[1] |
ZHU G H, SUN G Y, LI G Y, et al. Modeling for CFRP structures subjected to quasi-static crushing[J]. Composite Structures,2018,184:41-55. doi: 10.1016/j.compstruct.2017.09.001
|
[2] |
MARÍN J C, GRACIANI E. Normal stress flow evaluation in composite aircraft wing sections by strength of material models[J]. Composite Structures,2022,282:115088. doi: 10.1016/j.compstruct.2021.115088
|
[3] |
熊文. 复合材料在海洋船舶中的应用研究[J]. 科技经济市场, 2021: 24-25.WEN X. Research on the application of composite materials in marine vessels[J]. Science and Technology Economic Market, 2021: 24-25(in Chinese).
|
[4] |
GENG D X, LIU Y H, SHAO Z Y, et al. Delamination formation and suppression during rotary ultrasonic elliptical machining of CFRP[J]. Composites Part B,2019,183:107698.
|
[5] |
KALAM S A, SESHAIAH T, SRIVIDYA K. Damage behavior and failure response of aircraft composite structure by soft body impact[J]. Materials Today:Proceedings,2022,52:867-872. doi: 10.1016/j.matpr.2021.10.271
|
[6] |
SUTHERLAND L S. A review of impact testing on marine composite materials: Part I – Marine impacts on marine composites[J]. Composite Structures,2018,188:197-208. doi: 10.1016/j.compstruct.2017.12.073
|
[7] |
BIENIAŚ J, JAKUBCZAK P. Impact damage growth in carbon fiber aluminum laminates[J]. Composite Structures,2017,172:147-154. doi: 10.1016/j.compstruct.2017.03.075
|
[8] |
GE X X, ZHANG P, ZHAO F, et al. Experimental and numerical investigations on the dynamic response of woven carbon fiber reinforced thick composite laminates under low-velocity impact[J]. Composite Structures,2022,279:114792. doi: 10.1016/j.compstruct.2021.114792
|
[9] |
TUO H L, LU Z X, MA X P, et al. Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions[J]. Composites Part B,2019,163:642-654. doi: 10.1016/j.compositesb.2019.01.006
|
[10] |
OSTRÉ B, BOUVET C, MINOT C, et al. Experimental analysis of CFRP laminates subjected to compression after edge impact[J]. Composite Structures,2016,152:767-778. doi: 10.1016/j.compstruct.2016.05.068
|
[11] |
SUN X C, HALLETT S R. Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study[J]. Composites Part A,2018,104:41-59. doi: 10.1016/j.compositesa.2017.10.026
|
[12] |
贾耀雄, 敖清阳, 张文正, 等. 碳纤维复合材料层压板低速冲击损伤性能分析[J]. 兵器材料科学与工程, 2022, 45:170-174. doi: 10.14024/j.cnki.1004-244x.20220909.005JIA Y X, AO Q Y, ZHANG W Z, et al. Analysis of low-velocity impact damage performance of carbon fiber composite laminates[J]. Weapon Materials Science and Engineering,2022,45:170-174(in Chinese). doi: 10.14024/j.cnki.1004-244x.20220909.005
|
[13] |
许 良, 涂宜鸣, 崔 浩, 等. T800碳纤维复合材料低速冲击渐进损伤仿真与试验研究[J]. 大连理工大学学报, 2021, 61:608-614. doi: 10.7511/dllgxb202106008XU L, TU YM, CUI H, et al. Simulation and experimental study of low-velocity impact progressive damage of T800 carbon fiber composites[J]. Journal of Dalian University of Technology,2021,61:608-614(in Chinese). doi: 10.7511/dllgxb202106008
|
[14] |
HUNG P YN, LAU K T, CHENG L K, et al. Impact response of hybrid carbon/glass fiber reinforced polymer composites designed for engineering applications[J]. Composites Part B,2018,133:86-90. doi: 10.1016/j.compositesb.2017.09.026
|
[15] |
MORAIS W A D, MONTEIRO S N, ALMEIDA J R M D'. Evaluation of repeated low energy impact damage in carbon–epoxy composite materials[J]. Composite Structures,2005,307:307-315.
|
[16] |
ANDRZEJ K, SEBASTIAN P, ANGELIKA W K, et al. Damage progression in fiber reinforced polymer composites subjected to low-velocity repeated impact loading[J]. Composite Structures,2020,252:112735. doi: 10.1016/j.compstruct.2020.112735
|
[17] |
LIAO B B, ZHOU J W, LI Y, et al. Damage accumulation mechanism of composite laminates subjected to repeated low velocity impacts[J]. International Journal of Mechanical Sciences,2020,182:105783. doi: 10.1016/j.ijmecsci.2020.105783
|
[18] |
LYU Q HI, WANG B, GUO Z Y. Predicting post-impact compression strength of composite laminates under multiple low-velocity impacts[J]. Composites Part A,2023,164:107322. doi: 10.1016/j.compositesa.2022.107322
|
[19] |
马 欢, 张国利, 朱有欣, 等. 复合材料头盔壳体用超薄层合板冲击后的压缩性能[J]. 材料研究学报, 2018, 32:348-356. doi: 10.11901/1005.3093.2017.285MA H, ZHANG G L, ZHU Y X, et al. Compression properties of ultra-thin laminates for composite helmet shells after impact[J]. Journal of Materials Research,2018,32:348-356(in Chinese). doi: 10.11901/1005.3093.2017.285
|
[20] |
SEAMONE A, DAVIDSON P, WAAS A M, et al. Low velocity impact and compressive response after impact of thin carbon fiber composite panels[J]. International Journal of Solids and Structures,2022,257:111604. doi: 10.1016/j.ijsolstr.2022.111604
|
[21] |
ASTM Committee D30 on Composite Materials. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136 M—15 [S]. West Conshohocken, PA, United States: ASTM International, 2015.
|
[22] |
ASTM Committee D30 on Composite Materials. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137/D7137 M—17 [S]. West Conshohocken, PA, United States: ASTM International, 2017.
|