On-line identification and evolution of active and passive oxidation for SiC-based thermal protection materials in atomic oxygen environment
-
摘要: 当前,高超声速飞行器主流SiC基防热材料在1200~1700℃内的防热机制主要依靠SiC被动氧化生成的SiO2保护层,但高超声速飞行带来的高温气体效应使得防热材料遭受高温、低压、原子氧载荷,原子氧的高活性将改变SiC氧化反应类型,导致材料丧失防护能力。因此,判别不同飞行工况下材料主/被动氧化类型将直接决定材料的使用阈值,对于高超声速飞行器防热设计和新型防热材料研制极为重要。基于此,本文打破通过分析氧化反应后材料微观成分辨别主/被动氧化反应的传统方法,基于光谱诊断、射频等离子放电以及高功率激光技术,建立高温、低压、原子氧环境下SiC基防热材料主/被动氧化反应在线识别方法与系统,实现了SiC基防热材料主/被动氧化反应快速在线识别,经过SEM、EDS和XRD等材料分析,验证了在线识别方法的准确性和可靠性,进一步探究了原子氧环境下SiC材料主动氧化的演化规律,并建立了氧化动力学方程,为SiC基防热材料防护阈值以及材料性能改进提供了重要支撑。Abstract: At present, the thermal protection mechanism of SiC-based materials for hypersonic vehicles mainly depends on the SiO2 protective layer formed by SiC passive oxidation at 1200-1700℃. However, the high-temperature gas effect caused by hypersonic flight makes the thermal protection materials subjected to high temperature, low pressure and atomic oxygen loadings. The high activity of atomic oxygen will change the type of SiC oxidation reaction, resulting in the loss of protective ability. Therefore, the identification of active and passive oxidation types of materials under different flight conditions will directly determine the use threshold of materials, which is very important for the TPS design of hypersonic vehicles and the development of new thermal protection materials. Based on it, this paper breaks the traditional method of analyzing the micro-composition of materials after oxidation, and establishes an on-line identification method and system of active and passive oxidation reaction for SiC-based thermal protection materials under high temperature, low pressure and atomic oxygen environment based on spectral diagnosis RF plasma discharge and high power laser technology. The rapid on-line identification of active and passive oxidation reaction for SiC-based thermal protection materials is realized. After material analysis by SEM, EDS and XRD, the accuracy and reliability of this method were verified, and the evolution law for active oxidation of SiC materials in atomic oxygen environment was further explored, which provides an important support for the protection threshold of SiC-based thermal protection materials and the improvement of material properties.
-
图 7 各SiC试样氧化后SEM组织形貌: (a) 试样3#表面; (b) 试样7#表面; (c) 试样3#截面; (d) 试样7#截面; (e) 试样2#表面; (f) 试样4#表面; (g) 试样6#表面; (h) 试样8#表面
Figure 7. Microstructures and morphologies of SEM after oxidation of SiC samples: (a) Sample 3# surface; (b) Sample 7# surface; (c) Sample 3# section; (d) Sample 7# section; (e) Sample 2# surface; (f) Sample 4# surface; (g) Sample 6# surface; (h) Sample 8# surface
图 10 不同温度的SiC材料原子氧氧化后显微组织: (a) SiC-O-1350表面; (b) SiC-O-1400表面; (c) SiC-O-1500表面; (d) SiC-O-1600表面; (e) SiC-O-1350截面; (f) SiC-O-1600截面
Figure 10. Microstructures of SiC materials after atomic oxygen oxidation at different temperatures: (a) SiC-O-1350 surface; (b) SiC-O-1400 surface; (c) SiC-O-1500 surface; (d) SiC-O-1600 surface; (e) SiC-O-1350 section; (f) SiC-O-1600 section
表 1 试验条件
Table 1. Test condition
Condition 1# 2# 3# 4# 5# 6# 7# 8# 9# T/℃ 1160 1300 1375 1375 1430 1430 1500 1500 1500 P/Pa 20 20 20 50 50 100 100 150 250 表 2 不同温度下SiC材料的氧化速率
Table 2. Oxidation rates of SiC materials at different temperatures
T/°C k/(g·min−1) 1350 0.00647 1400 0.00694 1500 0.00853 1600 0.01187 表 3 C/SiC材料主/被动氧化试验条件
Table 3. Active and passive oxidation test conditions of C/SiC materials
Serial T/°C P/Pa Spctral signal Mass change/mg C-1# 1270 28 F −35.2 C-2# 1350 28 F −72.3 C-3# 1400 28 T −90.6 C-4# 1400 100 F −78.4 C-5# 1500 28 T −115.4 C-6# 1600 27 T −134.8 C-7# 1600 100 F −128.4 C-8# 1650 27 T −150.4 -
[1] JACOBSON N S, MYERS D L. Active Oxidation of SiC[J]. Oxidation of Metals,2011,75(1):1-25. [2] WAGNER C. Passivity during the oxidation of silicon at elevated temperatures[J]. Journal of Applied Physics,1958,29(9):1295-1297. doi: 10.1063/1.1723429 [3] CHATILLON C, TEYSSANDIER F. Thermodynamic assessment of the different steps observed during SiC oxidation[J]. Journal of the European Ceramic Society,2022,42(4):1175-1196. doi: 10.1016/j.jeurceramsoc.2021.11.064 [4] MOMOZAWA A, YOKOTE N, TERUTSUKI D, et al. Dynamic oxidation of SiC with arc-heated plasma wind tunnel and laser heating[J]. Vacuum,2021,185:109899. doi: 10.1016/j.vacuum.2020.109899 [5] YANG L, XIAO X, JING L, et al. Dynamic oxidation mechanism of SiC fiber reinforced SiC matrix composite in high-enthalpy plasmas[J]. Journal of the European Ceramic Society,2021,41(10):5388-5393. doi: 10.1016/j.jeurceramsoc.2021.03.064 [6] ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. AIAA, 2000. [7] PARK T, PARK C, JUNG J, et al. Investigation of silicon carbide oxidation mechanism using ReaxFF molecular dynamics simulation[J]. Journal of Spacecraft and Rockets,2020,57(6):1328-1334. doi: 10.2514/1.A34669 [8] KUBOTA Y, TANAKA H, ARAI Y, et al. Oxidation behavior of ZrB2-SiC-ZrC at 1700° C[J]. Journal of the European Ceramic Society,2017,37(4):1187-1194. doi: 10.1016/j.jeurceramsoc.2016.10.034 [9] CHEN S, ZENG Y, XIONG X, et al. Static and dynamic oxidation behaviour of silicon carbide at high temperature[J]. Journal of the European Ceramic Society,2021,41(11):5445-5456. doi: 10.1016/j.jeurceramsoc.2021.04.040 [10] MONTEVERDE F, SAVINO R, FUMO M D S. Dynamic oxidation of ultra-high temperature ZrB2–SiC under high enthalpy supersonic flows[J]. Corrosion science,2011,53(3):922-929. doi: 10.1016/j.corsci.2010.11.018 [11] 洪智亮, 张巧君, 李开元, 等. SiC/SiC复合材料在高温空气中的氧化行为[J]. 材料工程, 2021, 49(5):144-150. doi: 10.11868/j.issn.1001-4381.2020.001169HONG Zhiliang, ZHANG Qiaojun, LI Kaiyuan, et al. Oxidation behavior of SiC/SiC composites in air at high temperature[J]. Journal of Materials Engineering,2021,49(5):144-150(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.001169 [12] YOU N, LIU X, HAO J, et al. Microwave plasma oxidation kinetics of SiC based on fast oxygen exchange[J]. Vacuum,2020,182:109762. doi: 10.1016/j.vacuum.2020.109762 [13] BALAT P M, BEDRA L, GERASIMOVA O, et al. Recombination of atomic oxygen on α-Al2O3 at high temperature under air microwave-induced plasma[J]. Chemical Physics,2007,340(1-3):217-226. doi: 10.1016/j.chemphys.2007.09.019 [14] OSAWA H, SUZUKI T, TAKAYANAGI H, et al. Characteristics of O2-Ar inductively coupled plasma test flow during catalytic recombination processes[J]. Journal of thermophysics and heat transfer,2013,27(1):30-41. doi: 10.2514/1.T3722 [15] MARSCHALL J, FLETCHER D. High enthalpy test environments, flow modeling and in situ diagnostics for characterizing ultra-high temperature ceramics[J]. Journal of the European Ceramic Society,2010,30(11):2323-2336. doi: 10.1016/j.jeurceramsoc.2010.01.010 [16] BALAT M J H. Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air[J]. Journal of the European Ceramic Society,1996,16(1):55-62. doi: 10.1016/0955-2219(95)00104-2 [17] PELLEGRINI C, BALAT P M, RAPAUD O, et al. Oxidation resistance of Zr-and Hf-diboride composites containing SiC in air plasma up to 2600 K for aerospace applications[J]. Ceramics International,2022,48(2):2177-2190. doi: 10.1016/j.ceramint.2021.09.310 [18] ZOU J, RUBIO V, BINNER J. Thermoablative resistance of ZrB2-SiC-WC ceramics at 2400 ℃[J]. Acta Materialia,2017,133:293-302. doi: 10.1016/j.actamat.2017.05.033 [19] PARK J Y, KIM D, LEE H G, et al. Oxidation behaviors of SiC f/SiC composites tested at high temperature in air by an ablation method[J]. Journal of the Korean Ceramic Society,2018,55(5):498-503. doi: 10.4191/kcers.2018.55.5.03 [20] YANG L, XIAO X, LIU L, et al. Dynamic oxidation mechanism of carbon fiber reinforced SiC matrix composite in high-enthalpy and high-speed plasmas[J]. Journal of Advanced Ceramics,2022,11(2):365-377. doi: 10.1007/s40145-021-0540-8 [21] VRLINIČ T, VESEL A, CVELBAR U, et al. Rapid surface functionalization of poly (ethersulphone) foils using a highly reactive oxygen-plasma treatment[J]. Surface and Interface Analysis,2007,39(6):476-481. doi: 10.1002/sia.2548 [22] JIN H, MENG S H, ZHANG X H, et al. Effect of oxidation temperature, time, and ambient pressure on the oxidation of ZrB2-SiC-graphite composites in atomic oxygen[J]. Journal of the European Ceramic Society,2016,36(8):1885-1861. doi: 10.1016/j.jeurceramsoc.2016.02.043 [23] ZENG Q X, JIN H, MENG S H, et al. Spatially resolved ground state atomic oxygen density during the mode transition of inductively coupled oxygen plasmas[J]. Vacuum,2019,164:98-104. doi: 10.1016/j.vacuum.2019.03.009 [24] 赵国利. 双频容性耦合等离子体的光谱诊断研究[D]. 大连: 大连理工大学, 2010.ZHAO Guoli. Spectroscopic diagnostics of a dual-frequency capacitively coupled plasma[D]. Dalian: Dalian University of Technology, 2010(in Chinese). [25] 金华. 防热材料表面催化特性测试与评价方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.JIN Hua. Surface catalyticity properties testing and characterization methods of thermal protection materials[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese). [26] WOOLDRIDGE M S, DANCZYK S A, WU J. Quantitative evaluation of vibrational excitation of SiO A1Π–X1Σ+ flame emission from a silane/hydrogen/oxygen/argon diffusion flame[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2000,64(6):573-584. doi: 10.1016/S0022-4073(99)00136-3 [27] PANERAI F, HELBER B, CHAZOT O, et al. Surface temperature jump beyond active oxidation of carbon/silicon carbide composites in extreme aerothermal conditions[J]. Carbon,2014,71:102-119. doi: 10.1016/j.carbon.2014.01.018 [28] Kubota Y, Hatta H, Yoshinaka T, et al. Use of volume element methods to understand experimental differences in active/passive transitions and active oxidation rates for SiC[J]. Journal of the American Ceramic Society,2013,96(4):1317-1323. doi: 10.1111/jace.12141 -