留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同植物纤维增强PLA/PBAT/PBS可降解复合材料研究进展

黄茂财 张效林 常兴 杨梦豪 张继兵

黄茂财, 张效林, 常兴, 等. 不同植物纤维增强PLA/PBAT/PBS可降解复合材料研究进展[J]. 复合材料学报, 2024, 42(0): 1-16.
引用本文: 黄茂财, 张效林, 常兴, 等. 不同植物纤维增强PLA/PBAT/PBS可降解复合材料研究进展[J]. 复合材料学报, 2024, 42(0): 1-16.
HUANG Maocai, ZHANG Xiaolin, CHANG Xing, et al. Research progress of different plant fiber reinforced PLA/PBAT/PBS composites[J]. Acta Materiae Compositae Sinica.
Citation: HUANG Maocai, ZHANG Xiaolin, CHANG Xing, et al. Research progress of different plant fiber reinforced PLA/PBAT/PBS composites[J]. Acta Materiae Compositae Sinica.

不同植物纤维增强PLA/PBAT/PBS可降解复合材料研究进展

基金项目: 陕西省科技厅重点研发计划(2021SF448);宿州市重大科技专项(SZKJXM202211)
详细信息
    通讯作者:

    张效林,博士,副教授,硕士生导师,研究方向为废弃天然/特种纤维高值化利用及绿色纤维新材料。 E-mail: zxlbmm@sina.com

  • 中图分类号: TB332

Research progress of different plant fiber reinforced PLA/PBAT/PBS composites

Funds: Key R&D Plan of Shaanxi Province (2021SF448); The major science and technology project of Suzhou City (SZKJXM202211)
  • 摘要: 植物纤维是由碳水化合物、苯酚类物质以及萜烯类物质组成的丝状或絮状物,种类繁多,资源丰富,且具有比强度高、可降解和可再生等优良特性,是天然绿色生物质纤维原料。将植物纤维作为树脂基复合材料的增强材料,不仅可以实现植物纤维资源的高效高值化利用,提升复合材料的综合应用性能,而且还可以降低复合材料制备成本,近年来关于不同种类植物纤维增强可降解复合材料方面的研究备受关注。本文综述了不同种类植物纤维增强聚乳酸(PLA)、聚对苯二甲酸-己二酸丁二醇酯(PBAT)、聚丁二酸丁二醇酯(PBS)三种可降解高分子材料的研究进展,对各种复合材料的综合性能进行分析比较,并对其应用性能和前景进行了总结与展望。

     

  • 图  1  (a) 木质素的组成部分[28];(b)木质素的结构[28];(c) 木质素纳米颗粒的合成及聚乳酸(PLA)开环聚合接枝[29];(d)复合材料中PLA与纤维素纳米原纤维(LCNF)相互作用机制[30];(e) 木质素含量对LCNF与PLA相容性的影响[30]

    Figure  1.  (a) building blocks of lignin[28];(b) structure of lignin[28];(c) Synthesis of Lignin Nanoparticles and Subsequent Grafting of Poly(lactic acid) (PLA) via Lactide Ring-OpeningPolymerization[29];(d) the interaction mechanism between PLA and Cellulose nanofibrils (LCNF) in composites[30];(e) the effect of lignin content on the compatibility of LCNF and PLA[30]

    图  2  改性竹纤维增强的PLA基复合材料的制造工艺[38]

    Figure  2.  The fabrication process of the PLA-based composites reinforced with modified bamboo fibers[38]

    图  3  (a) 聚对苯二甲酸-己二酸丁二醇酯(PBAT)及PBAT/硅烷接枝麻纤维(Si-HF)复合材料拉伸强度[49];(b) 马来酸酐接枝PBAT(m-PBAT)/麻粉(HP)复合材料拉伸强度和断裂伸长率[50];(c) PBAT和PBAT/硅烷接枝木质素(VL)复合材料的拉伸强度、断裂伸长率和杨氏模量[56]

    Figure  3.  (a) Tensile strength of Poly (butyleneadipate-co-terephthalate)(PBAT) and PBAT/Silane grafted hemp fibers(Si-HF) composites[49]; (b) Tensile strength and elongation at break of m-PBAT/HP composites[50]; (c) Tensile strength, elongation at break and Young's modulus of PBAT and PBAT/Silane grafted lignin(VL) composites[56]

    图  4  PBAT/改性木质素薄膜复合材料:(a) 紫外线阻隔示意图[55];(b) 氧气和水分子路径示意图[53]

    Figure  4.  PBAT/modified lignin film composites: (a) Schematic diagram of ultraviolet barrier[55]; (b) Schematic diagram of oxygen and water molecular pathways[53]

    图  5  (a) 280 nm和(b) 660 nm处含有木质素、木质素纳米颗粒(LNPs)和PLA接枝的木质素纳米颗粒(PLA-LNPs)分别为1、5和10 wt %的纯PLA薄膜和PLA共混物的透光率[29];(c)不同木质素含量PBAT薄膜快速老化后断裂伸长率与初始值之比随老化时间变化图[54];(d)不同秸秆粉与碳酸钙混合(CCS)含量下PBAT薄膜紫外光谱图[60];(e)聚丁二酸丁二醇酯(PBS)/木质素与PBS/马来酸酐接枝木质素(MAH-g-lignin)薄膜紫外光谱[74];(f)不同增塑剂下PBS/MAH-g-lignin薄膜紫外光谱图[74]

    Figure  5.  (a) Light transmittance of pure PLA films and PLA blends containing lignin, lignin nanoparticles (LNPs) and PLA grafted (PLA-LNPs) at 280 nm and (b) 660 nm, respectively[29]; (c) The ratio of elongation at break to the initial value of PBAT films with different lignin content after rapid aging with aging time[54]; (d) Ultraviolet spectra of PBAT films with different Different straw flour is mixed with calcium carbonate(CCS) contents[60]; (e) Ultraviolet spectra of Poly(butylene succinate)PBS/lignin and PBS/ Maleic anhydride grafted with lignin(MAH-g-lignin) films[74]; (f) Ultraviolet spectra of PBS/MAH-g-lignin films under different plasticizers[74]

    图  6  (a) NaOH、聚多巴胺(PDA)和硅烷偶联剂协同改性处理竹纤维示意图[36];(b) 苎麻纤维表面PDA涂层示意图[67];(c) 硅烷接枝PDA反应机制及PBS和改性竹纤维之间界面黏附机制[69].

    Figure  6.  (a) Schematic diagram of bamboo fiber co-modified with NaOH, Polydopamine(PDA) and silane coupling agent[36]; (b) Schematic diagram of PDA coating on the surface of ramie fibers[67]; (c) The reaction mechanism of silane grafting and the interfacial adhesion mechanism between PBS and modified bamboo fibers[69]

    图  7  (a) 马来酸酐(MA)接枝到PBAT上反应机制[50];(b) MAH-g-lignin的合成[74];(c) PBS/MAH-g-lignin/柠檬酸三乙酯TEC增容机制[74]

    Figure  7.  (a) Reaction mechanism of Maleic anhydride(MA) grafting onto PBAT[50];(b) Synthesis of MAH-g-lignin[74]; (c) The postulated compatibilizing mechanism of PBS/MAH-g-lignin/Triethyl citrate(TEC)[74]

    表  1  聚乳酸(PLA)、聚对苯二甲酸-己二酸丁二醇酯(PBAT)、聚丁二酸丁二醇酯(PBS)基本性能

    Table  1.   Basic performance of polylactic acid (PLA), poly(butylene adipate-co-terephthalate) (PBAT), and poly(butylene succinate) (PBS)

    Type Density/
    (kg·m−3)
    Tensile strength/
    MPa
    Elongation
    at break/%
    Glass transition
    temperature/℃
    Melting
    temperature/℃
    When the crystallinity
    is 100%, it melts/(J·g−1)
    Ref.
    PLA 1.2-1.3 9.57-50 20-240 40-70 130-180 93.6 [2]
    PBAT 1.18-1.3 7.9-25 500-800 −30 110-150 114 [3]
    PBS 1.25 28.5-37 170-250 −32 110-140 200 [4]
    下载: 导出CSV

    表  2  常见复合材料制备工艺及优缺点

    Table  2.   Advantages and disadvantages of common composite preparation processes

    Preparation processAdvantageDisadvantageRef.
    Injection moldingThe manufacturing pace is rapid, boasting high efficiency, low costs, and consistent quality standards.It is prone to the formation of weld marks and radial lines.[9]
    Blow moldingBlow molds are simple, inexpensive to make, and are used to produce small, small-scale productsSusceptible to factors such as flow direction, stretching ratio,
    mold temperature, etc.
    [10]
    Compression
    molding
    High molding pressure, low internal stress in the product, minimal shrinkage, and excellent strengthNot suitable for complex products using compression molding; mechanical properties are significantly affected by process
    parameters such as pressure and temperature.
    [11]
    Solution casting
    method
    Good uniformity, easy control of film thicknessThe process is relatively complex, prone to introducing impurities, and finding suitable solvents for certain polymers is challenging.[12]
    3D printingWide range of printing materials, diverse structures, reduced energy consumptionThe molding speed is relatively slow, not suitable for manufacturing large parts.[13]
    下载: 导出CSV

    表  3  不同含量与种类麻纤维改性后增强PLA复合材料力学性能

    Table  3.   Enhanced mechanical properties of PLA composites after modification of hemp fibers with different contents and types

    Fiber type Fiber
    content/wt%
    Tensile
    strength/MPa
    Young's
    modulus/GPa
    Flexural
    strength/MPa
    Flexural
    modulus/GPa
    Elongation
    at break/%
    Ref.
    Kenaf 5 54.6 2.86 75.2 6.56 2.45 [19]
    Flax 20 44 4.15 - - 3.8 [21]
    Jute 30 59.94 1.81 83.56 5.95 4.28 [22]
    Ramie 30 84 1.6 119 7.4 - [23]
    Hemp 45 63 6.5 124.2 9.3 - [24]
    Kenaf 50 190.92 16.3 235.42 19.01 - [20]
    下载: 导出CSV

    表  4  不同比例改性竹纤维增强PLA材料力学性能

    Table  4.   Mechanical properties of modified bamboo fiber reinforced PLA materials with different proportions

    Author Fiber
    content/%
    Tensile
    strength/MPa
    Tensile
    modulus/GPa
    Flexural
    strength/MPa
    Flexural
    modulus/GPa
    Elongation
    at break/%
    Ref.
    Wang 15 60 6.3 - - - [37]
    Fei 20 35.97 - - 3.88 3.17 [36]
    Fang 30 75.67 0.806 46.93 3.88 13.63 [38]
    Zhang 40 43.98 2.63 75.93 5.29 - [39]
    Zhang 40 38.36 2.01 92.52 7.34 - [40]
    下载: 导出CSV

    表  5  添加无机填料对纤维增强复合材料的性能优势

    Table  5.   Performance advantages of adding inorganic fillers to fiber-reinforced composites

    matrix Fiber
    reinforcements
    Inorganic fillers Performance Benefits Ref.
    PLA Flax Borax, boric acid composition, zinc borate Slow down the rate of mechanical property loss after water absorption. [26]
    Lignin Silicon dioxide Increase the initial decomposition temperature of PLA/lignin composite materials and reduce the maximum temperature during sample combustion. [33]
    Rice straw Attapulgite The thermal stability of composite materials is enhanced by the rough stick soil thermal barrier effect. [42]
    Wheat straw Montmorillonite Significantly increase tensile strength and flexural strength. [43]
    Wheat straw Graphene nanosheets,
    graphene oxide
    Increase tensile strength and flexural strength while significantly reducing sample water absorption rate and thickness expansion rate. [46]
    PBAT Jute Ammonium polyphosphate, expandable graphite The APP/EG composite system exhibits excellent flame retardant properties. [52]
    Wheat straw Calcium carbonate It can effectively block most of the UVA and UVB spectra, while enhancing aging resistance and water vapor barrier properties. [60]
    PBS Bamboo
    powder
    Bamboo charcoal, silicon
    nitride, zinc oxide
    Promote the formation of strong hydrogen bonds between PBS and bamboo powder, significantly enhancing mechanical properties and thermal stability. [71]
    下载: 导出CSV

    Table  6.   Advantages and disadvantages of different plant fibers for reinforcing composites

    Fiber type Disadvantages Advantage Ref.
    Hemp fibers High moisture absorption, leading to significant expansion of the composite material.
    Flammable
    High strength and modulus, which can significantly enhance the mechanical properties of composite materials.
    Preparing sensors by adding different stimulating fluorescent factors.
    Accelerate the degradation rate.
    [17][19][49][50]

    [51]

    [26]
    Lignin Prone to aggregation and uneven dispersion within the matrix. Excellent water vapor and oxygen barrier properties.
    Outstanding ultraviolet shielding performance.
    Effective inhibition against Gram-positive bacteria, Staphylococcus aureus, mold, and Aspergillus niger.
    Excellent antioxidant activity.
    Enhanced thermal stability of composite materials.
    Outstanding mechanical performance.
    [30][53]
    [29][54][74]
    [31][73]

    [72]
    [32][33]
    [56][57]
    Bamboo fiber The high lignin content makes it difficult to remove completely, and the extraction process of bamboo fibers is rather complex. Lightweight, high strength, and excellent impact resistance.
    Accelerate the degradation rate
    Strong adsorption capacity, removing harmful substances.
    [69]

    [71]
    Straw fiber Compared to other types of fibers, it has lower strength and is prone to combustion. Accelerate degradation rate and significantly reduce production costs.
    Excellent anti-aging properties, water vapor and UV barrier properties, suitable for use in ground films.
    [47]

    [60]
    下载: 导出CSV
  • [1] JOSHI S, PATEL S. Review on mechanical and thermal properties of pineapple leaf fiber (PALF) reinforced composite[J]. Journal of Natural Fibers, 2022, 19(15): 10157-10178. doi: 10.1080/15440478.2021.1993487
    [2] YU J, XU S, LIU B, et al. PLA bioplastic production: From monomer to the polymer[J]. European Polymer Journal, 2023: 112076.
    [3] ROY S, GHOSH T, ZHANG W, et al. Recent progress in PBAT-based films and food packaging applications: A mini-review[J]. Food Chemistry, 2024, 437: 137822. doi: 10.1016/j.foodchem.2023.137822
    [4] BAELETTA M, AVERSA C, AYYOOB M, et al. Poly (butylene succinate)(PBS): Materials, processing, and industrial applications[J]. Progress in Polymer Science, 2022, 132: 101579. doi: 10.1016/j.progpolymsci.2022.101579
    [5] XING J, LIU S, GAO S, et al. Mechanical performance of a novel glass fiber reinforced maleic anhydride grafted polypropylene composite and its thermoplastic-based fiber metal laminates[J]. Polymer Composites, 2022, 43(9): 6180-6190. doi: 10.1002/pc.26922
    [6] HE W, CAO J, GUO F, et al. Nanostructured carboxylated-wood aerogel membrane for high-efficiency removal of Cu (II) ions from wastewater[J]. Chemical Engineering Journal, 2023, 468: 143747. doi: 10.1016/j.cej.2023.143747
    [7] ZHANG X, DI J, LI J, et al. Effects of different interfacial modifiers on the properties of digital printing waste paper fiber/nanocrystalline cellulose/poly (lactic acid) composites[J]. Polymer Engineering & Science, 2022, 62(3): 781-792.
    [8] ZHANG X, DUAN J, ZHUO G, et al. Nano silicon carbide-treated wheat straw fiber reinforced high-density polyethylene composites[J]. Industrial Crops and Products, 2022, 182: 114834. doi: 10.1016/j.indcrop.2022.114834
    [9] GIM J, TURNG L S. A review of current advancements in high surface quality injection molding: Measurement, influencing factors, prediction, and control[J]. Polymer Testing, 2022: 107718.
    [10] RAMAKERS-VAN DORP E, BLUME C, HAEDECKE T, et al. Process-dependent structural and deformation properties of extrusion blow molding parts[J]. Polymer Testing, 2019, 77: 105903. doi: 10.1016/j.polymertesting.2019.105903
    [11] DOPPELBAUER L K, RIENESL K, STELZER P S, et al. A macroscopic model of the compaction process during compression molding of carbon fiber sheet molding compounds[J]. Composites Part A: Applied Science and Manufacturing, 2023, 169: 107535. doi: 10.1016/j.compositesa.2023.107535
    [12] 魏佳乐, 韩卿, 庄堃等. 纤维素基填料制备PBS可降解复合材料的研究进展[J/OL]. 中国造纸, 2023, (11): 133-143[2023-12-04].

    WEI Jiale, HAN Qing, ZHUANG Kun, et al. Research Progress in the Preparation of PBS Degradable Composites with Cellulose based Fillers[J/OL]. China Pulp and Paper, 2023, (11): 133-143[2023-12-04](in Chinese).
    [13] YU J, ZHU J, CHEN L, et al. A review of adsorption materials and their application of 3D printing technology in the separation process[J]. Chemical Engineering Journal, 2023: 146247.
    [14] PAULO A, SANTOS J, DA ROCHA J, et al. Mechanical properties of PLA specimens obtained by additive manufacturing process reinforced with flax fibers[J]. Journal of Composites Science, 2023, 7(1): 27. doi: 10.3390/jcs7010027
    [15] ZHANG X, LI S, LI J, et al. Reinforcing effect of nanocrystalline cellulose and office waste paper fibers on mechanical and thermal properties of poly (lactic acid) composites[J]. Journal of Applied Polymer Science, 2021, 138(21): 50462. doi: 10.1002/app.50462
    [16] ZHANG X, LI S, XU C, et al. Study on the mechanical and thermal properties of poly (lactic acid)/office waste paper fiber composites[J]. Journal of Applied Polymer Science, 2020, 137(45): 49390. doi: 10.1002/app.49390
    [17] LAU H Y, HUSSIN M S, HAMAT S, et al. Effect of kenaf fiber loading on the tensile properties of 3D printing PLA filament[J]. Materials Today: Proceedings, 2023.
    [18] HALAPI D, KOVACS S E, HUDAK H, et al. Tensile analysis of 3D printer filaments[J]. Materials Science and Engineering, 2019, 44(1): 14-23.
    [19] HAMAT S, ISHAK M R, SALIT M S, et al. The Effects of Self-Polymerized Polydopamine Coating on Mechanical Properties of Polylactic Acid (PLA)–Kenaf Fiber (KF) in Fused Deposition Modeling (FDM)[J]. Polymers, 2023, 15(11): 2525. doi: 10.3390/polym15112525
    [20] THARAZI I, ABDUL AZAM F A, MUHAMAD N, et al. Effect of fiber orientation and elevated temperature on the mechanical properties of unidirectional continuous kenaf reinforced PLA composites[J]. Reviews on Advanced Materials Science, 2023, 62(1): 20220275. doi: 10.1515/rams-2022-0275
    [21] KETATA N, SEANTIER B, GUERMAZI N, et al. Processing and properties of flax fibers reinforced PLA/PBS biocomposites[J]. Materials Today: Proceedings, 2022, 53: 228-236. doi: 10.1016/j.matpr.2022.01.047
    [22] ALIM M A, MONIRUZZAMAN M, HOSSAIN M M, et al. Manufacturing and compatibilization of binary blends of superheated steam treated jute and poly (lactic acid) biocomposites by melt-blending technique[J]. Heliyon, 2022, 8(8).
    [23] ZHAN J, WANG G, LI J, et al. Effect of the compatilizer and chemical treatments on the performance of poly (lactic acid)/ramie fiber composites[J]. Composites Communications, 2021, 27: 100843. doi: 10.1016/j.coco.2021.100843
    [24] BAGHAEI B, SKRIFVARS M, BERGLIN L. Manufacture and characterisation of thermoplastic composites made from PLA/hemp co-wrapped hybrid yarn prepregs[J]. Composites Part A: Applied Science and Manufacturing, 2013, 50: 93-101. doi: 10.1016/j.compositesa.2013.03.012
    [25] MAZZANTI V, DE LUNA M S, PARIANTE R, et al. Natural fiber-induced degradation in PLA-hemp biocomposites in the molten state[J]. Composites Part A: Applied Science and Manufacturing, 2020, 137: 105990. doi: 10.1016/j.compositesa.2020.105990
    [26] AVCI A, EKER A A, BODUR M S, et al. Water absorption characterization of boron compounds-reinforced PLA/flax fiber sustainable composite[J]. International journal of biological macromolecules, 2023, 233: 123546. doi: 10.1016/j.ijbiomac.2023.123546
    [27] CHO Y M, KIM J H, CHOI J H, et al. Physicochemical characteristics of lignin-g-PMMA/PLA blend via atom transfer radical polymerization depending on the structural difference of organosolv lignin[J]. International Journal of Biological Macromolecules, 2023, 226: 279-290. doi: 10.1016/j.ijbiomac.2022.11.316
    [28] LI W, WANG G, ZHANG W, et al. Lignin-derived 0–3 dimensional carbon materials: Synthesis, configurations and applications[J]. Industrial Crops and Products, 2023, 204: 117342. doi: 10.1016/j.indcrop.2023.117342
    [29] BOARINO A, SCHREIER A, LETERRIER Y, et al. Uniformly dispersed poly (lactic acid)-grafted lignin nanoparticles enhance antioxidant activity and UV-barrier properties of poly (lactic acid) packaging films[J]. ACS Applied Polymer Materials, 2022, 4(7): 4808-4817. doi: 10.1021/acsapm.2c00420
    [30] WANG Y, LIU S, WANG Q, et al. Strong, ductile and biodegradable polylactic acid/lignin-containing cellulose nanofibril composites with improved thermal and barrier properties[J]. Industrial Crops and Products, 2021, 171: 113898. doi: 10.1016/j.indcrop.2021.113898
    [31] YAN Y, ZHANG L, ZHAO X, et al. Utilization of lignin upon successive fractionation and esterification in polylactic acid (PLA)/lignin biocomposite[J]. International Journal of Biological Macromolecules, 2022, 203: 49-57. doi: 10.1016/j.ijbiomac.2022.01.041
    [32] SUN C, YANG Z, ZHENG Z, et al. Exploring how lignin promoting the co-pyrolysis with polylactic acid: Artificial neural network modeling, kinetic analysis and product distribution[J]. Sustainable Materials and Technologies, 2023, 35: e00549. doi: 10.1016/j.susmat.2022.e00549
    [33] PODKOSCIELNA B, GARGOL M, GOLISZEK M, et al. Degradation and flammability of bioplastics based on PLA and lignin[J]. Polymer Testing, 2022, 111: 107622. doi: 10.1016/j.polymertesting.2022.107622
    [34] NIRMAL KUMAR K, DINESH BABU P, SURAKASI R, et al. Mechanical and thermal properties of bamboo fiber–reinforced PLA polymer composites: a critical study[J]. International Journal of Polymer Science, 2022, 2022.
    [35] HASAN K M F, AL HASAN K M N, AHMED T, et al. Sustainable bamboo fiber reinforced polymeric composites for structural applications: A mini review of recent advances and future prospects[J]. Case Studies in Chemical and Environmental Engineering, 2023: 100362.
    [36] FEI B, WANG D, ALMASOUD N, et al. Bamboo fiber strengthened poly (lactic acid) composites with enhanced interfacial compatibility through a multi-layered coating of synergistic treatment strategy[J]. International Journal of Biological Macromolecules, 2023, 249: 126018. doi: 10.1016/j.ijbiomac.2023.126018
    [37] WANG Y, WENG Y, WANG L. Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites[J]. Polymer Testing, 2014, 36: 119-125. doi: 10.1016/j.polymertesting.2014.04.001
    [38] FANG X, LI Y, ZHAO J, et al. Improved interfacial performance of bamboo fibers/polylactic acid composites enabled by a self-supplied bio-coupling agent strategy[J]. Journal of Cleaner Production, 2022, 380: 134719. doi: 10.1016/j.jclepro.2022.134719
    [39] ZHANG K, CHEN Z, BOUKHIR M, et al. Bioinspired polydopamine deposition and silane grafting modification of bamboo fiber for improved interface compatibility of poly (lactic acid) composites[J]. International journal of biological macromolecules, 2022, 201: 121-132. doi: 10.1016/j.ijbiomac.2021.12.119
    [40] ZHANG K, CHEN Z, SMITH L M, et al. Polypyrrole-modified bamboo fiber/polylactic acid with enhanced mechanical, the antistatic properties and thermal stability[J]. Industrial Crops and Products, 2021, 162: 113227. doi: 10.1016/j.indcrop.2020.113227
    [41] ZHANG X, ZHU X, DUAN J, et al. Comparative study on properties of polypropylene-based composites reinforced with tobacco stalk fibers (unmodified/modified) from different parts of tobacco stalk[J]. Industrial Crops and Products, 2023, 201: 116890. doi: 10.1016/j.indcrop.2023.116890
    [42] ZHU L, QIU J, LIU W, et al. Mechanical and thermal properties of rice Straw/PLA modified by nano Attapulgite/PLA interfacial layer[J]. Composites Communications, 2019, 13: 18-21. doi: 10.1016/j.coco.2019.02.001
    [43] FAN Q, HAN G, CHENG W, et al. Effect of intercalation structure of organo-modified montmorillonite/polylactic acid on wheat straw fiber/polylactic acid composites[J]. Polymers, 2018, 10(8): 896. doi: 10.3390/polym10080896
    [44] CHOUGAN M, GHAFFAR S H, AL-KHEETAN M J. Graphene-based nano-functional materials for surface modification of wheat straw to enhance the performance of bio-based polylactic acid composites[J]. Materials Today Sustainability, 2023, 21: 100308. doi: 10.1016/j.mtsust.2022.100308
    [45] CHAI X, HE C, LIU Y, et al. Degradation of wheat straw/polylactic acid composites by Aspergillus niger[J]. Polymer Composites, 2022, 43(3): 1823-1831. doi: 10.1002/pc.26500
    [46] CHAI X, HE C, LIU Y, et al. Degradation of wheat straw/polylactic acid composites with and without sodium alginate in natural soil and the effects on soil microorganisms[J]. Journal of Applied Polymer Science, 2023, 140(6): e53447. doi: 10.1002/app.53447
    [47] PRADHAN R, MISRA M, ERICKSON L, et al. Compostability and biodegradation study of PLA–wheat straw and PLA–soy straw based green composites in simulated composting bioreactor[J]. Bioresource technology, 2010, 101(21): 8489-8491. doi: 10.1016/j.biortech.2010.06.053
    [48] MA J, CAO Y, FAN L, et al. Degradation characteristics of polybutylene adipate terephthalic acid (PBAT) and its effect on soil physicochemical properties: A comparative study with several polyethylene (PE) mulch films[J]. Journal of Hazardous Materials, 2023, 456: 131661. doi: 10.1016/j.jhazmat.2023.131661
    [49] ZENG D, ZHANG L, JIN S, et al. Mechanical Properties and Tensile Model of Hemp-Fiber-Reinforced Poly (butylene adipate-co-terephthalate) Composite[J]. Materials, 2022, 15(7): 2445. doi: 10.3390/ma15072445
    [50] GUPTA A, CHUDASAMA B, CHANG B P, et al. Robust and sustainable PBAT–Hemp residue biocomposites: Reactive extrusion compatibilization and fabrication[J]. Composites Science and Technology, 2021, 215: 109014. doi: 10.1016/j.compscitech.2021.109014
    [51] MAYER-LAIGLE C, FOULON L, DENOUAL C, et al. Flax shives-PBAT processing into 3D printed fluorescent materials with potential sensor functionalities[J]. Industrial Crops and Products, 2021, 167: 113482. doi: 10.1016/j.indcrop.2021.113482
    [52] 李蕴哲. PBAT/黄麻纤维复合材料的制备与阻燃改性[D]. 武汉理工大学, 2021.

    LI Yunzhe. Preparation and flame retardant modification of PBAT/jute fiber composites[D]. Wuhan University of Technology, 2021(in Chinese).
    [53] KIM J, BANG J, PARK S, et al. Enhanced barrier properties of biodegradable PBAT/acetylated lignin films[J]. Sustainable Materials and Technologies, 2023, 37: e00686. doi: 10.1016/j.susmat.2023.e00686
    [54] BOTTA L, TITONE V, TERESI R, et al. Biocomposite PBAT/lignin blown films with enhanced photo-stability[J]. International Journal of Biological Macromolecules, 2022, 217: 161-170. doi: 10.1016/j.ijbiomac.2022.07.048
    [55] HU B, LI L, GUAN D, et al. Enhanced UV-shielding performance of poly (lactic acid) composite with POSS-modified bamboo powder[J]. Industrial Crops and Products, 2023, 192: 116133. doi: 10.1016/j.indcrop.2022.116133
    [56] LIU Y, LIU S, LIU Z, et al. Enhanced mechanical and biodegradable properties of PBAT/lignin composites via silane grafting and reactive extrusion[J]. Composites Part B: Engineering, 2021, 220: 108980. doi: 10.1016/j.compositesb.2021.108980
    [57] KARGARZADEH H, GALESKI A, PAWLAK A. PBAT green composites: Effects of kraft lignin particles on the morphological, thermal, crystalline, macro and micromechanical properties[J]. Polymer, 2020, 203: 122748. doi: 10.1016/j.polymer.2020.122748
    [58] XU Z, QIAO X, SUN K. Environmental-friendly corn stover/poly (butylene adipate-co-terephthalate) biocomposites[J]. Materials Today Communications, 2020, 25: 101541. doi: 10.1016/j.mtcomm.2020.101541
    [59] ROSDI M H H M, AHAD N A. The effect of corn stalk fiber loading on tensile properties and absorption ability on polybutadiene adipate terephalate composite[C]//Journal of Physics: Conference Series. IOP Publishing, 2021, 2053(1): 012014.
    [60] XU L, ZHENG Z, LOU Z, et al. Preparation of ultrafine wheat straws with co-milling and its incorporation for biodegradable mulch film production with enhanced performance[J]. Chemical Engineering Journal, 2023: 143978.
    [61] FIORENTINI C, BASSANI A, GARRIDO G D, et al. High-pressure autohydrolysis process of wheat straw for cellulose recovery and subsequent use in PBAT composites preparation[J]. Biocatalysis and Agricultural Biotechnology, 2022, 39: 102282. doi: 10.1016/j.bcab.2022.102282
    [62] HAN Q, ZHAO L, LIN P, et al. Poly (butylene succinate) biocomposite modified by amino functionalized ramie fiber fabric towards exceptional mechanical performance and biodegradability[J]. Reactive and Functional Polymers, 2020, 146: 104443. doi: 10.1016/j.reactfunctpolym.2019.104443
    [63] ARMAN ALIM A A, BAHARUM A, Mohammad SHIRAJUDDIN S S, et al. Blending of Low-Density Polyethylene and Poly (Butylene Succinate)(LDPE/PBS) with Polyethylene–Graft–Maleic Anhydride (PE–g–MA) as a Compatibilizer on the Phase Morphology, Mechanical and Thermal Properties[J]. Polymers, 2023, 15(2): 261. doi: 10.3390/polym15020261
    [64] FENG Y, SHEN H, QU J, et al. Preparation and Properties of PBS/Sisal-Fiber Composites[J]. Polymer Engineering & Science, 2011, 51(3): 474-481.
    [65] LI Y, ZHANG J, CHENG P, et al. Helium plasma treatment voltage effect on adhesion of ramie fibers to polybutylene succinate[J]. Industrial Crops and Products, 2014, 61: 16-22. doi: 10.1016/j.indcrop.2014.06.039
    [66] LI J, BEN G, YANG J. Fabrication of hemp fiber-reinforced green composites with organoclay-filled poly (butylene succinate) matrix by pultrusion process[J]. Science and Engineering of Composite Materials, 2014, 21(2): 289-294. doi: 10.1515/secm-2013-0031
    [67] ZHOU M, LI Y, HE C, et al. Interfacial crystallization enhanced interfacial interaction of Poly (butylene succinate)/ramie fiber biocomposites using dopamine as a modifier[J]. Composites science and technology, 2014, 91: 22-29. doi: 10.1016/j.compscitech.2013.11.019
    [68] 辛治坤, 李宁, 赵清香, 等. PBS/竹纤维复合材料的研究[J]. 化工新型材料, 2015, 43(6): 91-93.

    XIN Zhikun, LI Ning, ZHAO Qingxiang, et al. Research on PBS/bamboo fiber composites material[J]. New Chemical Materials, 2015, 43(6): 91-93(in Chinese).
    [69] HONG G, CHENG H, ZHANG S, et al. Mussel-inspired reinforcement of a biodegradable aliphatic polyester with bamboo fibers[J]. Journal of Cleaner Production, 2021, 296: 126587. doi: 10.1016/j.jclepro.2021.126587
    [70] JIANG S, WEI Y, HU Z, et al. Potential application of bamboo powder in PBS bamboo plastic composites[J]. Journal of King Saud University-Science, 2020, 32(1): 1130-1134. doi: 10.1016/j.jksus.2019.10.014
    [71] QI W, TAHERZADEH M J, RUAN Y, et al. Denitrification performance and microbial communities of solid-phase denitrifying reactors using poly (butylene succinate)/bamboo powder composite[J]. Bioresource technology, 2020, 305: 123033. doi: 10.1016/j.biortech.2020.123033
    [72] DOMINGUEZ-ROBLES J, LARRANETA E, Fong M L, et al. Lignin/poly (butylene succinate) composites with antioxidant and antibacterial properties for potential biomedical applications[J]. International journal of biological macromolecules, 2020, 145: 92-99. doi: 10.1016/j.ijbiomac.2019.12.146
    [73] MOE N C, WINOTAPUN C, HARARAK B, et al. Application of lignin nanoparticles in polybutylene succinate based antifungal packaging for extending the shelf life of bread[J]. Food Packaging and Shelf Life, 2023, 39: 101127. doi: 10.1016/j.fpsl.2023.101127
    [74] ZHANG Y, ZHOU S, FANG X, et al. Renewable and flexible UV-blocking film from poly (butylene succinate) and lignin[J]. European Polymer Journal, 2019, 116: 265-274. doi: 10.1016/j.eurpolymj.2019.04.003
  • 加载中
计量
  • 文章访问数:  134
  • HTML全文浏览量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-01
  • 修回日期:  2024-04-22
  • 录用日期:  2024-05-05
  • 网络出版日期:  2024-06-07

目录

    /

    返回文章
    返回