留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米ZnO/生物基尼龙612纳米复合抗菌薄膜的制备与性能

李霞 刘跃军 刘小超 江南 王雄刚 莫智翔 胡钰迪 郑伟

李霞, 刘跃军, 刘小超, 等. 纳米ZnO/生物基尼龙612纳米复合抗菌薄膜的制备与性能[J]. 复合材料学报, 2022, 40(0): 1-10
引用本文: 李霞, 刘跃军, 刘小超, 等. 纳米ZnO/生物基尼龙612纳米复合抗菌薄膜的制备与性能[J]. 复合材料学报, 2022, 40(0): 1-10
Xia LI, Yuejun LIU, Xiaochao LIU, Nan JIANG, Xionggang WANG, Zhixiang MO, Yudi HU, wei ZHENG. Preparation and properties of nano-ZnO/bio-based nylon 612 nano-composite antibacterial film[J]. Acta Materiae Compositae Sinica.
Citation: Xia LI, Yuejun LIU, Xiaochao LIU, Nan JIANG, Xionggang WANG, Zhixiang MO, Yudi HU, wei ZHENG. Preparation and properties of nano-ZnO/bio-based nylon 612 nano-composite antibacterial film[J]. Acta Materiae Compositae Sinica.

纳米ZnO/生物基尼龙612纳米复合抗菌薄膜的制备与性能

基金项目: 国家自然科学基金(11872179),湖南省自然科学基金(2020JJ5137),湖南省教育厅科学研究项目(19A138;19B152)
详细信息
    通讯作者:

    刘跃军,博士,教授,研究方向主要为高分子材料加工工程、先进包装材料与技术 E-mail: yjliu_2005@126.com

  • 中图分类号: TB332

Preparation and properties of nano-ZnO/bio-based nylon 612 nano-composite antibacterial film

  • 摘要: 细菌滋生将缩短食品货架周期,对人体健康产生负面影响,因此开展抗菌包装膜的研究十分重要。本研究采用γ-氨丙基三乙氧基硅烷偶联剂(KH550)改性了纳米氧化锌,并将改性后的纳米氧化锌与尼龙612(PA612)进行熔融共混制备复合材料,最终采用挤出流延制备了m-ZnO/PA612纳米复合抗菌薄膜。采用傅里叶变换红外光谱(FT-IR)对改性前后的纳米氧化锌进行表征,证明了KH550成功接枝到纳米氧化锌上。通过扫描电子显微镜(SEM)、差示扫描量热法(DSC)、热重(TGA)、平板计数法等测试手段对纳米氧化锌的分散及复合材料的结晶性能、热性能、抗菌性能进行了研究。结果表明:m-ZnO在尼龙612基体中分散良好。m-ZnO可以作为成核剂提高PA612的结晶度,m-ZnO的含量为2wt%时,其结晶度提高了4.1%。m-ZnO对PA612有增强作用,m-ZnO的添加量为2wt%时,纳米复合薄膜的拉伸强度较纯PA612提高了15%。m-ZnO的存在赋予了PA612抗菌性能,PA612纳米复合薄膜对大肠杆菌和金黄色葡萄球菌均有很好的抗菌效果,且随着m-ZnO含量的增大,抗菌率增大,m-ZnO的质量分数为4wt%时,对大肠杆菌的抗菌率为91.03%,对金黄色葡萄球菌的抗菌率为93.25%。

     

  • 图  1  ZnO和m-ZnO的FT-IR光谱

    Figure  1.  FT-IR spectra of ZnO and m-ZnO

    图  2  PA612及不同m-ZnO含量的PA612纳米复合材料的脆断截面扫描电镜图像及外观图片

    Figure  2.  Fracture scanning electron microscope image and appearance pictures of PA612 and PA612 nanocomposites with different m-ZnO contents

    图  3  2wt%m-ZnO/PA612的SEM图像,插入EDX结果及EDX映射元素Zn、Si、N和O

    Figure  3.  SEM image of 2wt%m-ZnO/PA612, inserting EDX results and EDX mapping elements Zn, Si, N and O

    图  4  PA612及不同m-ZnO含量的PA612纳米复合材料的DSC图: (a) 升温; (b)降温

    Figure  4.  DSC curves of PA612 and PA612 nanocomposites with different m-ZnO contents during the heating procedure (a) and the cooling (b)

    图  5  PA612及不同m-ZnO含量的PA612纳米复合材料的XRD谱图

    Figure  5.  XRD spectra of PA612 and PA612 nanocomposites with different m-ZnO contents

    图  6  PA612及不同m-ZnO含量的PA612纳米复合材料的TGA热重曲线

    Figure  6.  TGA curve of PA612 and PA612 nanocomposites with different m-ZnO contents

    图  7  PA612及不同m-ZnO含量的PA612纳米复合材料的拉伸应力-应变关系

    Figure  7.  Tensile stress versus strain of PA612 and PA612 nanocomposites with different m-ZnO contents

    图  8  PA612及不同m-ZnO含量的PA612纳米复合材料的光学性能

    Figure  8.  Optical properties of PA612 and PA612 nanocomposites with different m-ZnO contents

    图  9  PA612及不同m-ZnO含量的PA612纳米复合材料对大肠杆菌的抗菌测试结果照片

    Figure  9.  Photo of antibacterial test results of PA612 and PA612 nanocomposites with different m-ZnO contents against E. coli

    图  10  PA612及不同m-ZnO含量的PA612纳米复合材料对金黄色葡萄球菌的抗菌测试结果照片

    Figure  10.  Photo of antibacterial test results of PA612 and PA612 nanocomposites with different m-ZnO contents against Staphylococcus aureus

    表  1  不同ZnO含量的ZnO/PA612抗菌复合膜

    Table  1.   ZnO/PA612 antibacterial composite films with different ZnO content

    SampleMass fraction/wt%
    PA612m-ZnOZnO
    PA61210000
    0.5wt%m-ZnO/PA61299.50.50
    2wt%
    ZnO/PA612
    9802
    2wt%m-ZnO/PA6129820
    4wt%m-ZnO/PA6129640
    6wt%m-ZnO/PA6129460
    Notes: m-ZnO—modified nano zinc oxide; ZnO—Unmodified nano zinc oxide
    下载: 导出CSV

    表  2  PA612及不同m-ZnO含量的PA612纳米复合材料的DSC热分析数据

    Table  2.   DSC thermal analysis data of PA612 and PA612 nanocomposites with different m-ZnO contents

    SampleTm/℃Tc/℃ΔHm /(J·g−1)Xc / %
    PA612222.86186.2661.2223.73
    0.5wt%m-ZnO/PA612220.37187.0970.6827.53
    2wt%m-ZnO/PA612221.67187.3470.3627.83
    4wt%m-ZnO/PA612221.29186.9966.9926.93
    6wt%m-ZnO/PA612220.97186.1465.6126.88
    Notes: Tmand Tc are the melting peak temperature and the crystallization peak temperature of PA612, respectively; △Hm and Xc are the melting enthalpy and crystallinity of PA612.
    下载: 导出CSV

    表  3  PA612及不同m-ZnO含量的PA612纳米复合材料的热稳定性

    Table  3.   Thermal stability of PA612 and PA612 nanocomposites with different m-ZnO contents

    SampleT5%/℃T50%/℃Char yield at 600℃/wt%
    PA612398.9450.02.3
    0.5wt%m-ZnO/PA612400.4446.02.7
    2wt%m-ZnO/PA612397.2443.03.5
    4wt%m-ZnO/PA612399.3446.74.7
    6wt%m-ZnO/PA612398.6446.37.8
    Notes: T5% and T50% are the temperature when the weight loss of the samples is 5% and 50%, respectively.
    下载: 导出CSV

    表  4  PA612及不同m-ZnO含量的PA612纳米复合材料的拉伸性能

    Table  4.   Tensile properties of PA612 and PA612 nanocomposites with different m-ZnO contents

    SampleTensile stress/MPaYoung’s modulus/MPaElongation at break/%
    PA61293.95±5.55685.11±50.97392.77±13.7
    0.5wt%m-ZnO/PA61293.06±4.56543.66±39.20378.30±11.08
    2wt%m-ZnO/PA612108.13±1.76889.70±60.78305.23±10.13
    4wt%m-ZnO/PA61284.31±8.35422.97±94.12371.85±27.97
    6wt%m-ZnO/PA61283.06±10.85486.79±71.10325.38±32.66
    下载: 导出CSV

    表  5  PA612及不同m-ZnO含量的PA612纳米复合材料膜对大肠杆菌的抑菌活性

    Table  5.   Antibacterial activity of PA612 and PA612 nanocomposites with different m-ZnO contents membranes against Escherichia coli

    SampleBacteria concentration /
    CFU•mL(E. coli)
    Antibacterial rate R/%
    PA6125.48×1060
    0.5wt%m-ZnO/PA6123.89×10629.01%
    2wt%ZnO/PA6121.43×10673.91%
    2wt%m-ZnO/PA6125.3×10590.33%
    4wt%m-ZnO/PA6123.7×10593.25%
    6wt%m-ZnO/PA6122.5×10595.44%
    下载: 导出CSV

    表  6  PA612及不同m-ZnO含量的PA612纳米复合材料膜对金黄色葡萄球菌的抑菌活性

    Table  6.   Antibacterial activity of PA612 and PA612 nanocomposites with different m-ZnO contents membranes against Staphylococcus aureus

    SampleBacteria concentration /
    CFU•mL-(Staphylococcus aureus)
    Antibacterial rate R/%
    PA6125.35×1060
    0.5wt%m-ZnO/PA6123.60×10632.71%
    2wt% ZnO/PA6121.73×10667.66%
    2wt%m-ZnO/PA6129.40×10582.43%
    4wt%m-ZnO/PA6124.80×10591.03%
    6wt%m-ZnO/PA6123.60×10593.27%
    下载: 导出CSV
  • [1] FUNK I, RIMMEL N, SCHORSCH C, et al. Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using Candida tropicalis[J]. Journal of Industrial Microbiology and Biotechnology,2017,44(10):1491-1502. doi: 10.1007/s10295-017-1972-6
    [2] TYUFTIN A A, KERRY J P. Review of surface treatment methods for polyamide films for potential application as smart packaging materials: Surface structure, antimicrobial and spectral properties[J]. Food Packaging and Shelf Life,2020,24:100475. doi: 10.1016/j.fpsl.2020.100475
    [3] WU Y, HUANG A, FAN S, et al. Crystal Structure and Mechanical Properties of Uniaxially Stretched PA612/SiO2 Films[J]. Polymers,2020,12(3):711. doi: 10.3390/polym12030711
    [4] WADI V S, JENA K K, HALIQUE K, et al. Linear sulfur–nylon composites: Structure, morphology, and antibacterial activity[J]. ACS Applied Polymer Material,2019,2(2):198-208.
    [5] RYŠÁNEK P, MALÝ M, ČAPKOVÁ P, et al. Antibacterial modification of nylon-6 nanofibers: structure, properties and antibacterial activity[J]. Journal of Polymer Research,2017,24(11):1-10.
    [6] TANG L, WANG D Y, XU Q S, et al. Preparation and characterization of antibacterial nylon 6 fiber[J]. Materials Science Forum,2017,898:2254-2262. doi: 10.4028/www.scientific.net/MSF.898.2254
    [7] VENKATRAM M, NARASIMHA MURTHY H N R, GAIKWAD A, et al. Antibacterial and flame retardant properties of Ag-MgO/nylon 6 electrospun nanofibers for protective applications[J]. Clothing and Textiles Research Journal,2018,36(4):296-309. doi: 10.1177/0887302X18783071
    [8] ROHAETI E, RAKHMAWATI A. Application of Terminalia Catappa in preparation of silver nanoparticles to develop antibacterial nylon[J]. Oriental J. Chem,2017,33:2905-2912. doi: 10.13005/ojc/330625
    [9] Omer R A, Gheni A I, Omar K A, et al. Antimicrobial Activity of Nylon Nanocomposites Against Staphylococcus Aureus and Escherichia Coli Bacteria[J]. Science Journal of University of Zakho,2019,7(4):138-143. doi: 10.25271/sjuoz.2019.7.4.631
    [10] WANG Z, ZHANG L, LIU Z, et al. The antibacterial polyamide 6-ZnO hierarchical nanofibers fabricated by atomic layer deposition and hydrothermal growth[J]. Nanoscale research letters,2017,12(1):1-8. doi: 10.1186/s11671-016-1773-2
    [11] TANG Q, WANG K, REN X, et al. Preparation of porous antibacterial polyamide 6 (PA6) membrane with zinc oxide (ZnO) nanoparticles selectively localized at the pore walls via reactive extrusion[J]. Science of The Total Environment,2020,715:137018. doi: 10.1016/j.scitotenv.2020.137018
    [12] THOKALA N, KEALEY C, KENNEDY J, et al. Characterisation of polyamide 11/copper antimicrobial composites for medical device applications[J]. Materials Science and Engineering:C,2017,78:1179-1186. doi: 10.1016/j.msec.2017.03.149
    [13] SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism[J]. Nano-micro letters,2015,7(3):219-242. doi: 10.1007/s40820-015-0040-x
    [14] QI K, CHENG B, YU J, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO[J]. Journal of Alloys and Compounds,2017,727:792-820. doi: 10.1016/j.jallcom.2017.08.142
    [15] Li S C, Li Y N. Mechanical and antibacterial properties of modified nano-ZnO/high-density polyethylene composite films with a low doped content of nano-ZnO[J]. Journal of applied polymer science,2010,116(5):2965-2969.
    [16] KIM I, VISWANATHAN K, KASI G, et al. Poly (lactic acid)/ZnO bionanocomposite films with positively charged ZnO as potential antimicrobial food packaging materials[J]. Polymers,2019,11(9):1427. doi: 10.3390/polym11091427
    [17] LI Y, XU W, ZHANG G. Effect of coupling agent on nano-ZnO modification and antibacterial activity of ZnO/HDPE nanocomposite films[J]. IOP Conference Series:Materials Science and Engineering,2015:012054.
    [18] LI Y, YU J, GUO Z. The influence of silane treatment on nylon 6/nano-SiO2 in situ polymerization[J]. ,2002,84(4):827-834.
    [19] 光学

    WU T, CAI B, WANG J, et al. TEMPO-oxidized cellulose nanofibril/layered double hydroxide nanocomposite films with improved hydrophobicity, flame retardancy and mechanical properties[J]. Composites Science and Technology, 2019, 171: 111-117
    [20] 中国人民共和国卫生部, 塑料 塑料表面抗菌性能试验方法: GB/T 31402-2015[S]. 中国标准出版社, 2010.

    Ministry of Health of the People's Republic of China. Test method for antibacterial properties of plastic surface: GB/T 31402-2015[S]. China Standards Press, 2010(in Chinese).
    [21] KHURANA N, ARORA P, PENTE A S, et al. Surface modification of zinc oxide nanoparticles by vinyltriethoxy silane (VTES)[J], 2021, 124: 108347.
    [22] HANG T T X, DUNG N T, TRUC T A, et al. Effect of silane modified nano ZnO on UV degradation of polyurethane coatings[J]. Progress in Organic Coatings,2015,79:68-74. doi: 10.1016/j.porgcoat.2014.11.008
    [23] FAN X, YAN Y. Poly (amino acid)/ZnO nanoparticles nanocomposites with enhanced thermal, mechanical, and antibacterial properties[J]. Polymer Bulletin,2020,77(5):2325-2343. doi: 10.1007/s00289-019-02860-6
    [24] SHANKAR S, WANG L F, RHIM J W. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films[J]. Materials Science and Engineering:C,2018,93:289-298. doi: 10.1016/j.msec.2018.08.002
    [25] ASANO T, BALTÁ CALLEJA F J, GIR L, et al. Structure and mechanical properties of nylon 6.12 prepared by temperature slope crystallization. II. Rolling deformation and microhardness of the oriented negative spherulite[J]. Journal of Macromolecular Science, Part B:Physics,1997,36(6):799-812. doi: 10.1080/00222349708212403
    [26] SHOJAEIARANI J, BAJWA D, JIANG L, et al. Insight on the influence of nano zinc oxide on the thermal, dynamic mechanical, and flow characteristics of Poly (lactic acid)–zinc oxide composites[J]. Polymer Engineering & Science,2019,59(6):1242-1249.
    [27] MALLAKPOUR S, NOURUZI N. Effect of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites[J]. Polymer,2016,89:94-101. doi: 10.1016/j.polymer.2016.02.038
    [28] LIU J, WANG Y, MA J, et al. A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO[J]. Journal of Alloys and Compounds,2019,783:898-918. doi: 10.1016/j.jallcom.2018.12.330
    [29] HU C, GUO J, QU J, et al. Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation[J]. Langmuir,2007,23(9):4982-4987. doi: 10.1021/la063626x
  • 加载中
计量
  • 文章访问数:  156
  • HTML全文浏览量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 录用日期:  2022-01-15
  • 修回日期:  2021-12-27
  • 网络出版日期:  2022-02-21

目录

    /

    返回文章
    返回