留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可降解镁基骨植入物腐蚀敏感性的数值模拟与试验评估

郭传平 石尘尘 刘鹏 高冬芳 赵洋洋 乔阳

郭传平, 石尘尘, 刘鹏, 等. 可降解镁基骨植入物腐蚀敏感性的数值模拟与试验评估[J]. 复合材料学报, 2024, 42(0): 1-14.
引用本文: 郭传平, 石尘尘, 刘鹏, 等. 可降解镁基骨植入物腐蚀敏感性的数值模拟与试验评估[J]. 复合材料学报, 2024, 42(0): 1-14.
GUO Chuanping, SHI Chenchen, LIU Peng, et al. Numerical simulation and experimental evaluation of the corrosion susceptibility of degradable magnesium-based bone implants[J]. Acta Materiae Compositae Sinica.
Citation: GUO Chuanping, SHI Chenchen, LIU Peng, et al. Numerical simulation and experimental evaluation of the corrosion susceptibility of degradable magnesium-based bone implants[J]. Acta Materiae Compositae Sinica.

可降解镁基骨植入物腐蚀敏感性的数值模拟与试验评估

基金项目: 山东省自然科学基金(ZR2023ME077;ZR2023MC140);国家自然科学基金(52175408)
详细信息
    通讯作者:

    乔阳,博士,副教授,硕士生导师,研究方向为生物医用材料的制备及高性能加工 E-mail: me_qiaoy@ujn.edu.cn

  • 中图分类号: TG146.2

Numerical simulation and experimental evaluation of the corrosion susceptibility of degradable magnesium-based bone implants

Funds: Natural Science Foundation of Shandong Province (ZR2023ME077; ZR2023MC140); National Natural Science Foundation of China (52175408)
  • 摘要: 镁基合金作为"第三代生物医用材料",以其优异的生物相容性和可降解性吸引了众多学者的关注。在传统医疗骨植入器械难以降解的背景下,展现出了其独特的潜力。然而,由于植入后在人体体液环境的应力和腐蚀作用下腐蚀损伤和退化速率的未知性,难以预测其在临床应用中的性能。因此,为防止因退化过快而导致过早地断裂失效,本研究建立了一种应用于金属腐蚀性能预测的数值模型,该模型被用于研究镁基合金的腐蚀行为预测。通过体外腐蚀试验评估其对不同程度应力腐蚀的敏感性并校准模型参数。为测试模型的准确性,对骨植入物的腐蚀行为进行了预测。结果表明,该模型可以可靠地预测各种应力条件下植入物的腐蚀损伤、降解率和相关的机械性能退化。因此,应力腐蚀模型作为一种数值模拟工具,具备准确预测腐蚀行为的同时优化植入物的退化速率的潜力。此外,提出的模型程序和方法适用于不同合金成分、多种应用场景接骨板的应力腐蚀预测,有助于实现植入材料退化速率的精确调节。

     

  • 图  1  腐蚀模拟算法流程图

    Figure  1.  Flowchart of corrosion simulation algorithm

    D, Dc, Dh, Dc-1 and Dh-1 are the damage field, pitting damage, stress corrosion damage, pitting damage at the last time step, and stress corrosion damage at the last time step, respectively; δU and δSC are the critical thickness of the corrosion product film and the width of the corrosion cracks; Le and KU are the length of the characteristic finite element and material kinetic related parameters of the corrosion process; S and R are corrosion process and pH related parameters; Δt and α are numerically calculated time increments and time amplification constants; λe,t is the dimensionless pitting corrosion parameter of cell e at time t; σ*e is the maximum effective stress (i.e. Mises stress) of the load

    图  2  (a)用于试验测试的样品;(b)(a)中测试样品的加载模型;(c)接骨板的有限元模型;(d)接骨板的结构,接骨板中螺纹孔的放大视图

    Figure  2.  (a) Sample used for experimental testing; (b) Loading model of the test sample in (a); (c) Finite element model of the splint; (d) Structure of the splint, enlarged view of the threaded holes in the splint

    图  3  AZ31镁合金的应力-应变曲线

    Figure  3.  Stress-strain curve of AZ31 magnesium alloy

    图  4  恒定载荷浸泡腐蚀设备示意图

    Figure  4.  Schematic diagram of constant load immersion corrosion equipment

    图  5  镁合金在静载荷条件下的腐蚀过程示意图

    Figure  5.  Schematic diagram of the corrosion process of magnesium alloy under loaded conditions

    图  6  腐蚀过程中AZ31B镁合金的质量损失率与析氢增量

    Figure  6.  Mass loss rate and hydrogen precipitation increment of AZ31B magnesium alloys during corrosion

    图  7  AZ31B镁合金接骨板样品损伤程度随模拟时间的变化图,左下角插入的图片显示了螺纹孔附近腐蚀程度随时间的演化(点蚀与应力腐蚀协同作用)

    Figure  7.  Plot of the extent of damage to a sample of AZ31B magnesium alloy splints over simulation time, with the image inserted in the lower left corner showing the evolution of the extent of corrosion near the threaded holes over time (pitting corrosion in synergy with stress corrosion)

    图  8  模型预测AZ31B镁合金的屈服强度在不同时间节点的损伤程度以及损伤后的屈服强度

    Figure  8.  Model prediction of yield strength of AZ31B magnesium alloy at different time points of damage and yield strength after damage

    图  9  相同时间下,不同载荷AZ31B镁合金接骨板的损伤,插入的图片展示了关键腐蚀位置

    Figure  9.  Damage to AZ31B magnesium alloy splints with different loads at the same time, inserted image enlarged Critical corrosion locations

    图  10  AZ31B镁合金接骨板在不同静载荷条件下(0、0.5、0.65、0.8 MPa)浸泡30 h后的宏观腐蚀形貌与模型预测结果

    Figure  10.  Macroscopic corrosion morphology and model prediction of AZ31B magnesium alloy splints after 30 h immersion under different static load conditions (0, 0.5, 0.65, 0.8 MPa)

    图  11  模型预测AZ31B镁合金的质量损失与体外试验测得质量损失的对比图。条带表示试验中质量损失的最大值和最小值的范围,而误差线表示模型预测的质量损失的平均值±标准差

    Figure  11.  Plot of model-predicted mass loss of AZ31B magnesium alloy against mass loss measured in in vitro tests. The bars indicate the range of maximum and minimum values of mass loss in the test, while the error line indicates the mean ± standard deviation of the model-predicted mass loss

    表  1  AZ31B的化学成分(wt%)

    Table  1.   Chemical composition of AZ31B (wt%)

    AlZnMnSiCaFeNiCuOtherMg
    2.741.270.3610.01610.00780.01520.00160.00080.08Bal
    下载: 导出CSV

    表  2  Hank's溶液的化学成分(g·L−1)

    Table  2.   Chemical composition of Hank's solution (g·L−1)

    NaClKClKH2PO4MgSO4•7 H2ONaHCO3CaCl2Na2HPO4•H2OGlucose
    8.000.400.060.200.350.140.061.00
    下载: 导出CSV

    表  3  AZ31B合金的腐蚀性能参数

    Table  3.   Corrosion performance parameters of AZ31B alloy

    Load/MPa δU/mm δSC/mm KU S R $\Upsilon $ ψ α
    0.5/0.65/0.8 0.17 0.07 0.026 0.02 3.2 0.6 5 103
    Notes: δU and δSC are the critical thickness of the corrosion product film and the width of the corrosion cracks; KU is a parameter related to the corrosion process and material dynamics; S and R are corrosion process and pH related parameters; $\Upsilon $ and ψ are the shape and scaling parameters of the Weibull distribution, respectively; α is the time amplification constant in the numerical calculation.
    下载: 导出CSV
  • [1] STAIGER M P, PIETAK A M, HUADMAI J, et al. Magnesium and its alloys as orthopedic biomaterials: a review[J]. Biomaterials, 2006, 27(9): 1728-1734. doi: 10.1016/j.biomaterials.2005.10.003
    [2] GEETHA M, SINGH A K, ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review[J]. Progress in materials science, 2009, 54(3): 397-425. doi: 10.1016/j.pmatsci.2008.06.004
    [3] HUSE E C. A new ligature[J]. The Chicago Medical Journal and Examiner, 1878, 37(2): 171.
    [4] WITTE F. The history of biodegradable magnesium implants: a review[J]. Acta biomaterialia, 2010, 6(5): 1680-1692. doi: 10.1016/j.actbio.2010.02.028
    [5] LAMBOTTE A. L’utilisation du magnesium comme materiel perdu dans l’osteosynthèse[J]. Bull Mem Soc Nat Chir, 1932, 28(3): 1325-1334.
    [6] MCBRIDE E D. Absorbable metal in bone surgery: a further report on the use of magnesium alloys[J]. Journal of the American Medical Association, 1938, 111(27): 2464-2467. doi: 10.1001/jama.1938.02790530018007
    [7] HE M, CHEN L, YIN M, et al. Review on magnesium and magnesium-based alloys as biomaterials for bone immobilization[J]. Journal of Materials Research and Technology, 2023, 23: 4396-4419. doi: 10.1016/j.jmrt.2023.02.037
    [8] XIN Y, HU T, CHU P K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review[J]. Acta biomaterialia, 2011, 7(4): 1452-1459. doi: 10.1016/j.actbio.2010.12.004
    [9] ZBERG B, UGGOWITZER P J, LöFFLER J F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants[J]. Nature materials, 2009, 8(11): 887-891. doi: 10.1038/nmat2542
    [10] LI Z, GU X, LOU S, et al. The development of binary Mg–Ca alloys for use as biodegradable materials within bone[J]. Biomaterials, 2008, 29(10): 1329-1344. doi: 10.1016/j.biomaterials.2007.12.021
    [11] CHAYA A, YOSHIZAWA S, VERDELIS K, et al. In vivo study of magnesium plate and screw degradation and bone fracture healing[J]. Acta biomaterialia, 2015, 18: 262-269. doi: 10.1016/j.actbio.2015.02.010
    [12] WITTE F, KAESE V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26(17): 3557-3563. doi: 10.1016/j.biomaterials.2004.09.049
    [13] NAUJOKAT H, SEITZ J M, ACIL Y, et al. Osteosynthesis of a cranio-osteoplasty with a biodegradable magnesium plate system in miniature pigs[J]. Acta biomaterialia, 2017, 62: 434-445. doi: 10.1016/j.actbio.2017.08.031
    [14] 丁琳琳, 张宜澜, 杨茂进, 等. 聚左旋乳酸可吸收接骨板在下颌骨骨折内固定术中的应用价值[J]. 创伤外科杂志, 2020, 22(4): 267-270.

    DING Linlin, ZHANG Yilan, YANG Maojin, et al. Application value of poly-L-lactic acid resorbable bone graft in internal fixation of mandibular fracture[J]. Journal of Trauma Surgery, 2020, 22(4): 267-270(in Chinese).
    [15] SONG G L, ATRENS A. Corrosion mechanisms of magnesium alloys[J]. Advanced engineering materials, 1999, 1(1): 11-33. doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
    [16] SONG G, ATRENS A. Recent insights into the mechanism of magnesium corrosion and research suggestions[J]. Advanced Engineering Materials, 2007, 9(3): 177-183. doi: 10.1002/adem.200600221
    [17] ZENG R, DIETZEL W, WITTE F, et al. Progress and challenge for magnesium alloys as biomaterials[J]. Advanced engineering materials, 2008, 10(8): B3-B14.
    [18] ZENG R, ZHANG J, HUANG W, et al. Review of studies on corrosion of magnesium alloys[J]. Transactions of nonferrous metals society of China, 2006, 16: s763-s771. doi: 10.1016/S1003-6326(06)60297-5
    [19] DAS P, KUMAR T S S, SAHU K K, et al. Corrosion, stress corrosion cracking and corrosion fatigue behavior of magnesium alloy bioimplants[J]. Corrosion Reviews, 2022, 40(4): 289-333. doi: 10.1515/corrrev-2021-0088
    [20] TROITSKII V V, TSITRIN D N. The resorbing metallic alloy ‘Osteosinthezit’as material for fastening broken bone[J]. Khirurgiia, 1944, 8(1): 41-44.
    [21] HIRAYAMA K, TODA H, FU D, et al. Damage micromechanisms of stress corrosion cracking in Al-Mg alloy with high magnesium content[J]. Corrosion Science, 2021, 184: 109343. doi: 10.1016/j.corsci.2021.109343
    [22] BARFIELD W R, COLBATH G, DESJARDINS J D, et al. The potential of magnesium alloy use in orthopaedic surgery[J]. Current Orthopaedic Practice, 2012, 23(2): 146-150. doi: 10.1097/BCO.0b013e31824a553b
    [23] LI D, ZHANG D, YUAN Q, et al. In vitro and in vivo assessment of the effect of biodegradable magnesium alloys on osteogenesis[J]. Acta Biomaterialia, 2022, 141: 454-465. doi: 10.1016/j.actbio.2021.12.032
    [24] SANCHEZ A H M, LUTHRINGER B J C, Feyerabend F, et al. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review[J]. Acta biomaterialia, 2015, 13: 16-31. doi: 10.1016/j.actbio.2014.11.048
    [25] BAINO F, YAMAGUCHI S. The use of simulated body fluid (SBF) for assessing materials bioactivity in the context of tissue engineering: review and challenges[J]. Biomimetics, 2020, 5(4): 57. doi: 10.3390/biomimetics5040057
    [26] GALVIN E, CUMMINS C, YOSHIHARA S, et al. Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents[J]. Medical & Biological Engineering & Computing, 2017, 55: 1261-1275.
    [27] TÖRNE K, ÖRNBERG A, WEISSENRIEDER J. Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments[J]. Acta Biomaterialia, 2017, 48: 541-550. doi: 10.1016/j.actbio.2016.10.030
    [28] SNIR Y, BEN-HAMU G, ELIEZER D, et al. Effect of compression deformation on the microstructure and corrosion behavior of magnesium alloys[J]. Journal of alloys and compounds, 2012, 528: 84-90. doi: 10.1016/j.jallcom.2012.03.010
    [29] WINZER N, ATRENS A, DIETZEL W, et al. Characterisation of stress corrosion cracking (SCC) of Mg-Al alloys[J]. Materials Science and Engineering: A, 2008, 488(1-2): 339-351. doi: 10.1016/j.msea.2007.11.064
    [30] JOSHI A, DIAS G, STAIGER M P. In silico modelling of the corrosion of biodegradable magnesium-based biomaterials: modelling approaches, validation and future perspectives[J]. Biomaterials Translational, 2021, 2(3): 257.
    [31] DUDDU R. Numerical modeling of corrosion pit propagation using the combined extended finite element and level set method[J]. Computational Mechanics, 2014, 54(3): 613-627. doi: 10.1007/s00466-014-1010-8
    [32] BAJGER P, ASHBOURN J M A, MANHAS V, et al. Mathematical modelling of the degradation behaviour of biodegradable metals[J]. Biomechanics and modeling in mechanobiology, 2017, 16: 227-238. doi: 10.1007/s10237-016-0812-3
    [33] SAITO K, KUNIYA J. Mechanochemical model to predict stress corrosion crack growth of stainless steel in high temperature water[J]. Corrosion Science, 2001, 43(9): 1751-1766. doi: 10.1016/S0010-938X(00)00173-6
    [34] WENMAN M R, TRETHEWEY K R, JARMAN S E, et al. A finite-element computational model of chloride-induced transgranular stress-corrosion cracking of austenitic stainless steel[J]. Acta materialia, 2008, 56(16): 4125-4136. doi: 10.1016/j.actamat.2008.04.068
    [35] QUINN C, VAN GAALEN K, MCHUGH P E, et al. An enhanced phenomenological model to predict surface-based localised corrosion of magnesium alloys for medical use[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 138: 105637. doi: 10.1016/j.jmbbm.2022.105637
    [36] BOLOTIN V V, SHIPKOV A A. Mechanical aspects of corrosion fatigue and stress corrosion cracking[J]. International Journal of Solids and Structures, 2001, 38(40-41): 7297-7318. doi: 10.1016/S0020-7683(01)00002-6
    [37] GARUD Y S. Quantitative evaluation of environmentally assisted cracking: a survey of developments and application of modeling concepts[J]. Journal of Pressure Vessel Technology, 1991, 113(1): 1-9. doi: 10.1115/1.2928722
    [38] ABDALLA M, JOPLIN A, ELAHINIA M, et al. Corrosion modeling of magnesium and its alloys for biomedical applications[J]. Corrosion and Materials Degradation, 2020, 1(2): 11.
    [39] GASTALDI D, SASSI V, PETRINI L, et al. Continuum damage model for bioresorbable magnesium alloy devices—Application to coronary stents[J]. Journal of the mechanical behavior of biomedical materials, 2011, 4(3): 352-365. doi: 10.1016/j.jmbbm.2010.11.003
    [40] GALVIN E, O'BRIEN D, CUMMINS C, et al. A strain-mediated corrosion model for bioabsorbable metallic stents[J]. Acta Biomaterialia, 2017, 55: 505-517. doi: 10.1016/j.actbio.2017.04.020
    [41] OPPEAL A. Experimental characterisation and finite element modeling of biodegradable magnesium stents[D]. Ghent: Ghent University, 2015.
    [42] DEBUSSCHERE N, SEGERS P, DUBRUEL P, et al. A computational framework to model degradation of biocorrodible metal stents using an implicit finite element solver[J]. Annals of Biomedical Engineering, 2016, 44: 382-390. doi: 10.1007/s10439-015-1530-1
    [43] GROGAN J A, O’BRIEN B J, LEEN S B, et al. A corrosion model for bioabsorbable metallic stents[J]. Acta biomaterialia, 2011, 7(9): 3523-3533. doi: 10.1016/j.actbio.2011.05.032
    [44] BARZEGARI M, MEI D, LAMAKA S V, et al. Computational modeling of degradation process of biodegradable magnesium biomaterials[J]. Corrosion Science, 2021, 190: 109674. doi: 10.1016/j.corsci.2021.109674
    [45] SHEN Z, ZHAO M, ZHOU X, et al. A numerical corrosion-fatigue model for biodegradable Mg alloy stents[J]. Acta biomaterialia, 2019, 97: 671-680. doi: 10.1016/j.actbio.2019.08.004
    [46] HAMMI Y, GULLETT P, HORSTEMEYER M F. Multiscale Concrete Modeling of Aging Degradation[R]. Mississippi State Univ. , Mississippi State, MS (United States), 2015.
    [47] 国家食品药品监督管理总局. 骨接合植入物 金属接骨板: YY 0017-2016[S]. 北京: 中国标准出版社, 2016.

    State Administration for Market Regulation. Implants for osteosynthesis-Metallic bone plates: YY 0017-2016[S]. Beijing: China Standards Press, 2016(in Chinese).
    [48] SIMULIA D S. ABAQUS Analysis manual[J]. Provid RI, 2016, 423.
    [49] HANKS J H. Hanks' balanced salt solution and pH control[J]. TCA manual/Tissue Culture Association, 1975, 1(1): 3-4. doi: 10.1007/BF00914425
    [50] 中国国家标准化管理委员会. 金属和合金的腐蚀 腐蚀试样上腐蚀产物的清除: GB/T 16545-2015[S]. 北京: 中国标准出版社, 2015.

    Standardization Administration of the People’s Republic of China. Corrosion of metals and alloys-Removal of corrosion products from corrosion test specimens: GB/T 16545-2015[S]. Beijing: China Standards Press, 2015(in Chinese).
    [51] 郑斌. 基于有限元的智能气囊小夹板治疗桡骨远端关节内骨折的生物力学研究 [D]. 江苏: 南京中医药大学, 2016.

    ZHENG Bin. Biomechanical study of a finite element-based smart airbag mini-splint for the treatment of intra-articular fractures of the distal radius [D]. Jiangsu: Nanjing University of Chinese Medicine, 2016(in Chinese).
    [52] 黄若景. 3D打印计算机辅助设计小夹板外骨骼系统的研究 [D]. 广东: 广州中医药大学, 2015.

    HUANG Ruojing. 3D printing computer-aided design of a small splinted exoskeleton system [D]. Guangdong: Guangzhou University of Chinese Medicine, 2015(in Chinese).
    [53] 中国国家标准化管理委员会. 金属材料 室温压缩试验方法: GB/T 7314-2017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of the People’s Republic of China. Metallic materials-Compression test method at room temperature: GB/T 7314-2017[S]. Beijing: China Standards Press, 2017(in Chinese).
    [54] SONG G L, UNOCIC K A. The anodic surface film and hydrogen evolution on Mg[J]. Corrosion science, 2015, 98: 758-765. doi: 10.1016/j.corsci.2015.05.047
    [55] ASCENCIO M, PEKGULERYUZ M, OMANOVIC S. An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: the effect of electrolyte renewal[J]. Corrosion Science, 2015, 91: 297-310. doi: 10.1016/j.corsci.2014.11.034
    [56] MELANDER A, LARSSON M. The effect of stress amplitude on the cause of fatigue crack initiation in a spring steel[J]. International Journal of Fatigue, 1993, 15(2): 119-131. doi: 10.1016/0142-1123(93)90006-C
    [57] 鲁晔. 拉伸变形对AZ31镁合金应力腐蚀行为影响 [D]. 山西: 太原理工大学, 2021.

    LU Ye. Effect of tensile deformation on stress corrosion behaviour of AZ31 magnesium alloy [D]. Shanxi: Taiyuan University of Technology, 2021(in Chinese).
    [58] MEI D, WANG C, LAMAKA S V, et al. Clarifying the influence of albumin on the initial stages of magnesium corrosion in Hank's balanced salt solution[J]. Journal of Magnesium and Alloys, 2021, 9(3): 805-817. doi: 10.1016/j.jma.2020.07.002
    [59] DA COSTA-MATTOS H S, BASTOS I N, GOMES J. A simple model for slow strain rate and constant load corrosion tests of austenitic stainless steel in acid aqueous solution containing sodium chloride[J]. Corrosion Science, 2008, 50(10): 2858-2866. doi: 10.1016/j.corsci.2008.07.020
    [60] CHOUDHARY L, RAMAN R K S. Magnesium alloys as body implants: Fracture mechanism under dynamic and static loadings in a physiological environment[J]. Acta biomaterialia, 2012, 8(2): 916-923. doi: 10.1016/j.actbio.2011.10.031
    [61] KAPPES M, IANNUZZI M, CARRANZA R M. Pre-exposure embrittlement and stress corrosion cracking of magnesium alloy AZ31B in chloride solutions[J]. Corrosion, 2014, 70(7): 667-677. doi: 10.5006/1172
    [62] JANG Y, COLLINS B, SANKAR J, et al. Effect of biologically relevant ions on the corrosion products formed on alloy AZ31B: an improved understanding of magnesium corrosion[J]. Acta biomaterialia, 2013, 9(10): 8761-8770. doi: 10.1016/j.actbio.2013.03.026
    [63] HAN L, ZHANG Z, DAI J, et al. In vitro bio-corrosion behaviors of biodegradable AZ31B magnesium alloy under static stresses of different forms and magnitudes[J]. Journal of Magnesium and Alloys, 2023, 11(3): 1043-1056. doi: 10.1016/j.jma.2021.09.018
    [64] WANG B, GAO J, WANG L, et al. Biocorrosion of coated Mg–Zn–Ca alloy under constant compressive stress close to that of human tibia[J]. Materials Letters, 2012, 70: 174-176. doi: 10.1016/j.matlet.2011.12.009
    [65] SHI Z, SONG G, ATRENS A. Corrosion resistance of anodised single-phase Mg alloys[J]. Surface and Coatings Technology, 2006, 201(1-2): 492-503. doi: 10.1016/j.surfcoat.2005.11.081
    [66] PADEKAR B S, RAJA V S, RAMAN R K S. Stress corrosion cracking of a wrought Mg–Mn alloy under plane strain and plane stress conditions[J]. Engineering Fracture Mechanics, 2013, 102: 180-193. doi: 10.1016/j.engfracmech.2013.02.018
    [67] ZHAO D, HUANG S, LU F, et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head[J]. Biomaterials, 2016, 81: 84-92. doi: 10.1016/j.biomaterials.2015.11.038
    [68] LEE J W, HAN H S, HAN K J, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy[J]. Proceedings of the National Academy of Sciences, 2016, 113(3): 716-721. doi: 10.1073/pnas.1518238113
    [69] WINDHAGEN H, RADTKE K, WEIZBAUER A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomedical engineering online, 2013, 12: 1-10 doi: 10.1186/1475-925X-12-1
  • 加载中
计量
  • 文章访问数:  32
  • HTML全文浏览量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-23
  • 修回日期:  2024-06-12
  • 录用日期:  2024-06-20
  • 网络出版日期:  2024-07-05

目录

    /

    返回文章
    返回