留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

球状NiCo2S4的制备及其在KOH溶液中的电化学行为

龙升 刘依 邹攀 杨泛明 贺国文

龙升, 刘依, 邹攀, 等. 球状NiCo2S4的制备及其在KOH溶液中的电化学行为[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 龙升, 刘依, 邹攀, 等. 球状NiCo2S4的制备及其在KOH溶液中的电化学行为[J]. 复合材料学报, 2024, 42(0): 1-9.
LONG Sheng, LIU Yi, ZOU Pan, et al. Preparation of spherical NiCo2S4 and the electrochemical behavior in KOH solution[J]. Acta Materiae Compositae Sinica.
Citation: LONG Sheng, LIU Yi, ZOU Pan, et al. Preparation of spherical NiCo2S4 and the electrochemical behavior in KOH solution[J]. Acta Materiae Compositae Sinica.

球状NiCo2S4的制备及其在KOH溶液中的电化学行为

基金项目: 湖南省自然科学基金(2019JJ50026),湖南省教育厅科学研究项目(18B447)资助
详细信息
    通讯作者:

    杨泛明,博士,副教授,硕士生导师,研究方向为功能复合材料的开发 E-mail: ychufei@163.com

    贺国文,博士,教授,研究方向为功能复合材料及电化学 E-mail: yfanming0102@163.com

  • 中图分类号: TQ152; TB333

Preparation of spherical NiCo2S4 and the electrochemical behavior in KOH solution

Funds: The Natural Science Foundation of Hunan Province (2019JJ50026) and the Scientific Research Projects of Hunan Education Department (18B447))
  • 摘要: NiCo2S4中Ni和Co元素可以同时参与充放电过程,获得较高的放电比容量和能量密度。对NiCo2S4中双电层电容和赝电容的贡献率进行分析,有助于推动电极材料的深入开发。以乙酸钴为Co源、乙酸镍为Ni源、硫代乙酰胺为沉淀剂,通过水热合成法制备具有优异电化学性能的球状电极材料硫钴酸镍(NiCo2S4)。利用X射线衍射、X射线光电子能谱、扫描电子显微镜、透射电子显微镜、Mapping和N2吸附-脱附技术对NiCo2S4的物相、形貌、组成和孔结构进行分析,并对其在KOH电解液中的充放电行为进行探究。结果表明,球状NiCo2S4制备成功,并且Ni、Co和S的比例为1∶2.1∶4.2。NiCo2S4为立方相多晶体,晶格常数为0.9387 nm。Ni和Co分别以Ni2+/Ni3+和Co2+/Co3+的形式存在于NiCo2S4的晶格之中。NiCo2S4的孔体积为0.402 cm3/g,并且介孔比例为90.6%。NiCo2S4在KOH溶液中同时产生双电层电容和赝电容,两者所占比例分别为60.6%、39.4%。电流密度为0.2 A/g时,放电比容量为409.7 F/g,能量密度为14.2 W·h/kg。循环10000次,容量保持率为90.3%。

     

  • 图  1  NiCo2S4的XRD图

    Figure  1.  XRD diagram of NiCo2S4

    图  2  NiCo2S4的XPS图(a) 全谱图; (b) Ni 2p精细谱; (c) Co 2p 精细谱

    Figure  2.  XPS spectra of NiCo2S4 (a) Full spectrum; (b) The fine spectrum of Ni 2p; (c) The fine spectrum of Co 2p

    图  3  NiCo2S4的SEM、TEM和Mapping测试结果(a) SEM;(b)~(d) TEM;(e)~(h):Mapping

    Figure  3.  SEM, TEM and EDS tested results of NiCo2S4 (a) SEM;(b)~(d) TEM;(e)~(h) Mapping

    图  4  NiCo2S4的N2吸附-脱附测试结果(a) N2吸附等温线;(b) 孔径分布

    Figure  4.  N2 adsorption-desorption tested results of NiCo2S4 (a) N2 adsorption isotherm; (b) pore diameter distribution

    图  5  NiCo2S4的CV测试结果(a) CV曲线;(b) 峰电流

    Figure  5.  CV tested results of NiCo2S4 (a) CV curves; (b) peak current

    图  6  NiCo2S4的GCD结果(a) GCD曲线;(b) 放电效率和比容量;(c) 能量密度

    Figure  6.  GCD results of NiCo2S4 (a) GCD curves; (b) discharge efficiency and specific capacity; (c) energy density

    图  7  NiCo2S4的放电比容量与放电时间的关系图

    Figure  7.  Relationship between specific capacitance and discharge time of NiCo2S4

    图  8  NiCo2S4的EIS结果(a) Nyquist曲线;(b) Bode图

    Figure  8.  EIS results of NiCo2S4 (a) Nyquist curves; (b) Bode diagram

    图  9  NiCo2S4的循环充放电结果

    Figure  9.  Cyclic charging-discharging results of NiCo2S4

  • [1] YANG F M, ZHOU X Y, LI X D, et al. Hollow urchin-shaped NCM811 ternary-structure for high rate charge/discharge capability and efficient CO2 adsorption[J]. Journal of Environmental Chemical Engineering, 2023, 11: 109445. doi: 10.1016/j.jece.2023.109445
    [2] YANG F M, LI X D. The preparation of rod-like porous α-Fe2O3 with large interplanar spacing for symmetric supercapacitors[J]. Australian Journal of Chemistry, 2024, 76(11): 774-783.
    [3] CHENG F, YANG X P, ZHANG S P, et al. Boosting the supercapacitor performances of activated carbon with carbon nanomaterials[J]. Journal of Power sources, 2020, 450: 227678. doi: 10.1016/j.jpowsour.2019.227678
    [4] HSU C C, TU Y H, YANG Y H, et al. Improved performance and long-term stability of activated carbon doped with nitrogen for capacitive deionization[J]. Desalination, 2020, 481: 114362. doi: 10.1016/j.desal.2020.114362
    [5] SAHIN O, YARDIM Y, BAYTAR O, et al. Enhanced electrochemical double-layer capacitive performance with CO2 plasma treatment on activated carbon prepared from pyrolysis of pistachio shells[J]. International Journal of Hydrogen Energy, 2020, 45(15): 8843-8852. doi: 10.1016/j.ijhydene.2020.01.128
    [6] ZHAO J, JI G C, LI Y, et al. Preparation of a self-healing polyaniline-based gel and its application as a healable all-in-one capacitor[J]. Chemical Engineering Journal, 2021, 420: 129790. doi: 10.1016/j.cej.2021.129790
    [7] SAHARAN P, SINGH M, GUPTA A, et al. S Conducting co-polymer derived N, S co-doped metal-free hierarchical nanoporous carbon for robust electrochemical capacitor[J]. Journal of Energy Storage, 2023, 73: 108928. doi: 10.1016/j.est.2023.108928
    [8] ZHAO J, JI G C, LI Y, et al. Preparation of a self-healing polyaniline-based gel and its application as a healable all-in-one capacitor[J]. Chemical Engineering Journal, 2021, 420: 129790. doi: 10.1016/j.cej.2021.129790
    [9] CHENG W X, FU J M, HU H B, et al. Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density[J]. Advanced Sciences, 2021, 8(16): 2100775.
    [10] ANDO Y, OKUBO M, YAMADA A, et al. Capacitive versus pseudocapacitive storage in MXene[J]. Advanced Functional Materials, 2020, 30(47): 2000820. doi: 10.1002/adfm.202000820
    [11] BRADY A, LIANG K, VUONG V Q, et al. Pre-sodiated Ti3C2Tx MXene structure and behavior as electrode for sodium-ion capacitors[J]. ACS Nano, 2021, 15: 2994-3003. doi: 10.1021/acsnano.0c09301
    [12] 杨泛明, 贺国文. 颗粒状NiO的制备及其电化学性能和CO2吸附性能[J]. 化工进展, 2023, 42(2): 907-916.

    YANG F M, HE G W. Preparation of granular NiO for the electrochemical performance and CO2 adsorption performance[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 907-916 (in Chinese).
    [13] SETHI M, SHENOY U S, BHAT D K. Hassle-free solvothermal synthesis of NiO nanoflakes for supercapacitor application[J]. Physica B: Physics of Condensed Matter, 2021, 611: 412959. doi: 10.1016/j.physb.2021.412959
    [14] ZHAO J S, TIAN Y, LIU A, et al. The NiO electrode materials in electrochemical capacitor: A review[J]. Materials Science in Semiconductor Processing, 2019, 96: 78-90. doi: 10.1016/j.mssp.2019.02.024
    [15] TAO Y J, WU Y T, CHEN H, et al. Synthesis of amorphous hydroxyl-rich Co3O4 for flexible high-rate supercapacitor[J]. Chemical Engineering Journal, 2020, 396: 125364. doi: 10.1016/j.cej.2020.125364
    [16] ADHIKARI S, SELVARAJ S, JI S H, et al. Encapsulation of Co3O4 nanocone arrays via ultrathin NiO for superior performance asymmetric supercapacitors[J]. Small, 2020, 16(48): 2005414. doi: 10.1002/smll.202005414
    [17] ARUN T, KUMAR T K, UAYABHASKAR R, et al. Nano hexagonal Co3O4 platelets for supercapacitor applications-synthesis and characterization[J]. 2019, 6: 0850b1.
    [18] 邢正伟, 沈鸿烈, 唐群涛, 等. 自支撑多孔硅/ZnO复合材料的制备及其超级电容特性[J]. 复合材料学报, 2016, 33(9): 2082-2087.

    XING Z W, SHEN H L, TANG Q T, et al. Preparation of freestanding porous silicon/ZnO composites and its supercapacitor property[J]. Acta Materiae Compositae sinica, 2016, 33(9): 2082-2087 (in Chinese).
    [19] 胡彬, 张红平, 姜丽丽. 碳化氧化石墨烯/壳聚糖超级电容器电极复合材料的制备及表征[J]. 复合材料学报, 2018, 35(3): 661-667.

    HU B, ZHANG H B, JIANG L L. Preparation of carbonized graphene oxide/chitosan composites and their application as electrode composites for supercapacitors[J]. Acta Materiae Compositae sinica, 2018, 35(3): 661-667 (in Chinese).
    [20] LI S L, ZHANG J Q, CHAO H X, et al. High energy density lithium-ion capacitor enabled by nitrogen-doped amorphous carbon linked hierarchically porous Co3O4 nanofibers anode and porous carbon polyhedron cathode[J]. Journal of Alloys and Compounds, 2022, 918: 165726. doi: 10.1016/j.jallcom.2022.165726
    [21] WANG Q, QIN B, ZHANG A, et al. Synthesis of N-doped carbon nanosheets with controllable porosity derived from bio-oil for high-performance supercapacitors[J]. Journal of Materials Chemistry A 2018, 6: 19653-19663.
    [22] BAGUS P S, NELIN C J, RICHARD C, et al. Main and satellite features in the Ni 2p XPS of NiO[J]. Inorganic Chemistry, 2022, 61: 18077-18094. doi: 10.1021/acs.inorgchem.2c02549
    [23] ZENG H, OUBLA M, ZHONG X, et al. Rational defect and anion chemistries in Co3O4 for enhanced oxygen evolution reaction[J]. Applied Catalysis B: Environmental 2021, 281: 119535.
    [24] WANG F P, LI G F, ZHOU Q Q, et al. One-step hydrothermal synthesis of sandwich-type NiCo2S4@reduced graphene oxide composite as active electrode material for supercapacitors[J]. Applied Surface Science, 2017, 425: 180-187. doi: 10.1016/j.apsusc.2017.07.016
    [25] KALPANA S, BHAT V S, HEGDE G, et al. Exploring the influence of KOH electrolyte concentration on the electrochemical properties of Co3O4-GO nanocomposite[J]. Journal of Physics and Chemistry of solids, 2024, 190: 112019. doi: 10.1016/j.jpcs.2024.112019
    [26] FU Y Q, WEI Q L, ZHANG G X, et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon[J]. Advanced Energy Materials, 2018, 8(26): 1801445. doi: 10.1002/aenm.201801445
  • 加载中
计量
  • 文章访问数:  70
  • HTML全文浏览量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-07
  • 修回日期:  2024-06-06
  • 录用日期:  2024-06-14
  • 网络出版日期:  2024-06-29

目录

    /

    返回文章
    返回