composite aerogels[64]; (b) SiC/C composite aerogel[65]

  • [1] REPACHOLI M H. Low-level exposure to radiofrequency electromagnetic fields: Health effects and research needs[J]. Bioelectromagnetics,1998,19(1):1-19. doi: 10.1002/(SICI)1521-186X(1998)19:1<1::AID-BEM1>3.0.CO;2-5
    [2] 张卫东, 冯小云, 孟秀兰. 国外隐身材料研究进展[J]. 宇航材料工艺, 2000(3):1-4, 10. doi: 10.3969/j.issn.1007-2330.2000.03.001

    ZHANG Weidong, FENG Xiaoyun, MENG Xiulan. Status and development of foreign study on new stealthy materials[J]. Aerospace Materials & Technology,2000(3):1-4, 10(in Chinese). doi: 10.3969/j.issn.1007-2330.2000.03.001
    [3] BALAJI ANANTH P, ABHIRAM N, HARI KRISHNA K, et al. Synthesis of radar absorption material for stealth application[J]. Materials Today: Proceedings,2021,47:4872-4878. doi: 10.1016/j.matpr.2021.06.196
    [4] GUAN H, LIU S, DUAN Y, et al. Investigation of the electromagnetic characteristics of cement based composites filled with EPS[J]. Cement and Concrete Composites,2007,29(1):49-54. doi: 10.1016/j.cemconcomp.2006.08.001
    [5] LIU L, DUAN Y, MA L, et al. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black[J]. Applied Surface Science,2010,257(3):842-846. doi: 10.1016/j.apsusc.2010.07.078
    [6] 王志江, 梁彩云. 堆垛层错对SiC纳米线吸波性能的影响机制[C]//中国国际复合材料科技大会. 杭州: 中国复合材料学会, 2017: 481-488.

    WANG Z J, LIANG C Y. Influence mechanism of stacking faults on microwave absorbing properties of SiC nanowires[C]//China International Congress on Compo-site Materials. Hangzhou: Chinese Society of Composite Materials, 2017: 481-488(in Chinese).
    [7] 米越姗, 陈旸, 郑占申. 氮改性多结构SiC吸波材料的研究[J]. 中国陶瓷, 2020, 56(9):24-30. doi: 10.16521/j.cnki.issn.1001-9642.2020.09.005

    MI Y S, CHEN Y, ZHENG Z S. Research on N-modified SiC absorbing materials with multiple structures[J]. China Ceramics,2020,56(9):24-30(in Chinese). doi: 10.16521/j.cnki.issn.1001-9642.2020.09.005
    [8] LAN X, WANG Z. Efficient high-temperature electromagnetic wave absorption enabled by structuring binary porous SiC with multiple interfaces[J]. Carbon,2020,170:517-526. doi: 10.1016/j.carbon.2020.08.052
    [9] STARKE U, BERNHARDT J, SCHARDT J, et al. SiC surface reconstruction: Relevancy of atomic structure for growth technology[J]. Surface Review and Letters,1999,6(6):1129-1141. doi: 10.1142/S0218625X99001256
    [10] DONG H, FANG Z, YANG T, et al. Single crystalline 3 C-SiC whiskers used for electrochemical detection of nitrite under neutral condition[J]. Ionics,2016,22(8):1493-1500. doi: 10.1007/s11581-016-1666-5
    [11] SHEN Z, CHEN J, LI B, et al. Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials[J]. Journal of Alloys and Compounds,2020,815:152388. doi: 10.1016/j.jallcom.2019.152388
    [12] LAN X, QIU Z, YAN B, et al. Growing dendritic SiC on 1D SiC nanowire: Enhancement of electromagnetic wave absorption performance[J]. Journal of Physics and Che-mistry of Solids,2020,136:109124. doi: 10.1016/j.jpcs.2019.109124
    [13] KUANG J, JIANG P, LIU W, et al. Synergistic effect of Fe-doping and stacking faults on the dielectric permittivity and microwave absorption properties of SiC whiskers[J]. Applied Physics Letters,2015,106(21):212903. doi: 10.1063/1.4921627
    [14] JIN Y, ZHANG B, ZHANG H, et al. Effects of skeleton pore size on the microstructure and electromagnetic absorbing property of the SiC nanowires/SiC composites[J]. Materials Letters,2021,295:129867. doi: 10.1016/j.matlet.2021.129867
    [15] CAI Z, SU L, WANG H, et al. Hydrophobic SiC@C nanowire foam with broad-band and mechanically controlled electromagnetic wave absorption[J]. ACS Appllied Materials & Interfaces,2020,12(7):8555-8562.
    [16] HOU Y, XIAO B, SUN Z, et al. High temperature anti-oxidative and tunable wave absorbing SiC/Fe3Si/CNTs compo-site ceramic derived from a novel polysilyacetylene[J]. Ceramics International,2019,45(13):16369-16379. doi: 10.1016/j.ceramint.2019.05.165
    [17] HAN T, LUO R, CUI G, et al. Effect of SiC nanowires on the high-temperature microwave absorption properties of SiCf/SiC composites[J]. Journal of the European Ceramic Society,2019,39(5):1743-1756. doi: 10.1016/j.jeurceramsoc.2019.01.018
    [18] ZHANG D D, ZHAO D L, ZHANG J M, et al. Microwave absorbing property and complex permittivity and permeability of graphene-CdS nanocomposite[J]. Journal of Alloys and Compounds,2014,589:378-383. doi: 10.1016/j.jallcom.2013.11.195
    [19] LU X, DONG C, GUO X, et al. Effect of B, Al, Ga doping on the electronic structure and optical property of 4 H-SiC system by the first principles calculation[J]. Modern Physics Letters B,2021,35(5):2150091. doi: 10.1142/S0217984921500913
    [20] REN F, XUE J, LIU X, et al. In situ construction of CNWs/SiC-NWs hybrid network reinforced SiCN with excellent electromagnetic wave absorption properties in X band[J]. Carbon,2020,168:278-289. doi: 10.1016/j.carbon.2020.06.081
    [21] ZHANG M, LI Z, WANG T, et al. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites[J]. Chemical Engineering Journal,2019,362:619-627. doi: 10.1016/j.cej.2019.01.039
    [22] 梁飞. 碳化硅纳米颗粒的吸波性能研究[J]. 渭南师范学院学报, 2013, 28(9): 137-140.

    LIANG Fei. Research on absorbing EMW properties of SiC nanoparticles[J]. Journal of Weinan Normal University, 2013, 28(9): 137-140(in Chinese).
    [23] 陈兆晨, 冯振宇, 杨倩一, 等. 碳化硅颗粒填充的碳纳米管/环氧树脂复合材料的吸波性能[J]. 功能材料与器件学报, 2011, 17(3):258-261. doi: 10.3969/j.issn.1007-4252.2011.03.005

    CHEN Zhaochen, FENG Zhenyu, YANG Qianyi, et al. Microwave absorbing properties of carbon nanotubes/epoxy resin composites with SiC particles[J]. Journal of Functional Materials and Devices,2011,17(3):258-261(in Chinese). doi: 10.3969/j.issn.1007-4252.2011.03.005
    [24] 张磊, 赵东林, 沈曾民. 碳纳米管/纳米碳化硅复合材料的制备及其微波电磁特性[C]//2008全国功能材料科技与产业高层论坛论文集. 天津: 中国仪器仪表学会, 2008: 639-641.

    ZHANG L, ZHAO D L, SHEN Z M. Preparation and microwave electromagnetic properties of carbon nanotube/nano silicon carbide composites[C]//Proceedings of 2008 National High Level Forum on Functional Materials Technology and Industry. Tianjin: China Instrument and Control Society, 2008: 639-641(in Chinese).
    [25] 卓绝, 黄昊, 丁昂. 直流电弧法制备SiC@C核壳型纳米粒子及吸波性能研究[J]. 兵器材料科学与工程, 2016, 39(6):78-82. doi: 10.14024/j.cnki.1004-244x.20161014.003

    ZHUO J, HUANG H, DING A. Microwave absorbing properties of SiC@C core/shell nanoparticles prepared arc discharge method[J]. Ordnance Material Science and Engi-neering,2016,39(6):78-82(in Chinese). doi: 10.14024/j.cnki.1004-244x.20161014.003
    [26] YUAN X, CHENG L, ZHANG L. Electromagnetic wave absorbing properties of SiC/SiO2 composites with ordered inter-filled structure[J]. Journal of Alloys and Compounds,2016,680:604-611. doi: 10.1016/j.jallcom.2016.03.309
    [27] YE F, ZHANG L, YIN X, et al. Dielectric and EMW absorbing properties of PDCs-SiBCN annealed at different temperatures[J]. Journal of the European Ceramic Society,2013,33(8):1469-1477. doi: 10.1016/j.jeurceramsoc.2013.01.006
    [28] ZHANG P P, WANG H S, LI L, et al. Preparation and properties of Si3N4-SiC radar wave-absorbing nanocomposites[J]. Key Engineering Materials,2016,697:462-466. doi: 10.4028/www.scientific.net/KEM.697.462
    [29] DUAN W, YIN X, YE F, et al. Synthesis and EMW absorbing properties of nano SiC modified PDC-SiOC[J]. Journal of Materials Chemistry C,2016,4(25):5962-5969. doi: 10.1039/C6TC01142J
    [30] 王玉江, 黄威, 黄玉炜, 等. SiC/Fe3O4/rGO复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10):1624-1629. doi: 10.11896/cldb.18060055

    WANG Y J, HUANG W, HUANG Y W, et al. Preparation and microwave absorbing properties of SiC/Fe3O4/rGO composite materials[J]. Materials Reports,2019,33(10):1624-1629(in Chinese). doi: 10.11896/cldb.18060055
    [31] KUANG J, JIANG P, HOU X, et al. Dielectric permittivity and microwave absorption properties of SiC nanowires with different lengths[J]. Solid State Sciences,2019,91:73-76. doi: 10.1016/j.solidstatesciences.2019.03.015
    [32] GUO C, CHENG L, YE F. Synthesis of multifunctional foam-like isotropic high volume fraction SiC nanowires preform via a simple method[J]. Ceramics International,2021,47(7):9569-9577. doi: 10.1016/j.ceramint.2020.12.091
    [33] LI B, MAO B, HUANG H, et al. Synthesis and microwave absorption properties of bamboo-like β-SiC nanowires[J]. International Journal of Applied Ceramic Technology,2020,17(4):1869-1881. doi: 10.1111/ijac.13516
    [34] LIANG C, QIN W, WANG Z. Cobalt doping-induced strong electromagnetic wave absorption in SiC nanowires[J]. Journal of Alloys and Compounds,2019,781:93-100. doi: 10.1016/j.jallcom.2018.12.047
    [35] 李敏, 刘宏达, 乔宁, 等. SiCw-Co复合材料的制备及吸波性能的研究[J]. 中国陶瓷, 2020, 56(3):39-44.

    LI M, LIU H D, QIAO N, et al. Research on preparation and absorbing properties of SiCw-Co composite materials[J]. China Ceramics,2020,56(3):39-44(in Chinese).
    [36] KUANG J, HOU X, XIAO T, et al. Three-dimensional carbon nanotube/SiC nanowire composite network structure for high-efficiency electromagnetic wave absorption[J]. Ceramics International,2019,45(5):6263-6267. doi: 10.1016/j.ceramint.2018.12.107
    [37] WU R, YANG Z, FU M, et al. In-situ growth of SiC nanowire arrays on carbon fibers and their microwave absorption properties[J]. Journal of Alloys and Compounds,2016,687:833-838. doi: 10.1016/j.jallcom.2016.06.106
    [38] QIAN J, DU B, CAI M, et al. Preparation of SiC nanowire/carbon fiber composites with enhanced electromagnetic wave absorption performance[J]. Advanced Engineering Materials,2021,23(10):5100434.
    [39] WANG P, CHENG L, ZHANG Y, et al. Electrospinning of graphite/SiC hybrid nanowires with tunable dielectric and microwave absorption characteristics[J]. Composites Part A: Applied Science and Manufacturing,2018,104:68-80. doi: 10.1016/j.compositesa.2017.10.012
    [40] HAN M, YIN X, HOU Z, et al. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties[J]. ACS Appllied Materials & Interfaces,2017,9(13):11803-11810.
    [41] HAN M, YIN X, DUAN W, et al. Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability[J]. Journal of the European Ceramic Society,2016,36(11):2695-2703. doi: 10.1016/j.jeurceramsoc.2016.04.003
    [42] ZHAO D, YUAN X, LI B, et al. Silicon carbide nanowire covered by vertically oriented graphene for enhanced electromagnetic wave absorption performance[J]. Chemical Physics,2020,529:110574. doi: 10.1016/j.chemphys.2019.110574
    [43] XIAO T, KUANG J, PU H, et al. Hollow SiC microtube with multiple attenuation mechanisms for broadband electromagnetic wave absorption[J]. Journal of Alloys and Compounds,2021,862(1):158032.
    [44] YAN L, HONG C, SUN B, et al. In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance[J]. ACS Appllied Materials & Interfaces,2017,9(7):6320-6331.
    [45] 郑海康, 武志红, 张路平, 等. 念珠状碳化硅/二氧化硅纳米线的制备及电磁波吸收性能[J]. 硅酸盐学报, 2020, 48(1):8-14. doi: 10.14062/j.issn.0454-5648.20190211

    ZHENG H K, WU Z H, ZHANG L P, et al. Synthesis and electromagnetic wave absorption properties of beaded silicon carbide/silica nanowires[J]. Journal of the Chinese Ceramic Society,2020,48(1):8-14(in Chinese). doi: 10.14062/j.issn.0454-5648.20190211
    [46] DUAN W, YIN X, LI Q, et al. Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic[J]. Journal of the European Ceramic Society,2014,34(2):257-266. doi: 10.1016/j.jeurceramsoc.2013.08.029
    [47] DONG Y, FAN X, WEI H, et al. Enhanced electromagnetic wave absorption properties of a novel SiC nanowires reinforced SiO2/3Al2O3·2SiO2 porous ceramic[J]. Ceramics International,2020,46(14):22474-22481. doi: 10.1016/j.ceramint.2020.06.006
    [48] ZHONG B, SAI T, XIA L, et al. High-efficient production of SiC/SiO2 core-shell nanowires for effective microwave absorption[J]. Materials & Design,2017,121:185-193.
    [49] WANG P, CHENG L, ZHANG L. Lightweight, flexible SiCN ceramic nanowires applied as effective microwave absorbers in high frequency[J]. Chemical Engineering Jour-nal,2018,338:248-260. doi: 10.1016/j.cej.2017.12.008
    [50] DUAN W, YIN X, CAO F, et al. Absorption properties of twinned SiC nanowires reinforced Si3N4 composites fabricated by 3D-prining[J]. Materials Letters,2015,159:257-260. doi: 10.1016/j.matlet.2015.06.106
    [51] ZHOU W, YIN R M, LONG L, et al. Enhanced high-tempera-ture dielectric properties and microwave absorption of SiC nanofibers modified Si3N4 ceramics within the gigahertz range[J]. Ceramics International,2018,44(11):12301-12307. doi: 10.1016/j.ceramint.2018.04.017
    [52] LI X, YIN X, XU H, et al. Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band[J]. ACS Appllied Materials & Interfaces,2018,10(40):34524-34533.
    [53] 朱新文, 江东亮, 谭寿洪. 碳化硅网眼多孔陶瓷的微波吸收特性[J]. 无机材料学报, 2002(6):1152-1156.

    ZHU X W, JIANG D L, TAN S H. Microwave absorption characteristics of silicon carbide mesh porous ceramics[J]. Journal of Inorganic Materials,2002(6):1152-1156(in Chinese).
    [54] 武志红, 李妤婕, 张聪, 等. 竹炭/SiC复合材料结构及其吸波性能[J]. 硅酸盐学报, 2018, 46(1):150-155.

    WU Z H, LI Y J, ZHANG C, et al. Structure and microwave absorption properties of bamboo charcoal/SiC compo-sites[J]. Journal of the Chinese Ceramic Society,2018,46(1):150-155(in Chinese).
    [55] DONG S, HU P, ZHANG X, et al. Carbon foams modified with in-situ formation of Si3N4 and SiC for enhanced electromagnetic microwave absorption property and thermostability[J]. Ceramics International,2018,44(6):7141-7150. doi: 10.1016/j.ceramint.2018.01.156
    [56] HOU Z, XUE J, WEI H, et al. Tailorable microwave absorption properties of RGO/SiC/CNT nanocomposites with 3D hierarchical structure[J]. Ceramics International,2020,46(11):18160-18167. doi: 10.1016/j.ceramint.2020.04.137
    [57] WANG Y, ZHANG L, ZHANG G, et al. Microwave absorbing properties of novel SiC/Cf composites containing SiC array modified coating[J]. Journal of Inorganic Materials,2021,36(3):306-312. doi: 10.15541/jim20200364
    [58] LAN X, HOU Y, DONG X, et al. All-ceramic SiC aerogel for wide temperature range electromagnetic wave attenuation[J]. ACS Appllied Materials & Interfaces,2022,14(13):15360-15369.
    [59] DAI D, LAN X, WU L, et al. Designed fabrication of lightweight SiC/Si3N4 aerogels for enhanced electromagnetic wave absorption and thermal insulation[J]. Journal of Alloys and Compounds,2022,901:163651. doi: 10.1016/j.jallcom.2022.163651
    [60] LIU D, ZHOU Z, WANG Y, et al. Preparation and characterization of polymer-derived SiC ceramic aerogels toward excellent electromagnetic wave absorption properties[J]. Journal of Materials Research and Technology,2022,19:507-519. doi: 10.1016/j.jmrt.2022.05.062
    [61] WANG Z, ZHAO H, DAI D, et al. Ultralight, tunable monolithic SiC aerogel for electromagnetic absorption with broad absorption band[J]. Ceramics International,2022,48(18):26416-26424. doi: 10.1016/j.ceramint.2022.05.332
    [62] CAI Z, SU L, WANG H, et al. Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000°C[J]. ACS Appllied Materials & Interfaces,2021,13(14):16704-16712.
    [63] SONG L, CHEN Y, GAO Q, et al. Low weight, low thermal conductivity, and highly efficient electromagnetic wave absorption of three-dimensional graphene/SiC-nanosheets aerogel[J]. Composites Part A: Applied Science and Manufacturing,2022,158:106980. doi: 10.1016/j.compositesa.2022.106980
    [64] ZENG G, LI X, WEI Y, et al. Significantly toughened SiC foams with enhanced microwave absorption via in situ growth of Si3N4 nanowires[J]. Chemical Engineering Journal,2021,426:131745. doi: 10.1016/j.cej.2021.131745
    [65] DAI D, LAN X, WANG Z. Hierarchical carbon fiber reinforced SiC/C aerogels with efficient electromagnetic wave absorption properties[J]. Composites Part B: Engineering,2023,248:110376. doi: 10.1016/j.compositesb.2022.110376
  • 加载中
图(10)
计量
  • 文章访问数:  819
  • HTML全文浏览量:  442
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-01
  • 修回日期:  2023-03-31
  • 录用日期:  2023-04-21
  • 网络出版日期:  2023-04-28
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回