留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于梯度型褶皱缺陷细观力学模型的响应预测和激光剪切散斑干涉测量

王守龙 刘昶辰 应凯迪 马利

王守龙, 刘昶辰, 应凯迪, 等. 基于梯度型褶皱缺陷细观力学模型的响应预测和激光剪切散斑干涉测量[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 王守龙, 刘昶辰, 应凯迪, 等. 基于梯度型褶皱缺陷细观力学模型的响应预测和激光剪切散斑干涉测量[J]. 复合材料学报, 2024, 42(0): 1-13.
WANG Shoulong, LIU Changchen, YING Kaidi, et al. Response prediction based on meso-mechanical model of graded wrinkle defects and shearography measurement[J]. Acta Materiae Compositae Sinica.
Citation: WANG Shoulong, LIU Changchen, YING Kaidi, et al. Response prediction based on meso-mechanical model of graded wrinkle defects and shearography measurement[J]. Acta Materiae Compositae Sinica.

基于梯度型褶皱缺陷细观力学模型的响应预测和激光剪切散斑干涉测量

基金项目: 国家重点研发计划项目(2021YFB4000903)
详细信息
    通讯作者:

    马利,博士,副教授,博士生导师,研究方向为复合材料力学、光学无损检测、冲击动力学和极端承压设备等 E-mail: malizjut@zjut.edu.cn

  • 中图分类号: TB332

Response prediction based on meso-mechanical model of graded wrinkle defects and shearography measurement

Funds: National Key Research and Development Program of China (2021YFB4000903)
  • 摘要: 针对碳纤维增强树脂基复合材料(Carbon Fiber-reinforced Polymer, CFRP)中褶皱缺陷的力学响应,提出了一种基于激光剪切散斑干涉的检测方法。首先构建了表征梯度型褶皱缺陷的细观力学模型,采用两步均匀化方法推导了含褶皱缺陷的代表性体积单元等效刚度矩阵,分析褶皱缺陷对层合板试样等效刚度系数影响,通过有限元预测了不同褶皱缺陷参数(铺层顺序、波长λ、振幅A)在不同拉伸载荷条件下的力学响应。其次,基于激光剪切散斑干涉技术开展了褶皱缺陷位移响应实验研究。实验结果表明,在拉伸载荷作用下,褶皱缺陷区域因离面位移梯度变化而产生干涉条纹,通过干涉条纹图处理,得到褶皱缺陷引起的位移场。实验获取的离面位移值与有限元预测结果吻合良好,证实了梯度型褶皱缺陷的细观力学模型在CFRP褶皱缺陷响应分析方面的可靠性。

     

  • 图  1  梯度型褶皱

    Figure  1.  Graded wrinkle

    图  2  梯度型褶皱的细观力学模型

    Figure  2.  Meso-mechanical modeling of graded wrinkle

    RVE−Representative Volume Element; C'ij−Equivalent stiffness matrix of single prepreg layer; n−Number of layers in RVE; θn−Fiber orientation angle of the n-th layer; m−Number of horizontal divisions in RVE; $\phi _{k}^{l} $−Misalignment angle of fiber in the k-th segment of the l-th layer; kC*−Equivalent stiffness matrix of the k-th segment; [C**]−Equivalent stiffness matrix of the homogenized

    图  3  梯度型褶皱缺陷试样:(a)试样几何参数示意图; (b)褶皱缺陷形貌特征

    Figure  3.  Graded wrinkled specimen: (a) Geometric sketch of specimen; (b) Morphology of the wrinkle

    图  4  含褶皱缺陷试样计算模型示意图

    Figure  4.  Schematic of calculation model for wrinkled specimen

    图  5  含褶皱缺陷试样与无缺陷试样的离面位移有限元结果对比

    Figure  5.  Comparison of finite element results on out-of-plane displacement between wrinkled specimen and non-wrinkle specimen

    图  6  激光剪切散斑干涉系统实验装置

    Figure  6.  Experimental device with shearography system

    图  7  剪切散斑变形量与相位的关系[23]

    Figure  7.  Relationship between shear and phase[23]

    P1, P2−Two adjacent points on the surface of specimen before surface deformation; P'1, P'2−New positions of P1 and P2 on the surface of specimen after surface deformation; S−Position of coherent light source; O−Position of image plane

    图  8  含褶皱缺陷试样随拉伸载荷变化得到的干涉条纹图:(a) 试样I;(b) 试样II;(c) 试样III

    Figure  8.  Fringe patterns of specimen during tension test: (a) Specimen Ⅰ; (b) Specimen Ⅱ; (c) Specimen Ⅲ

    图  9  解包裹和积分过程获得离面位移值

    Figure  9.  Unwrapping and integral process to obtain out-of-plane

    图  10  沿评估线方向实验结果与有限元结果的离面位移对比

    Figure  10.  Comparison of shearography measurement and FEA along evaluation line

    表  1  复合材料褶皱缺陷中最大纤维偏转角范围和波纹比

    Table  1.   Range of maximum misalignment angles and wrinkle ratio in wrinkle defects

    A/λ 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
    ${{\phi }_{\max }} $/(°) 32.14 43.30 51.49 57.52 62.05 65.55 68.30 70.52 72.34
    下载: 导出CSV

    表  2  CF/EP复合材料弹性参数

    Table  2.   Elastic parameters of CF/EP composites

    E11/GPaE22/GPaE33/GPav12v23v31G12/GPaG23/GPaG31/GPa
    133.39.099.090.2610.4360.2617.243.167.24
    下载: 导出CSV

    表  3  试样缺陷参数

    Table  3.   Defect parameters of specimen

    Specimen Layup sequences Wrinkle parameter
    Wavelength /mm Amplitude /mm Wrinkle ratio
    [0/90]2s 6.6 1.2 0.1818
    [0]30 8.3 1.0 0.1204
    [0/90/±45/0]3s 5.8 0.7 0.1206
    下载: 导出CSV

    表  4  铺层顺序和褶皱缺陷对等效刚度系数的影响

    Table  4.   Effect of layup sequence and wrinkle defects on effective stiffness coefficients

    Effective stiffness/GPa Layup sequence
    [0/90]2 s [0]30 [0/90/±45/0]3 s
    Wrinkle ratio=0.1818 Wrinkle ratio=0.1204 Wrinkle ratio=0.1206
    Without wrinkle With wrinkle Difference/% Without wrinkle With wrinkle Difference/% Without wrinkle With wrinkle Difference/%
    C11 73.43 19.92 −72.87 135.53 37.14 −72.59 64.26 25.54 −60.26
    C12 4.29 4.59 7.0 4.28 4.88 14.02 15.60 7.87 −49.55
    C13 4.65 6.23 33.98 4.28 3.82 −10.75 4.64 5.94 28.2
    C22 73.43 73.40 −0.04 11.36 11.35 −0.09 59.98 58.46 −2.53
    C23 4.65 4.63 −0.43 5.02 5.01 −0.20 4.67 5.15 10.28
    C33 11.36 13.85 21.92 11.36 13.24 16.55 11.36 12.40 9.15
    C44 4.40 5.11 16.14 3.15 3.15 0 4.34 5.17 19.12
    C55 4.40 7.35 67.05 7.24 9.06 25.14 4.46 6.08 36.32
    C66 7.23 6.23 −13.83 3.16 3.16 0 18.54 15.58 −15.97
    下载: 导出CSV
  • [1] ZHANG J, LIN G, VAIDYA U, et al. Past, present and future prospective of global carbon fibre composite developments and applications[J]. Composites Part B: Engineering, 2023, 250: 110463. doi: 10.1016/j.compositesb.2022.110463
    [2] FU Y, YAO X. A review on manufacturing defects and their detection of fiber reinforced resin matrix composites[J]. Composites Part C: Open Access, 2022, 8: 100276. doi: 10.1016/j.jcomc.2022.100276
    [3] ZHANG J, CHEVALI VS, WANG H, et al. Current status of carbon fibre and carbon fibre composites recycling[J]. Composites Part B: Engineering, 2020, 193: 108053. doi: 10.1016/j.compositesb.2020.108053
    [4] DONG C. Effects of Process-Induced Voids on the Properties of Fibre Reinforced Composites[J]. Journal of Materials Science & Technology, 2016, 32: 597-604.
    [5] NARTEY M, ZHANG T, GONG B, et al. Understanding the impact of fibre wrinkle architectures on composite laminates through tailored gaps and overlaps[J]. Composites Part B: Engineering, 2020, 196: 108097. doi: 10.1016/j.compositesb.2020.108097
    [6] DRAKE DA, SULLIVAN RW. Prediction of delamination propagation in polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105467. doi: 10.1016/j.compositesa.2019.05.035
    [7] HÖRRMANN S, ADUMITROAIE A, VIECHTBAUER C, et al. The effect of fiber waviness on the fatigue life of CFRP materials[J]. International Journal of Fatigue, 2016, 90: 139-147. doi: 10.1016/j.ijfatigue.2016.04.029
    [8] CALVO JV, QUIÑONERO-MOYA AR, FEITO N, et al. Influence of distributed out-of-plane waviness defects on the mechanical behavior of CFRP laminates[J]. Composite Structures, 2023, 323: 117498. doi: 10.1016/j.compstruct.2023.117498
    [9] KULKARNI P, MALI KD, SINGH S. An overview of the formation of fibre waviness and its effect on the mechanical performance of fibre reinforced polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 137: 106013. doi: 10.1016/j.compositesa.2020.106013
    [10] Elhajjar R, Shams S. A new method for limit point determination in composite materials containing defects using image correlation[J]. Composites Science and Technology, 2016, 122: 140-148. doi: 10.1016/j.compscitech.2015.11.026
    [11] SHAMS SS, ELHAJJAR RF. Investigation into the effects of fiber waviness in standard notched composite specimens[J]. CEAS Aeronaut J, 2015, 6: 541-555. doi: 10.1007/s13272-015-0161-4
    [12] MUKHOPADHYAY S, NIXON-PEARSON OJ, HALLETT SR. An experimental and numerical study on fatigue damage development in laminates containing embedded wrinkle defects[J]. International Journal of Fatigue, 2018, 107: 1-12. doi: 10.1016/j.ijfatigue.2017.10.008
    [13] ALVES MP, CIMINI JUNIOR CA, HA SK. Fiber waviness and its effect on the mechanical performance of fiber reinforced polymer composites: An enhanced review[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106526. doi: 10.1016/j.compositesa.2021.106526
    [14] CHUN H J, SHIN J Y, DANIEL IM. Effects of material and geometric nonlinearities on the tensile and compressive behavior of composite materials with fiber waviness[J]. Composites Science and Technology, 2001, 6: 125-134.
    [15] MENDONÇA HG, MIKKELSEN LP, ZHANG B, et al. Fatigue delaminations in composites for wind turbine blades with artificial wrinkle defects[J]. International Journal of Fatigue, 2023, 175: 107822. doi: 10.1016/j.ijfatigue.2023.107822
    [16] CHEN L, MIAO L, XU Q, et al. Damage and failure mechanisms of CFRP due to manufacturing induced wrinkling defects[J]. Composite Structures, 2023, 326: 117624. doi: 10.1016/j.compstruct.2023.117624
    [17] BELNOUE JP H, NIXON-PEARSON OJ, THOMPSON AJ, et al. Consolidation-Driven Defect Generation in Thick Composite Parts[J]. Journal of Manufacturing Science and Engineering, 2018, 140(7): 071006. doi: 10.1115/1.4039555
    [18] MIAO X Y, CHEN C J, FÆSTER S, et al. Fatigue and post-fatigue static crack characterisation of a wrinkled thick glass fibre laminate in a composite wind turbine blade[J]. International Journal of Fatigue, 2023, 176: 107855. doi: 10.1016/j.ijfatigue.2023.107855
    [19] CHEN X. Fracture of wind turbine blades in operation—Part I: A comprehensive forensic investigation[J]. Wind Energy, 2018, 21(11): 1046-1063. doi: 10.1002/we.2212
    [20] KRUMENACKER N, MADRA A, HUBERT P. Image-based characterization of fibre waviness in a representative vacuum-bagged corner laminate[J]. Composites Part A: Applied Science and Manufacturing, 2020, 131: 105774. doi: 10.1016/j.compositesa.2020.105774
    [21] CHAKRAPANI SK, DAYAL V, BARNARD DJ, et al. Ultrasonic Rayleigh wave inspection of waviness in wind turbine blades: Experimental and finite element method[C], Burlington, VT, 2012: 1911–1917.
    [22] MASOUDI NEJAD R, GHAHREMANI MOGHADAM D, FARHANGDOOST K, et al. Digital shearography approach for stress intensity factors calculation in friction stir welded nugget of AA2024 aluminum alloy[J]. Optics & Laser Technology, 2022, 149: 107854. 2
    [23] YAN P, WANG Y, SUN F, et al. Shearography for non-destructive testing of specular reflecting objects using scattered light illumination[J]. Optics & Laser Technology, 2019, 112: 452-457.
    [24] FRANCIS D, TATAM RP, GROVES RM. Shearography technology and applications: a review[J]. Meas Sci Technol, 2010, 21: 102001. doi: 10.1088/0957-0233/21/10/102001
    [25] ZHANG L, CHEN Y F, LIU H, et al. In-situ real-time imaging of subsurface damage evolution in carbon fiber composites with shearography[J]. Composites Communications, 2022, 32: 101170. doi: 10.1016/j.coco.2022.101170
    [26] GUO B, ZHENG X, GERINI-ROMAGNOLI M, et al. Digital shearography for NDT: Determination and demonstration of the size and the depth of the smallest detectable defect[J]. NDT & E International, 2023, 139: 102927.
    [27] GU G, PAN Y, QIU C, et al. Improved depth characterization of internal defect using the fusion of shearography and speckle interferometry[J]. Optics & Laser Technology, 2021, 135: 106701.
    [28] HSIAO HM, DANIEL IM. Effect of fiber waviness on stiffness and strength reduction of unidirectional composites under compressive loading[J]. Composites Science and Technology, 1996, 56: 581-593. doi: 10.1016/0266-3538(96)00045-0
    [29] TAKEDA T. Micromechanics model for three-dimensional effective elastic properties of composite laminates with ply wrinkles[J]. Composite Structures, 2018, 189: 419-427. doi: 10.1016/j.compstruct.2017.10.086
    [30] Felipe D S, De Bortoli T J, Fantin A V, et al. Two procedures for out-of-plane displacement calculation in simultaneous shearography images[J]. Optics and Lasers in Engineering, 2022, 149: 106828. doi: 10.1016/j.optlaseng.2021.106828
    [31] Liu X, Zhu L, Yan P, et al. Quasi-real dataset generation and network improvement in defect detection based on shearography[J]. Optics & Laser Technology, 2024, 171: 110392.
  • 加载中
计量
  • 文章访问数:  28
  • HTML全文浏览量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-13
  • 修回日期:  2024-07-23
  • 录用日期:  2024-08-07
  • 网络出版日期:  2024-08-28

目录

    /

    返回文章
    返回