留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同温度下SAP-PVA纤维增强混凝土轴拉损伤本构模型

谢发祥 金子恒 曹文豪 陈徐东

谢发祥, 金子恒, 曹文豪, 等. 不同温度下SAP-PVA纤维增强混凝土轴拉损伤本构模型[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 谢发祥, 金子恒, 曹文豪, 等. 不同温度下SAP-PVA纤维增强混凝土轴拉损伤本构模型[J]. 复合材料学报, 2024, 42(0): 1-12.
XIE Faxiang, JIN Ziheng, CAO Wenhao, et al. Constitutive model of SAP-PVA fiber reinforced concrete under axial tensile damage at different temperatures[J]. Acta Materiae Compositae Sinica.
Citation: XIE Faxiang, JIN Ziheng, CAO Wenhao, et al. Constitutive model of SAP-PVA fiber reinforced concrete under axial tensile damage at different temperatures[J]. Acta Materiae Compositae Sinica.

不同温度下SAP-PVA纤维增强混凝土轴拉损伤本构模型

基金项目: 国家自然科学基金面上项目(51979090)
详细信息
    通讯作者:

    金子恒,硕士生,研究方向为新型混凝土材料力学性能 E-mail: 1651234439@qq.com

  • 中图分类号: TU528

Constitutive model of SAP-PVA fiber reinforced concrete under axial tensile damage at different temperatures

Funds: National Natural Science Foundation of China (51979090)
  • 摘要: 为研究不同温度下内养护聚乙烯醇纤维(PVA)增强混凝土试件的轴拉力学特性和损伤过程,进行了单轴抗压与拉伸试验,分析了其立方体抗压强度、高温质量损失率、拉伸应力-应变曲线等的变化规律;建立了考虑温度影响的单轴拉伸损伤本构模型,分析了损伤度的变化趋势,揭示了高温下内养护PVA纤维增强混凝土的损伤破坏机制。试验结果表明:立方体抗压强度随着PVA纤维掺量表现为先升高后降低的趋势,PVA纤维最优掺量为0.15%,高温下高吸水性树脂(SAP)颗粒释水收缩和PVA纤维的熔化是导致试件质量损失的主要原因;随着温度的升高,拉伸应力-应变曲线下降段逐渐趋向平缓,并出现了短暂的平台区;PVA纤维的掺入能较好的改善混凝土的韧性;建立的损伤本构模型适用于内养护PVA纤维增强混凝土,但仍具有一定的局限性,有待进一步改进。

     

  • 图  1  试验升温曲线图

    Figure  1.  Test heating graph

    图  2  BLMT-1800 B型高温节箱立式箱式

    Figure  2.  BLMT-1800 type B high temperature joint box vertical box type

    图  3  单轴拉伸试验加载示意图

    Figure  3.  Schematic diagram of uniaxial tensile test

    图  4  混凝土抗压强度与PVA纤维掺量的关系

    Figure  4.  Plot of concrete compressive strength versus PVA fiber content

    图  5  不同PVA纤维掺量下混凝土试件高温质量损失率变化

    Figure  5.  Change of high-temperature mass loss rate of concrete specimens under different PVA fiber content

    图  6  SAP-PVA纤维混凝土轴拉应力-应变曲线

    Figure  6.  SAP-PVA fibre concrete axial tensile stress-strain curve

    图  7  拟合参数a、b、c与温度和PVA纤维掺量的关系

    Figure  7.  Fitted parameter a, b, c versus temperature and PVA fiber incorporation

    图  8  拟合参数d与温度和PVA纤维掺量的关系

    Figure  8.  Fitted parameter d versus temperature and PVA fiber incorporation

    图  9  不同温度及PVA纤维掺量下混凝土试件下降段拟合与试验结果对比

    Figure  9.  Comparison of fitting curve and test curve of concrete specimen under different temperature and PVA fiber content

    图  10  不同温度及PVA纤维掺量下混凝土试件的损伤度

    Figure  10.  Damage degree of the concrete specimens under different temperature and PVA fiber content

    表  1  内养护PVA纤维增强混凝土配合比(kg/m3)

    Table  1.   Mixture ratio of internal curing PVA fiber reinforced concrete (kg/m3)

    Specimen numberWater-
    cement ratio
    Internal conservation
    water content
    CementSandWaterCoarse aggregatewater
    reducer
    SAPPVA
    C0.3230.048064015511601.20.0000.000
    0.05%PVA/C0.32327.948064015511601.21.1160.645
    0.10%PVA/C0.32327.948064015511601.21.1161.290
    0.15%PVA/C0.32327.948064015511601.21.1161.935
    0.20%PVA/C0.32327.948064015511601.21.1162.580
    Notes: C—PVA fiber mix in specimen is 0%; SP-0.05%—PVA fiber mix 0.05%; SP-0.10%—PVA fiber mix in specimen 0.10%; SP-0.15%—PVA fiber mix in specimen 0.15%; SP-0.20%—PVA fiber mix in specimen 0.20%.
    下载: 导出CSV

    表  2  不同PVA纤维掺量混凝土试件的抗压强度值

    Table  2.   Compressive strength values of concrete specimens with different PVA fiber content

    Specimen number Cube body compressive strength/MPa
    Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
    value
    C 41.71 42.65 42.99 44.54 43.43 43.06
    0.05%PVA/C-25℃ 42.79 42.48 43.61 45.70 45.29 43.97
    0.10%PVA/C-25℃ 45.60 46.52 49.48 47.55 43.56 46.54
    0.15%PVA/C-25℃ 51.85 41.91 55.12 46.58 46.48 48.39
    0.20%PVA/C-25℃ 47.19 40.36 46.47 51.32 42.99 45.67
    下载: 导出CSV

    表  3  不同PVA纤维掺量下混凝土试件高温质量损失率

    Table  3.   High-temperature mass loss rate of concrete specimens under different PVA fiber content

    Specimen number Mass loss rate/%
    Sample 1 Sample 2 Sample 3 Average
    value
    C-200℃ 4.216 4.364 4.920 4.500
    C-300℃ 5.829 5.988 5.419 5.745
    C-400℃ 6.391 6.393 6.607 6.464
    0.05%PVA/C-200℃ 4.802 5.431 4.931 5.055
    0.05%PVA/C-300℃ 6.511 6.550 6.149 6.403
    0.05%PVA/C-400℃ 6.724 6.341 6.744 6.603
    0.10%PVA/C-200℃ 4.801 5.304 5.322 5.142
    0.10%PVA/C-300℃ 6.697 6.464 6.978 6.713
    0.10%PVA/C-400℃ 7.389 7.292 7.333 7.338
    0.15%PVA/C-200℃ 4.767 5.379 4.761 4.969
    0.15%PVA/C-300℃ 6.515 6.518 6.387 6.473
    0.15%PVA/C-400℃ 7.139 8.003 7.128 7.423
    0.20%PVA/C-200℃ 5.309 4.602 5.084 4.998
    0.20%PVA/C-300℃ 6.489 6.344 6.688 6.507
    0.20%PVA/C-400℃ 6.173 7.718 8.634 7.508
    下载: 导出CSV

    表  4  SAP-PVA纤维混凝土轴拉损伤本构模型拟合参数的平均值

    Table  4.   Average values of fitting parameters of the SAP-PVA fiber concrete axial tensile damage constitutive model

    The specimen numberabcdR2
    C-25℃0.4200.0410.6211.5000.999
    C-200℃0.3710.0450.6742.8000.986
    C-300℃0.7120.1450.5603.1800.993
    C-400℃0.5630.0640.5001.6840.998
    0.05%PVA/C-25℃0.4720.0400.5682.2340.968
    0.05%PVA/C-200℃0.4780.0600.5822.3080.987
    0.05%PVA/C-300℃0.4270.0440.6172.8530.980
    0.05%PVA/C-400℃0.3840.0260.6421.1940.994
    0.10%PVA/C-25℃0.4540.0500.5972.0820.987
    0.10%PVA/C-200℃0.4530.0690.6163.2910.989
    0.10%PVA/C-300℃0.3820.0470.6651.7140.993
    0.10%PVA/C-400℃0.353<10−30.6470.9940.991
    0.15%PVA/C-25℃0.2730.0810.8082.2040.984
    0.15%PVA/C-200℃0.5680.1000.5322.9840.991
    0.15%PVA/C-300℃0.2980.0270.7291.4990.998
    0.15%PVA/C-400℃0.5490.1100.5612.0650.996
    0.20%PVA/C-25℃0.5510.0740.5234.2190.993
    0.20%PVA/C-200℃0.4820.0750.5933.0500.987
    0.20%PVA/C-300℃0.5210.0930.5723.2100.998
    0.20%PVA/C-400℃0.196<10−30.8040.6830.989
    下载: 导出CSV
  • [1] SONG Laizhong, ZHANG Weipeng, ZHOU Bin, et al. Dynamic Splitting Tensile Behavior and Damage Mechanism of Concrete[J]. Journal of China Three Gorges University, 2015, 37(6): 10-14.
    [2] CAO Jifeng, DING Yining. Experimental Study on Mechanical Behaviour of Modified Macro Polypropylene Fiber Reinforced High Performance Concrete[J]. Building Structure, 2006, (12): 30-32.
    [3] A J G M V, B M R A V. Uniaxial tension test for the determination of fracture parameters of concrete: state of the art[J]. Engineering Fracture Mechanics, 2002, 69(2): 235-247. doi: 10.1016/S0013-7944(01)00087-X
    [4] 张聪, 夏超凡, 袁振, 等. 混杂纤维增强应变硬化水泥基复合材料的拉伸本构关系[J]. 复合材料学报, 2020, 37(7): 1754-1762.

    ZHANG Cong, XIA Chaofan, YUAN Zhen, et al. Tension constitutive relationship of hybrid fiber reinforced strain hardening cementitous composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1754-1762(in Chinese).
    [5] 葛志明. 定向钢纤维增强水泥基复合材料轴拉力学性能研究[D]. 天津: 河北工业大学, 2017.

    GE Zhiming. Study on uniaxial tensile mechanical properties of reinforced aligned steel fiber reinforced cementitious composites [D]. Tianjin: Hebei University of Technology, 2017. (in Chinese)
    [6] Xie F. Combined compression-shear performance and failure criteria of internally cured concrete with super absorbent polymer[J]. Construction and Building Materials, 2021, 266: 120888. doi: 10.1016/j.conbuildmat.2020.120888
    [7] 蒋津, 洪丽, 高鹏, 等. 高强高模PVA纤维增强混凝土宏观力学性能的试验研究[J]. 合肥工业大学学报:自然科学版, 2019, 42(6): 6.

    JIANG Jin, HONG Li, GAO Peng, et al. Experimental research on macroscopic mechanical properties of high strength and high modulus PVA fiber reinforced concrete[J]. Journal of Hefei University of Technology(Natural Science), 2019, 42(6): 6(in Chinese).
    [8] 薛会青, 邓宗才, 李建辉. PVA纤维水泥基复合材料的抗拉性能及韧性研究[J]. 郑州大学学报:工学版, 2009, (1): 4.

    XUE Huiqing, DENG Zongcai, LI Jianhui. Tensile Performance and Toughness of PVA Fiber Reinforced Cementitious Composites[J]. Journal of Zhengzhou University (Engineering Science), 2009, (1): 4(in Chinese).
    [9] Kong Xiangming, Zhang Zhenlin, Lu Zichen. Effect of pre-soaked superabsorbent polymer on shrinkage of high-strength concrete[J]. Materials & Structures, 2015, 48(9): 2741-2758.
    [10] 申爱琴, 杨景玉, 郭寅川, 等. SAP内养生水泥混凝土综述[J]. 交通运输工程学报, 2021, 21(4): 31.

    SHEN Aiqin, YANG Jingyu, GUO Yinchuan, et al. Review on cement concrete internally cured by SAP[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 31(in Chinese).
    [11] 杨进. 高吸水树脂内养护混凝土的微观结构与性能[D]. 武汉: 武汉理工大学, 2017.

    YANG Jin. Microstructure and performance of cementitious materials internally cured by superabsorbent polymers [D]. Wuhan: Wuhan University of Technology, 2017. (in Chinese)
    [12] SNOECK D, SCHAUBROECK D, DUBRUEL P, et al. Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50[J]. Construction & Building Materials, 2014, 72(dec.15): 148-157.
    [13] 马耀邦. SAP混凝土力学性能试验研究[D]. 天津: 天津大学, 2016.

    MA Yaobang. Experimental study on mechanical properties of SAP concrete [D]. Tianjin: Tianjin University, 2016. (in Chinese)
    [14] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081-2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration for Market Supervision and Administration. Standard for test methods of concrete physical and mechanical properties: GB/T 50081-2019 [S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)
    [15] CRAEYE B. Experimental evaluation of mitigation of autogenous shrinkage by means of a vertical dilatometer for concrete[C]. 2006.
    [16] WYRZYKOWSKI, M. , LURA, et al. Internal curing by superabsorbent polymers in ultra-high performance concrete[J]. Cement & Concrete Research, 2015, 76: 82-90.
    [17] KHOURY G, FELLINGER J, BOTH K, et al. Fire design of concrete structures. Materials, Structures and Modelling[J]. 2006: 1-97.
    [18] 李庆华, 徐世烺. 超高韧性水泥基复合材料基本性能和结构应用研究进展[J]. 工程力学, 2009, (A02): 23-67.

    LI Qinghua, XU Shilang. Performance and Application of Ultra High Toughness Cementitious Composite: a Review[J]. Engineering Mechanics, 2009, (A02): 23-67 (in Chinese)
    [19] CHEN Xudong, XU Lingyu, LIU Zhiheng, et al. Influence of high temperature on post-peak cyclic response of fly ash concrete under direct tension[J]. Construction and Building Materials, 2017, 154(nov.15): 399-410.
    [20] SIMA J F, ROCA P, MOLINS C. Cyclic constitutive model for concrete[J]. Engineering Structures, 2008, 30(3): 695-706. doi: 10.1016/j.engstruct.2007.05.005
    [21] VECCHIO F J, COLLINS M P. The modified compression-field theory for reinforced concrete elements subjected to shear[J]. Aci Journal, 1986, 83(2): 219-231.
    [22] PETERSSON P E. Crack growth and development of fracture zones in plain concrete and similar materials[J]. Report TVBM-1006, 1981.
    [23] GOPALARATNAM V S, SHAH S P. Softening response of plain concrete in direct tension[J]. Aci Materials Journal, 1985, 82(3): 310-323.
    [24] YANKELEVSKY D Z, REINHARDT H W. Model for Cyclic Compressive Behavior of Concrete[J]. Journal of Structural Engineering, 1987, 113(2): 228-240. doi: 10.1061/(ASCE)0733-9445(1987)113:2(228)
    [25] CHEN Xudong, BU Jingwu, XU Lingyu. Effect of strain rate on post-peak cyclic behavior of concrete in direct tension[J]. Construction and Building Materials, 2016, 124(16): 746-754.
    [26] LEMAITRE J. How to use damage mechanics[J]. Nuclear Engineering and Design, 1984, 80(2): 233-245. doi: 10.1016/0029-5493(84)90169-9
    [27] KACHANOV L M, KRAJCINOVIC D. Introduction to continuum damage mechanics[J]. Journal of Applied Mechanics, 1986, 54(2): 481.
    [28] LI Xibing, WANG Shiming, GONG Fengqiang, et al. Experimental study of damage properties of different ages concrete under multiple impact loads[J]. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2465-2472.
  • 加载中
计量
  • 文章访问数:  61
  • HTML全文浏览量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-02
  • 修回日期:  2024-03-10
  • 录用日期:  2024-03-19
  • 网络出版日期:  2024-04-17

目录

    /

    返回文章
    返回