留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于水凝胶基太阳能蒸发器的研究进展

丁一 季家友 喻湘华 李亮

丁一, 季家友, 喻湘华, 等. 基于水凝胶基太阳能蒸发器的研究进展[J]. 复合材料学报, 2023, 41(0): 1-11
引用本文: 丁一, 季家友, 喻湘华, 等. 基于水凝胶基太阳能蒸发器的研究进展[J]. 复合材料学报, 2023, 41(0): 1-11
Yi DING, Jiayou JI, Xianghua YU, Liang LI. Research progress on the solar evaporators based on hydrogels[J]. Acta Materiae Compositae Sinica.
Citation: Yi DING, Jiayou JI, Xianghua YU, Liang LI. Research progress on the solar evaporators based on hydrogels[J]. Acta Materiae Compositae Sinica.

基于水凝胶基太阳能蒸发器的研究进展

基金项目: 湖北省知识产权运用示范工程后补助项目(2020)
详细信息
    通讯作者:

    季家友,博士,教授,博士生导师,研究方向碳化硅陶瓷膜的开发及应用 E-mail: msell08@wit.edu.cn

  • 中图分类号: TB34

Research progress on the solar evaporators based on hydrogels

Funds: Post subsidy project of intellectual property application demonstration project in Hubei Province (2020)
  • 摘要:   目的  随着工业经济的发展,淡水短缺、能源问题和环境污染日益严重,水资源短缺成为人类亟待解决的问题之一。为了解决这个问题,近年来研究学者发展了一种水处理技术——太阳能驱动界面水蒸发技术。太阳能蒸发技术被认为是一种绿色、可持续的缓解水资源短缺的技术,在太阳能海水淡化领域具有很大的应用潜力和前景,受到了广泛关注。基底是太阳能蒸发器的重要组成部分,是影响蒸发效率的关键因素之一。水凝胶由于来源广泛、易于制备等特点成为当下的研究热点。本文综述了不同水凝胶与光热材料组合而成的太阳能蒸发器的各自特点与应用特性,对现有水凝胶蒸发器的优缺点做出深入探讨,展望未来本领域研究方向。内容:从现有研究中可以看出,作为太阳能蒸发器的水凝胶基底材料聚焦于聚乙烯醇、壳聚糖、海藻酸钠、纤维素等水凝胶。(1)聚乙烯醇水凝胶。最初是通过将还原氧化石墨烯渗透进入聚乙烯醇网络复合出来的。以此为启发,研究者们将不同光热材料如:MXene、聚吡咯、碳纳米管及纳米银颗粒等与聚乙烯醇复合,制备出性能优异的水凝胶界面蒸发器。实际应用中,界面蒸发器被用于开放水域和动态环境,在以上界面蒸发器的设计中,结构部件的抗疲劳性和可逆性在很大程度上被忽略了。为此,研究者利用聚乙烯醇、海藻酸钠和聚丙烯酸钠的高亲水性、多孔性和广泛的氢键网络,制备了具有双增强网络的复合水凝胶。(2)壳聚糖水凝胶。长时间地蒸发过程中容易在太阳能蒸发器表面积累大量盐分,从而限制蒸发器的长久应用。壳聚糖复合碳化钼/碳基水凝胶独特的孔结构使得盐分难以积累堵塞通道,为蒸发器提供了优异的耐盐性能。而且,研究者设计一种一体式三层梯度渐变结构的壳聚糖复合聚吡咯抗菌水凝胶,可以抑制恒温恒湿环境下的细菌滋生。此外,还有将壳聚糖复合碳点、墨鱼汁的高效太阳能蒸发器。(3)海藻酸钠水凝胶。自然界盛开的花朵是一种理想的界面蒸发器结构,研究者以此为启发将海藻酸钠复合碳纳米管凝胶制成花卉仿生蒸发器。海藻酸钠与玉米淀粉、MXene复合水凝胶、海藻酸钠复合稻草纤维-还原氧化石墨烯水凝胶具备高强度与高蒸发速率。海藻酸钠复合聚丙烯酰胺乙炔黑双交联水凝胶蒸发器兼顾强度、除盐与高速率蒸发性能。(4)纤维素水凝胶。纤维素具有良好的除盐能力,研究者们开发了纤维素复合炭黑双层水凝胶、介孔纤维素水凝胶蒸发器。还以木质纤维素水凝胶和木质素衍生碳纳米管分别作为基体和光热材料制备多孔纤维素复合碳纳米管水凝胶,构建了高效、环保、低成本的全木质纤维素基双层水凝胶蒸发器。总结:由于水凝胶独特的三维网络结构以及成本较低、绿色可持续和优异的物理化学性能等优点,水凝胶在界面蒸发领域得到了广泛的应用。但仍然存在诸多问题需要进一步深入研究,如:缺乏对光热蒸发机理的研究、蒸发器的耐盐问题、水凝胶蒸发器的抗污性及耐久性、多功能水凝胶基蒸发器等。在未来的研究中探索优化水凝胶结构,与其他功能材料复合,制造出综合稳定性、抗盐结晶能力、抗菌、自修复、快速输水隔热以及成本低廉于一身的多功能性水凝胶,是水凝胶基太阳能蒸发器实现后续的实用化与规模化应用的发展方向。

     

  • 图  1  各种类型的太阳能蒸发器[8]

    Figure  1.  Solar-driven evaporation through various forms of solar heating [8]

    图  2  太阳能蒸发器示意图[26]

    Figure  2.  Schematic diagram of a solar evaporator [26]

    图  3  蒸发器中毛细通道与表面网格[39]

    Figure  3.  Capillary channels and surface grids in the evaporator [39]

    图  4  双增强网络的复合水凝胶蒸发器示意图[47]

    Figure  4.  Schematic diagram of a composite hydrogel evaporator with a double enhanced network [47]

    图  5  CPG三层结构示意图[49]

    Figure  5.  Schematic of the CPG structure [49]

    图  6  花卉仿生凝胶蒸发器示意图[57]

    Figure  6.  Schematic diagram of a flower biomimetic gel vaporizer [57]

  • [1] RAO P, SHOLES D, CRESKO J. Evaluation of U. S. manufacturing subsectors at risk of physical water shortages[J]. Environmental Science & Technology,2019,53(5):2295-2303.
    [2] YIN K, YANG S, DONG X R, et al. Ultrafast achievement of a superhydrophilic/hydrophobic janus foam by femtosecond laser ablation for directional water transport and efficient fog harvesting[J]. ACS applied materials & interfaces,2018,10(37):31433-31440.
    [3] BEI E, WU X M, QIU Y, et al. A tale of two water supplies in China: Finding practical solutions to urban and rural water supply problems[J]. Accounts of Chemical Research 2019, 52 (4): 867-875.
    [4] VENGOSH A, JACKSON B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology 2014, 48(15): 8334-8348.
    [5] AHUJA S S. Overview of global water challenges and solutions[M]. 2015.
    [6] 黄璐, 欧阳自强, 刘辉东, 等. 新型太阳能海水淡化技术研究进展[J]. 水处理技术, 2020, 46(4):1-4.

    HUANG Lu, OUYANG Ziqiang, LIU Huidong, et al. Research progress of new solar seawater desalination technology[J]. Water Treatment Technology,2020,46(4):1-4(in Chinese).
    [7] 刘会晓, 章先涛, 洪子鑫, 等. 毛细驱动海水淡化系统的热力学与水动力学分析[J]. 水处理技术, 2017, 43(3):20-24.

    LIU Huixiao, ZHANG Xiantao, HONG Zixin, et al. Thermodynamic and hydrodynamic analysis of capillary-driven seawater desalination systems[J]. Water Treatment Technology,2017,43(3):20-24(in Chinese).
    [8] TAO P, NI G, SONG C, et al. Solar-driven interfacial evaporation[J]. Nature Energy,2018,3(12):1031-1041. doi: 10.1038/s41560-018-0260-7
    [9] WANG S, NIU Y, YAN L, et al. Polyimide-based superhydrophilic porous membrane with enhanced thermal insulation for efficient interfacial solar evaporation[J]. Composites Science and Technology,2022,228:109683. doi: 10.1016/j.compscitech.2022.109683
    [10] ELSHEIKH A H, SHARSHIR S W, AHMED K, et al. Thin film technology for solar steam generation: A new dawn[J]. Solar Energy,2019,177:561-575. doi: 10.1016/j.solener.2018.11.058
    [11] ZHU G, XU J, ZHAO W, et al. Constructing black titania with unique nanocage structure for solar desalination[J]. ACS Applied Materials & Interfaces,2016,8:31716-31721.
    [12] ZHU M M, XIA A D, FENG Q Q, et al. Biomass carbon materials for efficient solar steam generation prepared from carbonized enteromorpha prolifera[J]. Energy Technology,2020,8(5):1901215. doi: 10.1002/ente.201901215
    [13] WANG H T, MI X Y, LI Y, et al. 3 D graphene-based macrostructures for water treatment[J]. Advanced Materials,2020,32(3):1806843. doi: 10.1002/adma.201806843
    [14] ZHANG X F, WANG Y N, LIU B S, et al. Heterostructures construction on TiO2 nanobelts: A powerful tool for building high-performance photocatalysts[J]. Applied Catalysis B:Environmental,2017,202:620-641. doi: 10.1016/j.apcatb.2016.09.068
    [15] LI G Q, LI F F, LIU J X, et al. Fe-based MOFs for photocatalytic N2 reduction: Key role of transition metal iron in nitrogen activation[J]. Journal of Solid State Chemistry,2020,285:121245. doi: 10.1016/j.jssc.2020.121245
    [16] ZHAO F, SHI Y, PAN L, et al. Multifunctional nanostructured conductive polymer gels: Synthesis, properties, and applications[J]. Accounts of Chemical Research,2017,50(7):1734-1743. doi: 10.1021/acs.accounts.7b00191
    [17] FAN X F, MU H C, XU Y L, et al. Silver nanoparticles-polydopamine-wax gourd: An antimicrobial solar evaporator with enhanced steam generation[J]. International Journal of Energy Research,2022,46(7):8949-8961. doi: 10.1002/er.7773
    [18] YE M M, JIA J, WU Z J, et al. Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation[J]. Advanced Energy Materials,2017,7(4):1601811. doi: 10.1002/aenm.201601811
    [19] LIU G H, XU J L, WANG K Y. Solar water evaporation by black photothermal sheets[J]. Nano Energy,2017,41:269-284. doi: 10.1016/j.nanoen.2017.09.005
    [20] GHASEMI H, NI G, MARCONNET A M, et al. Solar steam generation by heat localization[J]. Nature Communications,2014,5:4449. doi: 10.1038/ncomms5449
    [21] LIN Y, XU H, SHAN X, et al. Solar steam generation based on the photothermal effect: from designs to applications, and beyond[J]. Journal of Materials Chemistry A,2019,7(33):19203-19227. doi: 10.1039/C9TA05935K
    [22] ZHOU X, ZHAO F, GUO Y, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy & Environmental Science,2018,11(8):1985-1992.
    [23] ZHOU X, ZHAO F, GUO Y, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science Advance,2019,5(6):eaaw5484.
    [24] GUO Y, LU H, ZHAO F, et al. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification[J]. Advanced Materials,2020,32(11):1907061. doi: 10.1002/adma.201907061
    [25] ZHU L L, GAO M M, PEH C K N, et al. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications[J]. Nano Energy,2019,57:507-518. doi: 10.1016/j.nanoen.2018.12.046
    [26] KABEEL A E, EL-AGOUZ S A. Review of researches and developments on solar stills[J]. Desalination,2011,276(1-3):1-12. doi: 10.1016/j.desal.2011.03.042
    [27] LEI W, KHAN S, CHEN L, et al. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation[J]. Nano Research,2021,14(4):1135-1140. doi: 10.1007/s12274-020-3162-5
    [28] DING T P, ZHOU Y, ONG W L, et al. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization[J]. Materials Today,2021,42:178-191. doi: 10.1016/j.mattod.2020.10.022
    [29] DAO V D, VU N H, YUN S N. Recent advances and challenges for solar-driven water evaporation system toward applications[J]. Nano Energy, 2020, 68: 104324: 1-18.
    [30] ZHOU L, TAN Y L, JI D X, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2016, 2(4): e1501227: 1-8.
    [31] KOETTING M, PETERS J, STEICHEN S, et al. Stimulus-responsive hydrogels: theory, modern advances, and applications[J]. Materials Science and Engineering:R:Reports,2015,93:1-49. doi: 10.1016/j.mser.2015.04.001
    [32] 尹大伟, 周英, 刘玉婷, 等. 水凝胶的最新研究进展[J]. 化工新型材料, 2012, 40(2):21-23.

    YIN Dawei, ZHOU Ying, LIU Yuting, et al. Recent research advances in hydrogels[J]. New Chemical Materials,2012,40(2):21-23(in Chinese).
    [33] AHMED E M. Hydrogel: preparation, characterization, and applications: a review[J]. Journal of Advanced Research,2015,6(2):105-121. doi: 10.1016/j.jare.2013.07.006
    [34] MAITRA J, SHUKLA V K. Cross-linking in hydrogels - a review[J]. American Journal of Polymer Science,2014,4(2):25-31.
    [35] YANG J, GONG C, SHI F, et al. High strength of physical hydrogels based on poly(acrylicacid)-g-poly(ethylene glycol) methyl ether: role of chain architecture on hydrogel properties[J]. The Journal of Physical Chemistry B,2012,116(39):12038-12047. doi: 10.1021/jp303710d
    [36] SUN T, KUROKAWA T, KURODA S, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity[J]. Nature Materials,2013,12(10):932-937. doi: 10.1038/nmat3713
    [37] LI Z, SU Y, XIE B, et al. A novel biocompatible double network hydrogel consisting of konjac glucomannan with high mechanical strength and ability to be freely shaped[J]. Journal of Materials Chemistry B,2015,3(9):1769-1778. doi: 10.1039/C4TB01653J
    [38] SHIRSATH S, PAIL A, PATIL R, et al. Removal of brilliant green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: A comparative study[J]. Ultrasonics Sonochemistry,2013,20(3):914-923. doi: 10.1016/j.ultsonch.2012.11.010
    [39] ZHOU X Y, GUO Y, ZHAO F, et al. Hydrogels as an emerging material platform for solar water purification[J]. Accounts of Chemical Research,2019,52(11):3244-3253. doi: 10.1021/acs.accounts.9b00455
    [40] ZHAO X, CHEN Y, YIN Y, et al. Janus polypyrrole nanobelt@polyvinyl alcohol hydrogel evaporator for robust solar-thermal seawater desalination and sewage purification[J]. ACS Appl Mater Interfaces,2021,13(39):46717-46726. doi: 10.1021/acsami.1c13584
    [41] ZHOU X, ZHAO F, GUO Y, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy Environ. Sci,2018,11:1985-1992. doi: 10.1039/C8EE00567B
    [42] ZHOU X, GUO Y, ZHAO F, et al. Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment[J]. Advanced Materials,2020,32(52):2007012. doi: 10.1002/adma.202007012
    [43] ZHAO F, ZHOU X Y, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology,2018,13(6):489-495. doi: 10.1038/s41565-018-0097-z
    [44] 晏哲, 牛晓娟, 李浩然, 等. 基于碳纳米管-聚乙烯醇水凝胶的太阳能驱动界面水蒸发性能研究[J]. 东北电力大学学报, 2021, 41(6):8.

    YAN Zhe, NIU Xiaojuan, LI Haoran, et al. Study on solar-driven interface water evaporation performance based on carbon nanotube-polyvinyl alcohol hydrogel[J]. Journal of Northeast Dianli University,2021,41(6):8(in Chinese).
    [45] 杨兆华, 成鸿静, 杨弋, 等. 聚乙烯醇载银海绵的制备及界面光热驱动水蒸发性能[J]. 高等学校化学学报, 2022(10):043.

    YANG Zhaohua, CHENG Hongjing, YANG Yi, et al. Preparation of silver-loaded polyvinyl alcohol sponge and its interfacial photothermal driven water evaporation performance[J]. Chemical Journal of Chinese Universities,2022(10):043(in Chinese).
    [46] KUILLA T, BHADRA S, YAO D, et al. Recent advances in graphene based polymer composites[J]. Progress in Polymer Science,2010,35(11):1350-1375. doi: 10.1016/j.progpolymsci.2010.07.005
    [47] LI F B, LI N, WANG S X, et al. Self-repairing and damage-tolerant hydrogels for efficient solar-powered water purification and desalination[J]. Advanced Functional Materials,2021,2104464:1-13.
    [48] YU F, CHEN Z, GUO Z, et al. Molybdenum carbide/carbon-based chitosan hydrogel as an effective solar water evaporation accelerator[J]. ACS Sustainable Chemistry & Engineering,2020,4(8):7139-7149.
    [49] XU T, XU Y, WANG J, et al. Sustainable self-cleaning evaporator for long-term solar desalination using gradient structure tailored hydrogel[J]. Chemical Engineering Journal,2021,415(7185):12889.
    [50] WANG R, LU K Q, TANG Z R, et al. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis[J]. Journal of Materials Chemistry A,2017,5:3717-3734. doi: 10.1039/C6TA08660H
    [51] SONG Y, ZHU S, SHAO J, et al. Polymer carbon dots-a highlight reviewing their unique structure, bright emission and probable photoluminescence mechanism[J]. Journal of Polymer Science Part A:Polymer Chemistry,2017,55:610-615. doi: 10.1002/pola.28416
    [52] ZHU S, SONG Y, ZHAO X, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective[J]. Nano Research,2015,8:355-381. doi: 10.1007/s12274-014-0644-3
    [53] XIONG Y, SCHNEIDER J, USHAKOVA E V, et al. Influence of molecular fluorophores on the research field of chemically synthesized carbon dots[J]. Nano Today,2018,23:124-139. doi: 10.1016/j.nantod.2018.10.010
    [54] SINGH S, SHAULOFF N, JELINEK R. Solar-enabled water remediation via recyclable carbon dot/ hydrogel composites[J]. ACS Sustainable Chem. Eng.,2019,7:13186-13194. doi: 10.1021/acssuschemeng.9b02342
    [55] LIU X J, TIAN Y P, WU Y Z, et al. Seawater desalination derived entirely from ocean biomass[J]. Journal of Materials Chemistry A,2021,9(39):22313-22324. doi: 10.1039/D1TA05068K
    [56] 芦雄. 光热水凝胶的制备及其在太阳能海水淡化方面的应用[D]. 兰州: 西北师范大学, 2021(in Chinese).

    LU Xiong. Preparation of photothermal gel and its application in solar seawater desalination[D]. Lanzhou: Northwest Normal University, 2021.
    [57] LIU C K, PENG Y, ZHAO X Z. Flower-inspired bionic sodium alginate hydrogel evaporator enhancing solar desalination performance[J]. Carbohydrate Polymers,2021,273:118536. doi: 10.1016/j.carbpol.2021.118536
    [58] GUO Y H, ZHOU X G, ZHAO F, et al. Synergistic energy nanoconfinement and water activation in hydrogels for efficient solar water desalination[J]. ACS Nano,2019,13(7):7913-7919. doi: 10.1021/acsnano.9b02301
    [59] HU R, ZHANG J Q, KUANG Y D, et al. A Janus evaporator with low tortuosity for long-term solar desalination[J]. Journal of Materials Chemistry A,2019,7:15333-15340. doi: 10.1039/C9TA01576K
    [60] WANG F, WEI D Y, LI Y Z, et al. Chitosan/reduced graphene oxide-modified spacer fabric as a salt-resistant solar absorber for efficient solar steam generation[J]. Journal of Materials Chemistry A,2019,7:18311-18317. doi: 10.1039/C9TA05859A
    [61] ZHAO X Z, LIU C K. Overcoming salt crystallization with ionic hydrogel for accelerating solar evaporation[J]. Desalination,2020,482:114385. doi: 10.1016/j.desal.2020.114385
    [62] ZHAO X Z, LIU C K. Enhanced solar evaporation efficiency based on the inserted preheating one of silver nanowires[J]. 2020, 195: 304-309.
    [63] STORER D P, JACK L W, XUAN O, et al. Graphene and rice-straw-fiber-based 3 D photothermal aerogels for highly efficient solar evaporation[J]. ACS applied materials & interfaces,2020,12(13):15279-15287.
    [64] HE J, FAN Y, XIAO C, et al. Enhanced solar steam generation of hydrogel composite with aligned channel and shape memory behavior[J]. Composites Science and Technology,2021,204:108633. doi: 10.1016/j.compscitech.2020.108633
    [65] CHANG C, ZHANG L. Cellulose-based hydrogels: Present status and application prospects[J]. Carbohydrate Polymers,2011,84(1):40-53. doi: 10.1016/j.carbpol.2010.12.023
    [66] DAS D, PRAKASH P, ROUT P K, et al. Synthesis and characterization of superabsorbent cellulose-based hydrogel for agriculture application[J]. Starch,2021,73(1-2):1900284. doi: 10.1002/star.201900284
    [67] NING F, ZHANG J, KANG M, et al. Hydroxyethyl cellulose hydrogel modified with tannic acid as methylene blue adsorbent[J]. Journal of Applied Polymer Science,2021,138(8):49880. doi: 10.1002/app.49880
    [68] SUN S, SUN B, WANG Y, et al. Carbon black and polydopamine modified non-woven fabric enabling efficient solar steam generation towards seawater desalination and wastewater purification[J]. Separation and Purification Technology,2021,278:119621. doi: 10.1016/j.seppur.2021.119621
    [69] XIAO C, LIANG W, HA Q M, et al. Efficient solar steam generation of carbon black incorporated hyper-cross-linked polymer composites[J]. ACS Applied Energy Materials,2020,3(11):11350-11358. doi: 10.1021/acsaem.0c02290
    [70] JIN Y, CHANG J, SHI Y, et al. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J]. Journal of Materials Chemistry A,2018,6:7942-7949. doi: 10.1039/C8TA00187A
    [71] HOU B, CUI Z, ZHU X, et al. Functionalized carbon materials for efficient solar steam and electricity generation[J]. Materials Chemistry and Physics,2018,222:159-164.
    [72] 胡娜. 纤维素基水凝胶太阳能蒸发器的结构设计及性能调控研究[D]. 西安: 陕西科技大学, 2021.

    HU Na. Structural design and performance regulation of cellulose-based hydrogel solar evaporator[D]. Xian: Shaanxi University of Science and Technology, 2021(in Chinese).
    [73] SUN Z Z, LI Z X, LI W Z, et al. Mesoporous cellulose/TiO2/SiO2/TiN-based nanocomposite hydrogels for efficient solar steam evaporation: Low thermal conductivity and high light-heat conversion[J]. Cellulose,2020,27(1):481-491. doi: 10.1007/s10570-019-02823-0
    [74] LIN X L, WANG P, HONG R T, et al. Fully lignocellulosic biomass-based double-layered porous hydrogel for efficient solar steam generation[J]. Advanced Functional Materials,2022,32(51):2209262. doi: 10.1002/adfm.202209262
  • 加载中
计量
  • 文章访问数:  74
  • HTML全文浏览量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-13
  • 修回日期:  2023-04-07
  • 录用日期:  2023-04-19
  • 网络出版日期:  2023-05-10

目录

    /

    返回文章
    返回