留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低速多次冲击下碳纤维/环氧树脂基复合材料层合板失效机制及剩余强度评估

俞鸣明 朱雪莉 刘雪强 方琳 谢旺 任慕苏 孙晋良

俞鸣明, 朱雪莉, 刘雪强, 等. 低速多次冲击下碳纤维/环氧树脂基复合材料层合板失效机制及剩余强度评估[J]. 复合材料学报, 2023, 41(0): 1-12
引用本文: 俞鸣明, 朱雪莉, 刘雪强, 等. 低速多次冲击下碳纤维/环氧树脂基复合材料层合板失效机制及剩余强度评估[J]. 复合材料学报, 2023, 41(0): 1-12
Mingming YU, Xueli ZHU, Xueqiang LIU, Lin FANG, Wang XIE, Musu REN, Jinliang SUN. Failure mechanism and assessment of residual strength of carbon fiber/epoxy resin matrix composite laminates under multiple impacts at low velocities[J]. Acta Materiae Compositae Sinica.
Citation: Mingming YU, Xueli ZHU, Xueqiang LIU, Lin FANG, Wang XIE, Musu REN, Jinliang SUN. Failure mechanism and assessment of residual strength of carbon fiber/epoxy resin matrix composite laminates under multiple impacts at low velocities[J]. Acta Materiae Compositae Sinica.

低速多次冲击下碳纤维/环氧树脂基复合材料层合板失效机制及剩余强度评估

基金项目: 广东省重点研发计划(2019B010929001);上海市优秀学术/技术带头人计划(20XD1434300)
详细信息
    通讯作者:

    方琳,硕士,实验师,研究方向为碳纤维复合材料 E-mail: lfang@shu.edu.cn

  • 中图分类号: TB332

Failure mechanism and assessment of residual strength of carbon fiber/epoxy resin matrix composite laminates under multiple impacts at low velocities

Funds: The Key R&D Program of Guangdong Province (2019B010929001);Sponsored by Program of Shanghai Academic/Technology Research Leader(20XD1434300)
  • 摘要: 碳纤维(CF)增强环氧树脂(EP)基复合材料具有优秀的抗冲击性,被应用在飞机结构件。飞机服役的条件非常严峻,且飞机在飞行过程中部分结构会遭受多次冲击。多次冲击的失效过程非常复杂。目前,关于复合材料的低速冲击损伤研究主要集中在单次冲击,而对于复合材料在多次冲击中的损伤行为研究较少。为了使飞机结构件用复合材料的结构设计达到最优化,应着重开展复合材料在多次冲击过程中的失效过程及损伤容限的研究工作。本文设计了CF/EP复合材料层合板的多次冲击及冲击后压缩试验。对多次冲击的力学响应曲线及冲击失效后的内部损伤进行分析,得到不同冲击载荷对复合材料多次冲击的力学性能影响,以及多次冲击过程中的主要损伤机制和损伤传播模式。在此基础上,对冲击后的剩余压缩强度及失效形貌进行分析,以此探究CF/EP复合材料层合板在冲击后的损伤容限及失效模式。本研究目的在于为高性能碳纤维复合材料层合板的设计和制备提供理论依据和技术参考。CF/EP层合板在不同冲击能量下的冲击力-时间响应曲线CF/EP层合板在冲击过程中的失效演变

     

  • 图  1  碳纤维(CF)/环氧树脂(EP)复合材料层合板铺层示意图

    Figure  1.  Carbon fiber (CF)/epoxy resin (EP) composite laminates lamination diagram

    图  2  试验仪器及夹具

    Figure  2.  Test apparatus and fixtures

    图  3  CF/EP层合板在不同冲击能量下的冲击力-时间响应曲线

    Figure  3.  Force-Time response curves for CF/EP laminates at different impact energies

    图  4  CF/EP层合板在不同冲击能量下的冲击力-位移响应曲线

    Figure  4.  Force-Displacement response curves for CF/EP laminates at different impact energies

    图  5  CF/EP层合板在不同冲击能量下的能量-时间响应曲线

    Figure  5.  Energy- Time response curves for CF/EP laminates at different impact energies

    图  6  CF/EP层合板在不同冲击能量下的C扫描检测结果

    Figure  6.  C-scan test results of CF/EP laminates at different impact energies

    图  7  CF/EP层合板在多次冲击下的层内损伤CT检测结果

    Figure  7.  CT results of intra-laminar damage of CF/EP laminates under multiple impacts

    图  8  CF/EP层合板在多次冲击下的层内损伤面积

    Figure  8.  Area of intra-laminar damage of CF/EP laminates under multiple impacts

    图  9  CF/EP层合板在多次冲击下的损伤失效过程示意图

    Figure  9.  Schematic diagram of the damage failure process of CF/EP laminates under multiple impacts

    图  10  CF/EP层合板压缩过程中的载荷-位移曲线

    Figure  10.  Load-displacement curve during compression of CF/EP laminates

    图  11  CF/EP层合板在压缩失效时的损伤位置示意图

    Figure  11.  Schematic diagram of the location of damage to CF/EP laminates in the event of compression failure

    图  12  CF/EP层合板在不同位置的表面损伤

    Figure  12.  Surface damage of CF/EP laminates at different locations

    图  13  CF/EP层合板在不同冲击能量下的层内损伤CT检测结果

    Figure  13.  CT results of intra-laminar damage in CF/EP laminates at different impact energies

    图  14  CF/EP层合板的压缩失效示意图

    Figure  14.  Schematic diagram of compression failure of CF/EP laminates

  • [1] ZHU G H, SUN G Y, LI G Y, et al. Modeling for CFRP structures subjected to quasi-static crushing[J]. Composite Structures,2018,184:41-55. doi: 10.1016/j.compstruct.2017.09.001
    [2] MARÍN J C, GRACIANI E. Normal stress flow evaluation in composite aircraft wing sections by strength of material models[J]. Composite Structures,2022,282:115088. doi: 10.1016/j.compstruct.2021.115088
    [3] 熊文. 复合材料在海洋船舶中的应用研究[J]. 科技经济市场, 2021: 24-25.

    WEN X. Research on the application of composite materials in marine vessels[J]. Science and Technology Economic Market, 2021: 24-25(in Chinese).
    [4] GENG D X, LIU Y H, SHAO Z Y, et al. Delamination formation and suppression during rotary ultrasonic elliptical machining of CFRP[J]. Composites Part B,2019,183:107698.
    [5] KALAM S A, SESHAIAH T, SRIVIDYA K. Damage behavior and failure response of aircraft composite structure by soft body impact[J]. Materials Today:Proceedings,2022,52:867-872. doi: 10.1016/j.matpr.2021.10.271
    [6] SUTHERLAND L S. A review of impact testing on marine composite materials: Part I – Marine impacts on marine composites[J]. Composite Structures,2018,188:197-208. doi: 10.1016/j.compstruct.2017.12.073
    [7] BIENIAŚ J, JAKUBCZAK P. Impact damage growth in carbon fiber aluminum laminates[J]. Composite Structures,2017,172:147-154. doi: 10.1016/j.compstruct.2017.03.075
    [8] GE X X, ZHANG P, ZHAO F, et al. Experimental and numerical investigations on the dynamic response of woven carbon fiber reinforced thick composite laminates under low-velocity impact[J]. Composite Structures,2022,279:114792. doi: 10.1016/j.compstruct.2021.114792
    [9] TUO H L, LU Z X, MA X P, et al. Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions[J]. Composites Part B,2019,163:642-654. doi: 10.1016/j.compositesb.2019.01.006
    [10] OSTRÉ B, BOUVET C, MINOT C, et al. Experimental analysis of CFRP laminates subjected to compression after edge impact[J]. Composite Structures,2016,152:767-778. doi: 10.1016/j.compstruct.2016.05.068
    [11] SUN X C, HALLETT S R. Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study[J]. Composites Part A,2018,104:41-59. doi: 10.1016/j.compositesa.2017.10.026
    [12] 贾耀雄, 敖清阳, 张文正, 等. 碳纤维复合材料层压板低速冲击损伤性能分析[J]. 兵器材料科学与工程, 2022, 45:170-174. doi: 10.14024/j.cnki.1004-244x.20220909.005

    JIA Y X, AO Q Y, ZHANG W Z, et al. Analysis of low-velocity impact damage performance of carbon fiber composite laminates[J]. Weapon Materials Science and Engineering,2022,45:170-174(in Chinese). doi: 10.14024/j.cnki.1004-244x.20220909.005
    [13] 许 良, 涂宜鸣, 崔 浩, 等. T800碳纤维复合材料低速冲击渐进损伤仿真与试验研究[J]. 大连理工大学学报, 2021, 61:608-614. doi: 10.7511/dllgxb202106008

    XU L, TU YM, CUI H, et al. Simulation and experimental study of low-velocity impact progressive damage of T800 carbon fiber composites[J]. Journal of Dalian University of Technology,2021,61:608-614(in Chinese). doi: 10.7511/dllgxb202106008
    [14] HUNG P YN, LAU K T, CHENG L K, et al. Impact response of hybrid carbon/glass fiber reinforced polymer composites designed for engineering applications[J]. Composites Part B,2018,133:86-90. doi: 10.1016/j.compositesb.2017.09.026
    [15] MORAIS W A D, MONTEIRO S N, ALMEIDA J R M D'. Evaluation of repeated low energy impact damage in carbon–epoxy composite materials[J]. Composite Structures,2005,307:307-315.
    [16] ANDRZEJ K, SEBASTIAN P, ANGELIKA W K, et al. Damage progression in fiber reinforced polymer composites subjected to low-velocity repeated impact loading[J]. Composite Structures,2020,252:112735. doi: 10.1016/j.compstruct.2020.112735
    [17] LIAO B B, ZHOU J W, LI Y, et al. Damage accumulation mechanism of composite laminates subjected to repeated low velocity impacts[J]. International Journal of Mechanical Sciences,2020,182:105783. doi: 10.1016/j.ijmecsci.2020.105783
    [18] LYU Q HI, WANG B, GUO Z Y. Predicting post-impact compression strength of composite laminates under multiple low-velocity impacts[J]. Composites Part A,2023,164:107322. doi: 10.1016/j.compositesa.2022.107322
    [19] 马 欢, 张国利, 朱有欣, 等. 复合材料头盔壳体用超薄层合板冲击后的压缩性能[J]. 材料研究学报, 2018, 32:348-356. doi: 10.11901/1005.3093.2017.285

    MA H, ZHANG G L, ZHU Y X, et al. Compression properties of ultra-thin laminates for composite helmet shells after impact[J]. Journal of Materials Research,2018,32:348-356(in Chinese). doi: 10.11901/1005.3093.2017.285
    [20] SEAMONE A, DAVIDSON P, WAAS A M, et al. Low velocity impact and compressive response after impact of thin carbon fiber composite panels[J]. International Journal of Solids and Structures,2022,257:111604. doi: 10.1016/j.ijsolstr.2022.111604
    [21] ASTM Committee D30 on Composite Materials. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136 M—15 [S]. West Conshohocken, PA, United States: ASTM International, 2015.
    [22] ASTM Committee D30 on Composite Materials. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137/D7137 M—17 [S]. West Conshohocken, PA, United States: ASTM International, 2017.
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-08
  • 修回日期:  2023-04-18
  • 录用日期:  2023-04-29
  • 网络出版日期:  2023-05-15

目录

    /

    返回文章
    返回