Preparation and properties of nano-ZnO/bio-based nylon 612 nano-composite antibacterial film
-
摘要: 细菌滋生将缩短食品货架周期,对人体健康产生负面影响,因此开展抗菌包装膜的研究十分重要。本研究采用γ-氨丙基三乙氧基硅烷偶联剂(KH550)改性了纳米氧化锌,并将改性后的纳米氧化锌与尼龙612(PA612)进行熔融共混制备复合材料,最终采用挤出流延制备了m-ZnO/PA612纳米复合抗菌薄膜。采用傅里叶变换红外光谱(FT-IR)对改性前后的纳米氧化锌进行表征,证明了KH550成功接枝到纳米氧化锌上。通过扫描电子显微镜(SEM)、差示扫描量热法(DSC)、热重(TGA)、平板计数法等测试手段对纳米氧化锌的分散及复合材料的结晶性能、热性能、抗菌性能进行了研究。结果表明:m-ZnO在尼龙612基体中分散良好。m-ZnO可以作为成核剂提高PA612的结晶度,m-ZnO的含量为2wt%时,其结晶度提高了4.1%。m-ZnO对PA612有增强作用,m-ZnO的添加量为2wt%时,纳米复合薄膜的拉伸强度较纯PA612提高了15%。m-ZnO的存在赋予了PA612抗菌性能,PA612纳米复合薄膜对大肠杆菌和金黄色葡萄球菌均有很好的抗菌效果,且随着m-ZnO含量的增大,抗菌率增大,m-ZnO的质量分数为4wt%时,对大肠杆菌的抗菌率为91.03%,对金黄色葡萄球菌的抗菌率为93.25%。
-
关键词:
- 尼龙612 /
- γ-氨丙基三乙氧基硅烷 /
- 纳米氧化锌 /
- 抗菌 /
- 纳米复合薄膜
Abstract: Bacterial growth can shorten the shelf life of food and exert a negative effect on human health, therefore it is of great importance to conduct research on anti-bacterial films. Herein, the γ-aminopropyltriethoxysilane coupling agent (KH550) was used to modify nano-zinc oxide, and the modified nano-zinc oxide was melt-blended with nylon 612 (PA612) to prepare m-ZnO/PA612 nanocomposite, followed by the fabrication of the antibacterial film through extrusion film casting process. The Fourier transform infrared spectroscopy (FT-IR) was used to characterize the nano-zinc oxide before and after the modification, which proved that KH550 was successfully grafted onto the nano-zinc oxide. Through scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetry (TGA), plate counting method, and other test methods, the dispersibility of nano-zinc oxide and the crystallization performance, thermal performance, and antibacterial properties of composite materials were studied. The results showed that the m-ZnO is well dispersed in the nylon 612 matrix. The m-ZnO can be used as a nucleating agent to increase the crystallinity of PA612. When the content of m-ZnO is 2wt%, the crystallinity is increased by 4.1%. Moreover, the m-ZnO exhibits a reinforcing effect on PA612. When the addition amount of m-ZnO is 2wt%, the tensile strength of the nanocomposite film is 15% higher than that of pure PA612. The presence of m-ZnO gives PA612 antibacterial properties. PA612 nanocomposite film has a good inhibitory effect on Escherichia coli and Staphylococcus aureus. With the increase of m-ZnO content, the antibacterial rate increases, When the mass fraction of m-ZnO is 4wt%, the antibacterial rate against Escherichia coli is 91.03%, and the antibacterial rate against Staphylococcus aureus is 93.25%.-
Key words:
- nylon 612 /
- γ-aminopropyltriethoxysilane /
- nano zinc oxide /
- antibacterial /
- nanocomposite film
-
表 1 不同ZnO含量的ZnO/PA612抗菌复合膜
Table 1. ZnO/PA612 antibacterial composite films with different ZnO content
Sample Mass fraction/wt% PA612 m-ZnO ZnO PA612 100 0 0 0.5wt%m-ZnO/PA612 99.5 0.5 0 2wt%
ZnO/PA61298 0 2 2wt%m-ZnO/PA612 98 2 0 4wt%m-ZnO/PA612 96 4 0 6wt%m-ZnO/PA612 94 6 0 Notes: m-ZnO—modified nano zinc oxide; ZnO—Unmodified nano zinc oxide 表 2 PA612及不同m-ZnO含量的PA612纳米复合材料的DSC热分析数据
Table 2. DSC thermal analysis data of PA612 and PA612 nanocomposites with different m-ZnO contents
Sample Tm/℃ Tc/℃ ΔHm /(J·g−1) Xc / % PA612 222.86 186.26 61.22 23.73 0.5wt%m-ZnO/PA612 220.37 187.09 70.68 27.53 2wt%m-ZnO/PA612 221.67 187.34 70.36 27.83 4wt%m-ZnO/PA612 221.29 186.99 66.99 26.93 6wt%m-ZnO/PA612 220.97 186.14 65.61 26.88 Notes: Tm,and Tc are the melting peak temperature and the crystallization peak temperature of PA612, respectively; △Hm and Xc are the melting enthalpy and crystallinity of PA612. 表 3 PA612及不同m-ZnO含量的PA612纳米复合材料的热稳定性
Table 3. Thermal stability of PA612 and PA612 nanocomposites with different m-ZnO contents
Sample T5%/℃ T50%/℃ Char yield at 600℃/wt% PA612 398.9 450.0 2.3 0.5wt%m-ZnO/PA612 400.4 446.0 2.7 2wt%m-ZnO/PA612 397.2 443.0 3.5 4wt%m-ZnO/PA612 399.3 446.7 4.7 6wt%m-ZnO/PA612 398.6 446.3 7.8 Notes: T5% and T50% are the temperature when the weight loss of the samples is 5% and 50%, respectively. 表 4 PA612及不同m-ZnO含量的PA612纳米复合材料的拉伸性能
Table 4. Tensile properties of PA612 and PA612 nanocomposites with different m-ZnO contents
Sample Tensile stress/MPa Young’s modulus/MPa Elongation at break/% PA612 93.95±5.55 685.11±50.97 392.77±13.7 0.5wt%m-ZnO/PA612 93.06±4.56 543.66±39.20 378.30±11.08 2wt%m-ZnO/PA612 108.13±1.76 889.70±60.78 305.23±10.13 4wt%m-ZnO/PA612 84.31±8.35 422.97±94.12 371.85±27.97 6wt%m-ZnO/PA612 83.06±10.85 486.79±71.10 325.38±32.66 表 5 PA612及不同m-ZnO含量的PA612纳米复合材料膜对大肠杆菌的抑菌活性
Table 5. Antibacterial activity of PA612 and PA612 nanocomposites with different m-ZnO contents membranes against Escherichia coli
Sample Bacteria concentration /
CFU•mL−(E. coli)Antibacterial rate R/% PA612 5.48×106 0 0.5wt%m-ZnO/PA612 3.89×106 29.01% 2wt%ZnO/PA612 1.43×106 73.91% 2wt%m-ZnO/PA612 5.3×105 90.33% 4wt%m-ZnO/PA612 3.7×105 93.25% 6wt%m-ZnO/PA612 2.5×105 95.44% 表 6 PA612及不同m-ZnO含量的PA612纳米复合材料膜对金黄色葡萄球菌的抑菌活性
Table 6. Antibacterial activity of PA612 and PA612 nanocomposites with different m-ZnO contents membranes against Staphylococcus aureus
Sample Bacteria concentration /
CFU•mL-(Staphylococcus aureus)Antibacterial rate R/% PA612 5.35×106 0 0.5wt%m-ZnO/PA612 3.60×106 32.71% 2wt% ZnO/PA612 1.73×106 67.66% 2wt%m-ZnO/PA612 9.40×105 82.43% 4wt%m-ZnO/PA612 4.80×105 91.03% 6wt%m-ZnO/PA612 3.60×105 93.27% -
[1] FUNK I, RIMMEL N, SCHORSCH C, et al. Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using Candida tropicalis[J]. Journal of Industrial Microbiology and Biotechnology,2017,44(10):1491-1502. doi: 10.1007/s10295-017-1972-6 [2] TYUFTIN A A, KERRY J P. Review of surface treatment methods for polyamide films for potential application as smart packaging materials: Surface structure, antimicrobial and spectral properties[J]. Food Packaging and Shelf Life,2020,24:100475. doi: 10.1016/j.fpsl.2020.100475 [3] WU Y, HUANG A, FAN S, et al. Crystal Structure and Mechanical Properties of Uniaxially Stretched PA612/SiO2 Films[J]. Polymers,2020,12(3):711. doi: 10.3390/polym12030711 [4] WADI V S, JENA K K, HALIQUE K, et al. Linear sulfur–nylon composites: Structure, morphology, and antibacterial activity[J]. ACS Applied Polymer Material,2019,2(2):198-208. [5] RYŠÁNEK P, MALÝ M, ČAPKOVÁ P, et al. Antibacterial modification of nylon-6 nanofibers: structure, properties and antibacterial activity[J]. Journal of Polymer Research,2017,24(11):1-10. [6] TANG L, WANG D Y, XU Q S, et al. Preparation and characterization of antibacterial nylon 6 fiber[J]. Materials Science Forum,2017,898:2254-2262. doi: 10.4028/www.scientific.net/MSF.898.2254 [7] VENKATRAM M, NARASIMHA MURTHY H N R, GAIKWAD A, et al. Antibacterial and flame retardant properties of Ag-MgO/nylon 6 electrospun nanofibers for protective applications[J]. Clothing and Textiles Research Journal,2018,36(4):296-309. doi: 10.1177/0887302X18783071 [8] ROHAETI E, RAKHMAWATI A. Application of Terminalia Catappa in preparation of silver nanoparticles to develop antibacterial nylon[J]. Oriental J. Chem,2017,33:2905-2912. doi: 10.13005/ojc/330625 [9] Omer R A, Gheni A I, Omar K A, et al. Antimicrobial Activity of Nylon Nanocomposites Against Staphylococcus Aureus and Escherichia Coli Bacteria[J]. Science Journal of University of Zakho,2019,7(4):138-143. doi: 10.25271/sjuoz.2019.7.4.631 [10] WANG Z, ZHANG L, LIU Z, et al. The antibacterial polyamide 6-ZnO hierarchical nanofibers fabricated by atomic layer deposition and hydrothermal growth[J]. Nanoscale research letters,2017,12(1):1-8. doi: 10.1186/s11671-016-1773-2 [11] TANG Q, WANG K, REN X, et al. Preparation of porous antibacterial polyamide 6 (PA6) membrane with zinc oxide (ZnO) nanoparticles selectively localized at the pore walls via reactive extrusion[J]. Science of The Total Environment,2020,715:137018. doi: 10.1016/j.scitotenv.2020.137018 [12] THOKALA N, KEALEY C, KENNEDY J, et al. Characterisation of polyamide 11/copper antimicrobial composites for medical device applications[J]. Materials Science and Engineering:C,2017,78:1179-1186. doi: 10.1016/j.msec.2017.03.149 [13] SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism[J]. Nano-micro letters,2015,7(3):219-242. doi: 10.1007/s40820-015-0040-x [14] QI K, CHENG B, YU J, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO[J]. Journal of Alloys and Compounds,2017,727:792-820. doi: 10.1016/j.jallcom.2017.08.142 [15] Li S C, Li Y N. Mechanical and antibacterial properties of modified nano-ZnO/high-density polyethylene composite films with a low doped content of nano-ZnO[J]. Journal of applied polymer science,2010,116(5):2965-2969. [16] KIM I, VISWANATHAN K, KASI G, et al. Poly (lactic acid)/ZnO bionanocomposite films with positively charged ZnO as potential antimicrobial food packaging materials[J]. Polymers,2019,11(9):1427. doi: 10.3390/polym11091427 [17] LI Y, XU W, ZHANG G. Effect of coupling agent on nano-ZnO modification and antibacterial activity of ZnO/HDPE nanocomposite films[J]. IOP Conference Series:Materials Science and Engineering,2015:012054. [18] LI Y, YU J, GUO Z. The influence of silane treatment on nylon 6/nano-SiO2 in situ polymerization[J]. ,2002,84(4):827-834. [19] 光学WU T, CAI B, WANG J, et al. TEMPO-oxidized cellulose nanofibril/layered double hydroxide nanocomposite films with improved hydrophobicity, flame retardancy and mechanical properties[J]. Composites Science and Technology, 2019, 171: 111-117 [20] 中国人民共和国卫生部, 塑料 塑料表面抗菌性能试验方法: GB/T 31402-2015[S]. 中国标准出版社, 2010.Ministry of Health of the People's Republic of China. Test method for antibacterial properties of plastic surface: GB/T 31402-2015[S]. China Standards Press, 2010(in Chinese). [21] KHURANA N, ARORA P, PENTE A S, et al. Surface modification of zinc oxide nanoparticles by vinyltriethoxy silane (VTES)[J], 2021, 124: 108347. [22] HANG T T X, DUNG N T, TRUC T A, et al. Effect of silane modified nano ZnO on UV degradation of polyurethane coatings[J]. Progress in Organic Coatings,2015,79:68-74. doi: 10.1016/j.porgcoat.2014.11.008 [23] FAN X, YAN Y. Poly (amino acid)/ZnO nanoparticles nanocomposites with enhanced thermal, mechanical, and antibacterial properties[J]. Polymer Bulletin,2020,77(5):2325-2343. doi: 10.1007/s00289-019-02860-6 [24] SHANKAR S, WANG L F, RHIM J W. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films[J]. Materials Science and Engineering:C,2018,93:289-298. doi: 10.1016/j.msec.2018.08.002 [25] ASANO T, BALTÁ CALLEJA F J, GIR L, et al. Structure and mechanical properties of nylon 6.12 prepared by temperature slope crystallization. II. Rolling deformation and microhardness of the oriented negative spherulite[J]. Journal of Macromolecular Science, Part B:Physics,1997,36(6):799-812. doi: 10.1080/00222349708212403 [26] SHOJAEIARANI J, BAJWA D, JIANG L, et al. Insight on the influence of nano zinc oxide on the thermal, dynamic mechanical, and flow characteristics of Poly (lactic acid)–zinc oxide composites[J]. Polymer Engineering & Science,2019,59(6):1242-1249. [27] MALLAKPOUR S, NOURUZI N. Effect of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites[J]. Polymer,2016,89:94-101. doi: 10.1016/j.polymer.2016.02.038 [28] LIU J, WANG Y, MA J, et al. A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO[J]. Journal of Alloys and Compounds,2019,783:898-918. doi: 10.1016/j.jallcom.2018.12.330 [29] HU C, GUO J, QU J, et al. Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation[J]. Langmuir,2007,23(9):4982-4987. doi: 10.1021/la063626x -

计量
- 文章访问数: 156
- HTML全文浏览量: 73
- 被引次数: 0