[1] |
RAO P, SHOLES D, CRESKO J. Evaluation of U. S. manufacturing subsectors at risk of physical water shortages[J]. Environmental Science & Technology,2019,53(5):2295-2303.
|
[2] |
YIN K, YANG S, DONG X R, et al. Ultrafast achievement of a superhydrophilic/hydrophobic janus foam by femtosecond laser ablation for directional water transport and efficient fog harvesting[J]. ACS applied materials & interfaces,2018,10(37):31433-31440.
|
[3] |
BEI E, WU X M, QIU Y, et al. A tale of two water supplies in China: Finding practical solutions to urban and rural water supply problems[J]. Accounts of Chemical Research 2019, 52 (4): 867-875.
|
[4] |
VENGOSH A, JACKSON B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology 2014, 48(15): 8334-8348.
|
[5] |
AHUJA S S. Overview of global water challenges and solutions[M]. 2015.
|
[6] |
黄璐, 欧阳自强, 刘辉东, 等. 新型太阳能海水淡化技术研究进展[J]. 水处理技术, 2020, 46(4):1-4.HUANG Lu, OUYANG Ziqiang, LIU Huidong, et al. Research progress of new solar seawater desalination technology[J]. Water Treatment Technology,2020,46(4):1-4(in Chinese).
|
[7] |
刘会晓, 章先涛, 洪子鑫, 等. 毛细驱动海水淡化系统的热力学与水动力学分析[J]. 水处理技术, 2017, 43(3):20-24.LIU Huixiao, ZHANG Xiantao, HONG Zixin, et al. Thermodynamic and hydrodynamic analysis of capillary-driven seawater desalination systems[J]. Water Treatment Technology,2017,43(3):20-24(in Chinese).
|
[8] |
TAO P, NI G, SONG C, et al. Solar-driven interfacial evaporation[J]. Nature Energy,2018,3(12):1031-1041. doi: 10.1038/s41560-018-0260-7
|
[9] |
WANG S, NIU Y, YAN L, et al. Polyimide-based superhydrophilic porous membrane with enhanced thermal insulation for efficient interfacial solar evaporation[J]. Composites Science and Technology,2022,228:109683. doi: 10.1016/j.compscitech.2022.109683
|
[10] |
ELSHEIKH A H, SHARSHIR S W, AHMED K, et al. Thin film technology for solar steam generation: A new dawn[J]. Solar Energy,2019,177:561-575. doi: 10.1016/j.solener.2018.11.058
|
[11] |
ZHU G, XU J, ZHAO W, et al. Constructing black titania with unique nanocage structure for solar desalination[J]. ACS Applied Materials & Interfaces,2016,8:31716-31721.
|
[12] |
ZHU M M, XIA A D, FENG Q Q, et al. Biomass carbon materials for efficient solar steam generation prepared from carbonized enteromorpha prolifera[J]. Energy Technology,2020,8(5):1901215. doi: 10.1002/ente.201901215
|
[13] |
WANG H T, MI X Y, LI Y, et al. 3 D graphene-based macrostructures for water treatment[J]. Advanced Materials,2020,32(3):1806843. doi: 10.1002/adma.201806843
|
[14] |
ZHANG X F, WANG Y N, LIU B S, et al. Heterostructures construction on TiO2 nanobelts: A powerful tool for building high-performance photocatalysts[J]. Applied Catalysis B:Environmental,2017,202:620-641. doi: 10.1016/j.apcatb.2016.09.068
|
[15] |
LI G Q, LI F F, LIU J X, et al. Fe-based MOFs for photocatalytic N2 reduction: Key role of transition metal iron in nitrogen activation[J]. Journal of Solid State Chemistry,2020,285:121245. doi: 10.1016/j.jssc.2020.121245
|
[16] |
ZHAO F, SHI Y, PAN L, et al. Multifunctional nanostructured conductive polymer gels: Synthesis, properties, and applications[J]. Accounts of Chemical Research,2017,50(7):1734-1743. doi: 10.1021/acs.accounts.7b00191
|
[17] |
FAN X F, MU H C, XU Y L, et al. Silver nanoparticles-polydopamine-wax gourd: An antimicrobial solar evaporator with enhanced steam generation[J]. International Journal of Energy Research,2022,46(7):8949-8961. doi: 10.1002/er.7773
|
[18] |
YE M M, JIA J, WU Z J, et al. Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation[J]. Advanced Energy Materials,2017,7(4):1601811. doi: 10.1002/aenm.201601811
|
[19] |
LIU G H, XU J L, WANG K Y. Solar water evaporation by black photothermal sheets[J]. Nano Energy,2017,41:269-284. doi: 10.1016/j.nanoen.2017.09.005
|
[20] |
GHASEMI H, NI G, MARCONNET A M, et al. Solar steam generation by heat localization[J]. Nature Communications,2014,5:4449. doi: 10.1038/ncomms5449
|
[21] |
LIN Y, XU H, SHAN X, et al. Solar steam generation based on the photothermal effect: from designs to applications, and beyond[J]. Journal of Materials Chemistry A,2019,7(33):19203-19227. doi: 10.1039/C9TA05935K
|
[22] |
ZHOU X, ZHAO F, GUO Y, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy & Environmental Science,2018,11(8):1985-1992.
|
[23] |
ZHOU X, ZHAO F, GUO Y, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science Advance,2019,5(6):eaaw5484.
|
[24] |
GUO Y, LU H, ZHAO F, et al. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification[J]. Advanced Materials,2020,32(11):1907061. doi: 10.1002/adma.201907061
|
[25] |
ZHU L L, GAO M M, PEH C K N, et al. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications[J]. Nano Energy,2019,57:507-518. doi: 10.1016/j.nanoen.2018.12.046
|
[26] |
KABEEL A E, EL-AGOUZ S A. Review of researches and developments on solar stills[J]. Desalination,2011,276(1-3):1-12. doi: 10.1016/j.desal.2011.03.042
|
[27] |
LEI W, KHAN S, CHEN L, et al. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation[J]. Nano Research,2021,14(4):1135-1140. doi: 10.1007/s12274-020-3162-5
|
[28] |
DING T P, ZHOU Y, ONG W L, et al. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization[J]. Materials Today,2021,42:178-191. doi: 10.1016/j.mattod.2020.10.022
|
[29] |
DAO V D, VU N H, YUN S N. Recent advances and challenges for solar-driven water evaporation system toward applications[J]. Nano Energy, 2020, 68: 104324: 1-18.
|
[30] |
ZHOU L, TAN Y L, JI D X, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2016, 2(4): e1501227: 1-8.
|
[31] |
KOETTING M, PETERS J, STEICHEN S, et al. Stimulus-responsive hydrogels: theory, modern advances, and applications[J]. Materials Science and Engineering:R:Reports,2015,93:1-49. doi: 10.1016/j.mser.2015.04.001
|
[32] |
尹大伟, 周英, 刘玉婷, 等. 水凝胶的最新研究进展[J]. 化工新型材料, 2012, 40(2):21-23.YIN Dawei, ZHOU Ying, LIU Yuting, et al. Recent research advances in hydrogels[J]. New Chemical Materials,2012,40(2):21-23(in Chinese).
|
[33] |
AHMED E M. Hydrogel: preparation, characterization, and applications: a review[J]. Journal of Advanced Research,2015,6(2):105-121. doi: 10.1016/j.jare.2013.07.006
|
[34] |
MAITRA J, SHUKLA V K. Cross-linking in hydrogels - a review[J]. American Journal of Polymer Science,2014,4(2):25-31.
|
[35] |
YANG J, GONG C, SHI F, et al. High strength of physical hydrogels based on poly(acrylicacid)-g-poly(ethylene glycol) methyl ether: role of chain architecture on hydrogel properties[J]. The Journal of Physical Chemistry B,2012,116(39):12038-12047. doi: 10.1021/jp303710d
|
[36] |
SUN T, KUROKAWA T, KURODA S, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity[J]. Nature Materials,2013,12(10):932-937. doi: 10.1038/nmat3713
|
[37] |
LI Z, SU Y, XIE B, et al. A novel biocompatible double network hydrogel consisting of konjac glucomannan with high mechanical strength and ability to be freely shaped[J]. Journal of Materials Chemistry B,2015,3(9):1769-1778. doi: 10.1039/C4TB01653J
|
[38] |
SHIRSATH S, PAIL A, PATIL R, et al. Removal of brilliant green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: A comparative study[J]. Ultrasonics Sonochemistry,2013,20(3):914-923. doi: 10.1016/j.ultsonch.2012.11.010
|
[39] |
ZHOU X Y, GUO Y, ZHAO F, et al. Hydrogels as an emerging material platform for solar water purification[J]. Accounts of Chemical Research,2019,52(11):3244-3253. doi: 10.1021/acs.accounts.9b00455
|
[40] |
ZHAO X, CHEN Y, YIN Y, et al. Janus polypyrrole nanobelt@polyvinyl alcohol hydrogel evaporator for robust solar-thermal seawater desalination and sewage purification[J]. ACS Appl Mater Interfaces,2021,13(39):46717-46726. doi: 10.1021/acsami.1c13584
|
[41] |
ZHOU X, ZHAO F, GUO Y, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy Environ. Sci,2018,11:1985-1992. doi: 10.1039/C8EE00567B
|
[42] |
ZHOU X, GUO Y, ZHAO F, et al. Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment[J]. Advanced Materials,2020,32(52):2007012. doi: 10.1002/adma.202007012
|
[43] |
ZHAO F, ZHOU X Y, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology,2018,13(6):489-495. doi: 10.1038/s41565-018-0097-z
|
[44] |
晏哲, 牛晓娟, 李浩然, 等. 基于碳纳米管-聚乙烯醇水凝胶的太阳能驱动界面水蒸发性能研究[J]. 东北电力大学学报, 2021, 41(6):8.YAN Zhe, NIU Xiaojuan, LI Haoran, et al. Study on solar-driven interface water evaporation performance based on carbon nanotube-polyvinyl alcohol hydrogel[J]. Journal of Northeast Dianli University,2021,41(6):8(in Chinese).
|
[45] |
杨兆华, 成鸿静, 杨弋, 等. 聚乙烯醇载银海绵的制备及界面光热驱动水蒸发性能[J]. 高等学校化学学报, 2022(10):043.YANG Zhaohua, CHENG Hongjing, YANG Yi, et al. Preparation of silver-loaded polyvinyl alcohol sponge and its interfacial photothermal driven water evaporation performance[J]. Chemical Journal of Chinese Universities,2022(10):043(in Chinese).
|
[46] |
KUILLA T, BHADRA S, YAO D, et al. Recent advances in graphene based polymer composites[J]. Progress in Polymer Science,2010,35(11):1350-1375. doi: 10.1016/j.progpolymsci.2010.07.005
|
[47] |
LI F B, LI N, WANG S X, et al. Self-repairing and damage-tolerant hydrogels for efficient solar-powered water purification and desalination[J]. Advanced Functional Materials,2021,2104464:1-13.
|
[48] |
YU F, CHEN Z, GUO Z, et al. Molybdenum carbide/carbon-based chitosan hydrogel as an effective solar water evaporation accelerator[J]. ACS Sustainable Chemistry & Engineering,2020,4(8):7139-7149.
|
[49] |
XU T, XU Y, WANG J, et al. Sustainable self-cleaning evaporator for long-term solar desalination using gradient structure tailored hydrogel[J]. Chemical Engineering Journal,2021,415(7185):12889.
|
[50] |
WANG R, LU K Q, TANG Z R, et al. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis[J]. Journal of Materials Chemistry A,2017,5:3717-3734. doi: 10.1039/C6TA08660H
|
[51] |
SONG Y, ZHU S, SHAO J, et al. Polymer carbon dots-a highlight reviewing their unique structure, bright emission and probable photoluminescence mechanism[J]. Journal of Polymer Science Part A:Polymer Chemistry,2017,55:610-615. doi: 10.1002/pola.28416
|
[52] |
ZHU S, SONG Y, ZHAO X, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective[J]. Nano Research,2015,8:355-381. doi: 10.1007/s12274-014-0644-3
|
[53] |
XIONG Y, SCHNEIDER J, USHAKOVA E V, et al. Influence of molecular fluorophores on the research field of chemically synthesized carbon dots[J]. Nano Today,2018,23:124-139. doi: 10.1016/j.nantod.2018.10.010
|
[54] |
SINGH S, SHAULOFF N, JELINEK R. Solar-enabled water remediation via recyclable carbon dot/ hydrogel composites[J]. ACS Sustainable Chem. Eng.,2019,7:13186-13194. doi: 10.1021/acssuschemeng.9b02342
|
[55] |
LIU X J, TIAN Y P, WU Y Z, et al. Seawater desalination derived entirely from ocean biomass[J]. Journal of Materials Chemistry A,2021,9(39):22313-22324. doi: 10.1039/D1TA05068K
|
[56] |
芦雄. 光热水凝胶的制备及其在太阳能海水淡化方面的应用[D]. 兰州: 西北师范大学, 2021(in Chinese).LU Xiong. Preparation of photothermal gel and its application in solar seawater desalination[D]. Lanzhou: Northwest Normal University, 2021.
|
[57] |
LIU C K, PENG Y, ZHAO X Z. Flower-inspired bionic sodium alginate hydrogel evaporator enhancing solar desalination performance[J]. Carbohydrate Polymers,2021,273:118536. doi: 10.1016/j.carbpol.2021.118536
|
[58] |
GUO Y H, ZHOU X G, ZHAO F, et al. Synergistic energy nanoconfinement and water activation in hydrogels for efficient solar water desalination[J]. ACS Nano,2019,13(7):7913-7919. doi: 10.1021/acsnano.9b02301
|
[59] |
HU R, ZHANG J Q, KUANG Y D, et al. A Janus evaporator with low tortuosity for long-term solar desalination[J]. Journal of Materials Chemistry A,2019,7:15333-15340. doi: 10.1039/C9TA01576K
|
[60] |
WANG F, WEI D Y, LI Y Z, et al. Chitosan/reduced graphene oxide-modified spacer fabric as a salt-resistant solar absorber for efficient solar steam generation[J]. Journal of Materials Chemistry A,2019,7:18311-18317. doi: 10.1039/C9TA05859A
|
[61] |
ZHAO X Z, LIU C K. Overcoming salt crystallization with ionic hydrogel for accelerating solar evaporation[J]. Desalination,2020,482:114385. doi: 10.1016/j.desal.2020.114385
|
[62] |
ZHAO X Z, LIU C K. Enhanced solar evaporation efficiency based on the inserted preheating one of silver nanowires[J]. 2020, 195: 304-309.
|
[63] |
STORER D P, JACK L W, XUAN O, et al. Graphene and rice-straw-fiber-based 3 D photothermal aerogels for highly efficient solar evaporation[J]. ACS applied materials & interfaces,2020,12(13):15279-15287.
|
[64] |
HE J, FAN Y, XIAO C, et al. Enhanced solar steam generation of hydrogel composite with aligned channel and shape memory behavior[J]. Composites Science and Technology,2021,204:108633. doi: 10.1016/j.compscitech.2020.108633
|
[65] |
CHANG C, ZHANG L. Cellulose-based hydrogels: Present status and application prospects[J]. Carbohydrate Polymers,2011,84(1):40-53. doi: 10.1016/j.carbpol.2010.12.023
|
[66] |
DAS D, PRAKASH P, ROUT P K, et al. Synthesis and characterization of superabsorbent cellulose-based hydrogel for agriculture application[J]. Starch,2021,73(1-2):1900284. doi: 10.1002/star.201900284
|
[67] |
NING F, ZHANG J, KANG M, et al. Hydroxyethyl cellulose hydrogel modified with tannic acid as methylene blue adsorbent[J]. Journal of Applied Polymer Science,2021,138(8):49880. doi: 10.1002/app.49880
|
[68] |
SUN S, SUN B, WANG Y, et al. Carbon black and polydopamine modified non-woven fabric enabling efficient solar steam generation towards seawater desalination and wastewater purification[J]. Separation and Purification Technology,2021,278:119621. doi: 10.1016/j.seppur.2021.119621
|
[69] |
XIAO C, LIANG W, HA Q M, et al. Efficient solar steam generation of carbon black incorporated hyper-cross-linked polymer composites[J]. ACS Applied Energy Materials,2020,3(11):11350-11358. doi: 10.1021/acsaem.0c02290
|
[70] |
JIN Y, CHANG J, SHI Y, et al. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J]. Journal of Materials Chemistry A,2018,6:7942-7949. doi: 10.1039/C8TA00187A
|
[71] |
HOU B, CUI Z, ZHU X, et al. Functionalized carbon materials for efficient solar steam and electricity generation[J]. Materials Chemistry and Physics,2018,222:159-164.
|
[72] |
胡娜. 纤维素基水凝胶太阳能蒸发器的结构设计及性能调控研究[D]. 西安: 陕西科技大学, 2021.HU Na. Structural design and performance regulation of cellulose-based hydrogel solar evaporator[D]. Xian: Shaanxi University of Science and Technology, 2021(in Chinese).
|
[73] |
SUN Z Z, LI Z X, LI W Z, et al. Mesoporous cellulose/TiO2/SiO2/TiN-based nanocomposite hydrogels for efficient solar steam evaporation: Low thermal conductivity and high light-heat conversion[J]. Cellulose,2020,27(1):481-491. doi: 10.1007/s10570-019-02823-0
|
[74] |
LIN X L, WANG P, HONG R T, et al. Fully lignocellulosic biomass-based double-layered porous hydrogel for efficient solar steam generation[J]. Advanced Functional Materials,2022,32(51):2209262. doi: 10.1002/adfm.202209262
|