Response prediction based on meso-mechanical model of graded wrinkle defects and shearography measurement
-
摘要: 针对碳纤维增强树脂基复合材料(Carbon Fiber-reinforced Polymer, CFRP)中褶皱缺陷的力学响应,提出了一种基于激光剪切散斑干涉的检测方法。首先构建了表征梯度型褶皱缺陷的细观力学模型,采用两步均匀化方法推导了含褶皱缺陷的代表性体积单元等效刚度矩阵,分析褶皱缺陷对层合板试样等效刚度系数影响,通过有限元预测了不同褶皱缺陷参数(铺层顺序、波长λ、振幅A)在不同拉伸载荷条件下的力学响应。其次,基于激光剪切散斑干涉技术开展了褶皱缺陷位移响应实验研究。实验结果表明,在拉伸载荷作用下,褶皱缺陷区域因离面位移梯度变化而产生干涉条纹,通过干涉条纹图处理,得到褶皱缺陷引起的位移场。实验获取的离面位移值与有限元预测结果吻合良好,证实了梯度型褶皱缺陷的细观力学模型在CFRP褶皱缺陷响应分析方面的可靠性。
-
关键词:
- 碳纤维增强树脂基复合材料 /
- 褶皱缺陷 /
- 细观力学模型 /
- 激光剪切散斑干涉 /
- 位移响应
Abstract: This study proposed a detection method based on shearography for the mechanical response of wrinkle defects in carbon fiber-reinforced resin polymer (CFRP). Firstly, a meso-mechanical model characterizing graded wrinkle defects was constructed. The equivalent stiffness matrix of the representative volume element containing wrinkle defects was derived using a two-step homogenization method, and the effect of graded wrinkles defects on the equivalent stiffness coefficients of laminates was analyzed. Finite element analysis was then employed to predict the mechanical response under different tensile loading conditions for various wrinkle defect parameters (such as ply sequence, wavelength λ, and amplitude A). Secondly, experimental research on wrinkle defects displacement response was conducted using shearography. Experimental results show that under tensile loading, the interference fringes are generated in the wrinkle defects region due to the gradient change in out-of-plane displacement. By processing the interference fringe images, the displacement field caused by wrinkle defects is obtained. The out-of-plane displacement values obtained from experiments match well with the finite element prediction, confirming the reliability of shearography in measuring the response of wrinkle defects in CFRP. -
图 2 梯度型褶皱的细观力学模型
Figure 2. Meso-mechanical modeling of graded wrinkle
RVE−Representative Volume Element; C'ij−Equivalent stiffness matrix of single prepreg layer; n−Number of layers in RVE; θn−Fiber orientation angle of the n-th layer; m−Number of horizontal divisions in RVE; $\phi _{k}^{l} $−Misalignment angle of fiber in the k-th segment of the l-th layer; kC*−Equivalent stiffness matrix of the k-th segment; [C**]−Equivalent stiffness matrix of the homogenized
图 7 剪切散斑变形量与相位的关系[23]
Figure 7. Relationship between shear and phase[23]
P1, P2−Two adjacent points on the surface of specimen before surface deformation; P'1, P'2−New positions of P1 and P2 on the surface of specimen after surface deformation; S−Position of coherent light source; O−Position of image plane
表 1 复合材料褶皱缺陷中最大纤维偏转角范围和波纹比
Table 1. Range of maximum misalignment angles and wrinkle ratio in wrinkle defects
A/λ 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 ${{\phi }_{\max }} $/(°) 32.14 43.30 51.49 57.52 62.05 65.55 68.30 70.52 72.34 表 2 CF/EP复合材料弹性参数
Table 2. Elastic parameters of CF/EP composites
E11/GPa E22/GPa E33/GPa v12 v23 v31 G12/GPa G23/GPa G31/GPa 133.3 9.09 9.09 0.261 0.436 0.261 7.24 3.16 7.24 表 3 试样缺陷参数
Table 3. Defect parameters of specimen
Specimen Layup sequences Wrinkle parameter Wavelength /mm Amplitude /mm Wrinkle ratio Ⅰ [0/90]2s 6.6 1.2 0.1818 Ⅱ [0]30 8.3 1.0 0.1204 Ⅲ [0/90/±45/0]3s 5.8 0.7 0.1206 表 4 铺层顺序和褶皱缺陷对等效刚度系数的影响
Table 4. Effect of layup sequence and wrinkle defects on effective stiffness coefficients
Effective stiffness/GPa Layup sequence [0/90]2 s [0]30 [0/90/±45/0]3 s Wrinkle ratio= 0.1818 Wrinkle ratio= 0.1204 Wrinkle ratio= 0.1206 Without wrinkle With wrinkle Difference/% Without wrinkle With wrinkle Difference/% Without wrinkle With wrinkle Difference/% C11 73.43 19.92 −72.87 135.53 37.14 −72.59 64.26 25.54 −60.26 C12 4.29 4.59 7.0 4.28 4.88 14.02 15.60 7.87 −49.55 C13 4.65 6.23 33.98 4.28 3.82 −10.75 4.64 5.94 28.2 C22 73.43 73.40 −0.04 11.36 11.35 −0.09 59.98 58.46 −2.53 C23 4.65 4.63 −0.43 5.02 5.01 −0.20 4.67 5.15 10.28 C33 11.36 13.85 21.92 11.36 13.24 16.55 11.36 12.40 9.15 C44 4.40 5.11 16.14 3.15 3.15 0 4.34 5.17 19.12 C55 4.40 7.35 67.05 7.24 9.06 25.14 4.46 6.08 36.32 C66 7.23 6.23 −13.83 3.16 3.16 0 18.54 15.58 −15.97 -
[1] ZHANG J, LIN G, VAIDYA U, et al. Past, present and future prospective of global carbon fibre composite developments and applications[J]. Composites Part B: Engineering, 2023, 250: 110463. doi: 10.1016/j.compositesb.2022.110463 [2] FU Y, YAO X. A review on manufacturing defects and their detection of fiber reinforced resin matrix composites[J]. Composites Part C: Open Access, 2022, 8: 100276. doi: 10.1016/j.jcomc.2022.100276 [3] ZHANG J, CHEVALI VS, WANG H, et al. Current status of carbon fibre and carbon fibre composites recycling[J]. Composites Part B: Engineering, 2020, 193: 108053. doi: 10.1016/j.compositesb.2020.108053 [4] DONG C. Effects of Process-Induced Voids on the Properties of Fibre Reinforced Composites[J]. Journal of Materials Science & Technology, 2016, 32: 597-604. [5] NARTEY M, ZHANG T, GONG B, et al. Understanding the impact of fibre wrinkle architectures on composite laminates through tailored gaps and overlaps[J]. Composites Part B: Engineering, 2020, 196: 108097. doi: 10.1016/j.compositesb.2020.108097 [6] DRAKE DA, SULLIVAN RW. Prediction of delamination propagation in polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105467. doi: 10.1016/j.compositesa.2019.05.035 [7] HÖRRMANN S, ADUMITROAIE A, VIECHTBAUER C, et al. The effect of fiber waviness on the fatigue life of CFRP materials[J]. International Journal of Fatigue, 2016, 90: 139-147. doi: 10.1016/j.ijfatigue.2016.04.029 [8] CALVO JV, QUIÑONERO-MOYA AR, FEITO N, et al. Influence of distributed out-of-plane waviness defects on the mechanical behavior of CFRP laminates[J]. Composite Structures, 2023, 323: 117498. doi: 10.1016/j.compstruct.2023.117498 [9] KULKARNI P, MALI KD, SINGH S. An overview of the formation of fibre waviness and its effect on the mechanical performance of fibre reinforced polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 137: 106013. doi: 10.1016/j.compositesa.2020.106013 [10] Elhajjar R, Shams S. A new method for limit point determination in composite materials containing defects using image correlation[J]. Composites Science and Technology, 2016, 122: 140-148. doi: 10.1016/j.compscitech.2015.11.026 [11] SHAMS SS, ELHAJJAR RF. Investigation into the effects of fiber waviness in standard notched composite specimens[J]. CEAS Aeronaut J, 2015, 6: 541-555. doi: 10.1007/s13272-015-0161-4 [12] MUKHOPADHYAY S, NIXON-PEARSON OJ, HALLETT SR. An experimental and numerical study on fatigue damage development in laminates containing embedded wrinkle defects[J]. International Journal of Fatigue, 2018, 107: 1-12. doi: 10.1016/j.ijfatigue.2017.10.008 [13] ALVES MP, CIMINI JUNIOR CA, HA SK. Fiber waviness and its effect on the mechanical performance of fiber reinforced polymer composites: An enhanced review[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106526. doi: 10.1016/j.compositesa.2021.106526 [14] CHUN H J, SHIN J Y, DANIEL IM. Effects of material and geometric nonlinearities on the tensile and compressive behavior of composite materials with fiber waviness[J]. Composites Science and Technology, 2001, 6: 125-134. [15] MENDONÇA HG, MIKKELSEN LP, ZHANG B, et al. Fatigue delaminations in composites for wind turbine blades with artificial wrinkle defects[J]. International Journal of Fatigue, 2023, 175: 107822. doi: 10.1016/j.ijfatigue.2023.107822 [16] CHEN L, MIAO L, XU Q, et al. Damage and failure mechanisms of CFRP due to manufacturing induced wrinkling defects[J]. Composite Structures, 2023, 326: 117624. doi: 10.1016/j.compstruct.2023.117624 [17] BELNOUE JP H, NIXON-PEARSON OJ, THOMPSON AJ, et al. Consolidation-Driven Defect Generation in Thick Composite Parts[J]. Journal of Manufacturing Science and Engineering, 2018, 140(7): 071006. doi: 10.1115/1.4039555 [18] MIAO X Y, CHEN C J, FÆSTER S, et al. Fatigue and post-fatigue static crack characterisation of a wrinkled thick glass fibre laminate in a composite wind turbine blade[J]. International Journal of Fatigue, 2023, 176: 107855. doi: 10.1016/j.ijfatigue.2023.107855 [19] CHEN X. Fracture of wind turbine blades in operation—Part I: A comprehensive forensic investigation[J]. Wind Energy, 2018, 21(11): 1046-1063. doi: 10.1002/we.2212 [20] KRUMENACKER N, MADRA A, HUBERT P. Image-based characterization of fibre waviness in a representative vacuum-bagged corner laminate[J]. Composites Part A: Applied Science and Manufacturing, 2020, 131: 105774. doi: 10.1016/j.compositesa.2020.105774 [21] CHAKRAPANI SK, DAYAL V, BARNARD DJ, et al. Ultrasonic Rayleigh wave inspection of waviness in wind turbine blades: Experimental and finite element method[C], Burlington, VT, 2012: 1911–1917. [22] MASOUDI NEJAD R, GHAHREMANI MOGHADAM D, FARHANGDOOST K, et al. Digital shearography approach for stress intensity factors calculation in friction stir welded nugget of AA2024 aluminum alloy[J]. Optics & Laser Technology, 2022, 149: 107854. 2 [23] YAN P, WANG Y, SUN F, et al. Shearography for non-destructive testing of specular reflecting objects using scattered light illumination[J]. Optics & Laser Technology, 2019, 112: 452-457. [24] FRANCIS D, TATAM RP, GROVES RM. Shearography technology and applications: a review[J]. Meas Sci Technol, 2010, 21: 102001. doi: 10.1088/0957-0233/21/10/102001 [25] ZHANG L, CHEN Y F, LIU H, et al. In-situ real-time imaging of subsurface damage evolution in carbon fiber composites with shearography[J]. Composites Communications, 2022, 32: 101170. doi: 10.1016/j.coco.2022.101170 [26] GUO B, ZHENG X, GERINI-ROMAGNOLI M, et al. Digital shearography for NDT: Determination and demonstration of the size and the depth of the smallest detectable defect[J]. NDT & E International, 2023, 139: 102927. [27] GU G, PAN Y, QIU C, et al. Improved depth characterization of internal defect using the fusion of shearography and speckle interferometry[J]. Optics & Laser Technology, 2021, 135: 106701. [28] HSIAO HM, DANIEL IM. Effect of fiber waviness on stiffness and strength reduction of unidirectional composites under compressive loading[J]. Composites Science and Technology, 1996, 56: 581-593. doi: 10.1016/0266-3538(96)00045-0 [29] TAKEDA T. Micromechanics model for three-dimensional effective elastic properties of composite laminates with ply wrinkles[J]. Composite Structures, 2018, 189: 419-427. doi: 10.1016/j.compstruct.2017.10.086 [30] Felipe D S, De Bortoli T J, Fantin A V, et al. Two procedures for out-of-plane displacement calculation in simultaneous shearography images[J]. Optics and Lasers in Engineering, 2022, 149: 106828. doi: 10.1016/j.optlaseng.2021.106828 [31] Liu X, Zhu L, Yan P, et al. Quasi-real dataset generation and network improvement in defect detection based on shearography[J]. Optics & Laser Technology, 2024, 171: 110392.
计量
- 文章访问数: 28
- HTML全文浏览量: 25
- 被引次数: 0