留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

UHPC与混凝土基体间界面剪切强度的影响因素

薛善彬 荆蜂杰 王丹 张鹏 高小建

薛善彬, 荆蜂杰, 王丹, 等. UHPC与混凝土基体间界面剪切强度的影响因素[J]. 复合材料学报, 2024, 41(12): 6492-6501.
引用本文: 薛善彬, 荆蜂杰, 王丹, 等. UHPC与混凝土基体间界面剪切强度的影响因素[J]. 复合材料学报, 2024, 41(12): 6492-6501.
XUE Shanbin, JING Fengjie, WANG Dan, et al. Factors influencing interfacial shear strength between UHPC and concrete substrate[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6492-6501.
Citation: XUE Shanbin, JING Fengjie, WANG Dan, et al. Factors influencing interfacial shear strength between UHPC and concrete substrate[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6492-6501.

UHPC与混凝土基体间界面剪切强度的影响因素

基金项目: 国家自然科学基金(U2106220;52008222);国家重点研发计划项目(2021YFB2600704);山东省杰出青年基金(ZR2021JQ17)
详细信息
    通讯作者:

    张鹏,博士,教授,博士生导师,研究方向为混凝土耐久性 E-mail: peng.zhang@qut.edu.cn

  • 中图分类号: TU528

Factors influencing interfacial shear strength between UHPC and concrete substrate

Funds: National Natural Science Foundation of China (U2106220; 52008222); National Key Research and Development Program Project (2021YFB2600704); Shandong Province Outstanding Youth Fund (ZR2021JQ17)
  • 摘要: 超高性能混凝土(Ultra-high performance concrete, UHPC)具备优异的力学与抗渗性能,在混凝土结构补强加固工程中有着广阔的应用前景,如何提高UHPC与既有基体间的粘结性能成为土木工程领域普遍关心的重要课题。本文利用标准养护条件制备的试件开展试验研究,首先研究了UHPC水胶比与混凝土基体初始含水饱和度对二者间界面剪切强度的影响规律。此外,选取特定配合比的UHPC,研究了其与不同饱和度混凝土间界面剪切强度随龄期的演化规律。向UHPC中掺入预湿轻骨料以实现内养护,考虑UHPC中轻骨料取代率、混凝土基体含水饱和度的影响,研究了不同龄期养护后轻骨料UHPC与混凝土基体间界面剪切强度的演化规律。利用扫描电镜技术观测了UHPC与混凝土间界面的微结构。结果表明:(1)对于未掺轻骨料的UHPC:不论水胶比如何变化,其与饱水基体间的界面剪切强度最高,而与干燥基体间的界面剪切强度最低;其与干燥基体间的界面剪切强度随水胶比的升高而降低,与预湿基体间的界面剪切强度随水胶比的升高而先增长后降低。(2)水胶比为0.154的UHPC与不同饱和度基体间28 d时的界面剪切强度均较7 d时显著增长;90 d时,其仅与50%饱和度基体间的界面剪切强度进一步显著增长。(3)低轻骨料取代率能够提高UHPC与干燥基体间7 d时的界面剪切强度,而高轻骨料取代率能够显著提高UHPC与干燥基体间28 d和90 d时的界面剪切强度;28 d和90 d时,轻骨料UHPC与50%饱和度基体间的界面剪切强度显著高于干燥基体;7 d时,不同轻骨料取代率的UHPC与饱水基体间便可形成一定的界面剪切强度,且该强度在28 d和90 d时均进一步增长。

     

  • 图  1  UHPC-混凝土基体复合体制备流程

    Figure  1.  Preparation flow of UHPC-concrete substrate composite

    图  2  界面剪切强度测试

    Figure  2.  Interface shear strength test

    图  3  扫描电镜试验取样与测试

    Figure  3.  Sampling and testing of scanning electron microscope (SEM) test

    图  4  不同水胶比UHPC与不同饱和度混凝土间的界面剪切强度

    Figure  4.  Interfacial shear strength between UHPC with different w/b and concrete with different saturation

    图  5  不同龄期养护后UHPC与不同饱和度混凝土基体间的界面剪切强度

    Figure  5.  Interfacial shear strength between UHPC and concrete substrate with different saturation after curing at different ages

    图  6  不同轻骨料取代率UHPC与干燥混凝土基体间界面剪切强度

    Figure  6.  Interfacial shear strength between UHPC with different LWA replacement rates and dry concrete substrate

    图  7  内掺轻骨料UHPC与干燥混凝土基体的粘结过程

    Figure  7.  Bonding process between UHPC incorporating LWA and dry concrete substrate

    图  8  不同轻骨料取代率UHPC与部分饱水混凝土基体间界面剪切强度

    Figure  8.  Interfacial shear strength between UHPC with different LWA replacement rates and partially saturated concrete substrate

    图  9  不同轻骨料取代率UHPC与饱水混凝土基体间界面剪切强度

    Figure  9.  Interfacial shear strength between UHPC with different LWA replacement rates and water-saturated concrete substrate

    图  10  基于扫描电镜的UHPC与混凝土基体间界面微结构观测

    Figure  10.  Microstructural observation of the interface between UHPC and concrete substrate based on SEM

    The nomenclature rule for the specimens is “the saturation of substrate - the replacement rate of LWA in UHPC”

    表  1  超高性能混凝土(UHPC)配合比(kg/m3)

    Table  1.   Mix proportion of ultra-high performance concrete (UHPC) (kg/m3)

    Groups Cement Silica fume Quartz sand Water SP Steel fiber LWA
    UHPC-00 770 230 1000 154 42 156 0
    UHPC-10 770 230 900 154 42 156 96
    UHPC-20 770 230 800 154 42 156 192
    UHPC-30 770 230 700 154 42 156 288
    25-UHPC 770 230 1000 250 20 156 0
    30-UHPC 770 230 1000 300 16 156 0
    Notes: SP denotes superplasticizer. LWA represents lightweight aggregate. The UHPC group with a LWA replacement rate of 0%, 10%, 20% and 30% is designated as UHPC-00, UHPC-10, UHPC-20, UHPC-30. The UHPC group with a water-binder ratio (w/b) of 0.25 and 0.30 is designated as 25-UHPC and 30-UHPC, respectively.
    下载: 导出CSV

    表  2  混凝土基体配合比(kg/m3)

    Table  2.   Mix proportion of concrete substrate (Unit: kg/m3)

    CementCoarse aggregateFine aggregateWater
    3751125750200
    下载: 导出CSV

    表  3  各组变量汇总表

    Table  3.   Summary table of variables for each group

    Groups w/b Saturation of the substrate Replacement rate LWA Curing age
    UHPC-00 0.154 0%、50%、100% 0% 7 d、28 d、90 d
    25-UHPC 0.25 0%、50%、100% 0% 28 d
    30-UHPC 0.30 0%、50%、100% 0% 28 d
    UHPC-10 0.154 0%、50%、100% 10% 7 d、28 d、90 d
    UHPC-20 0.154 0%、50%、100% 20% 7 d、28 d、90 d
    UHPC-30 0.154 0%、50%、100% 30% 7 d、28 d、90 d
    Note: w/b refers to the water-binder ratio of UHPC.
    下载: 导出CSV
  • [1] C Li Victor, 张亚梅. 高延性纤维增强水泥基复合材料的研究进展及应用[J]. 硅酸盐学报. 2007, 35(4): 531-536.

    C Li Victor, Zhang Yamei Research progress and application of high ductility fiber-reinforced cement-based composites [J] Journal of Silicates 2007, 35 (4): 531-536(in Chinese).
    [2] 王少伟, 肖焰钰, 朱平华, 等. 高延性水泥基复合材料与既有混凝土结合面的抗溶蚀性[J]. 硅酸盐学报. 2022, 50(10): 2692-2700.

    Wang Shaowei, Xiao Yanyu, Zhu Pinghua, et al. Corrosion resistance of the interface between high ductility cement-based composite materials and existing concrete [J] Journal of Silicates 2022, 50 (10): 2692-2700(in Chinese).
    [3] Yu J, Zhang B, Chen W, et al. Multi-scale study on interfacial bond failure between normal concrete (NC) and ultra-high performance concrete (UHPC)[J]. Journal of Building Engineering, 2022, 57: 104808. doi: 10.1016/j.jobe.2022.104808
    [4] 廖肇乾. UHPC-NC界面粘结强度试验研究[D]. 湖南大学, 2018.

    Liao Zhaoqian Experimental study on the bonding strength of UHPC-NC interface [D] Hunan University, 2018(in Chinese).
    [5] 饶欣频, 霍文斌, 胡智敏, 等. 超高性能混凝土与普通混凝土的界面抗剪性能试验研究[J]. 建筑结构. 2021, 51(14): 101-106.

    Rao Xinpin, Huo Wenbin, Hu Zhimin, et al. Experimental study on the interface shear resistance of ultra-high performance concrete and ordinary concrete [J] Building structure 2021, 51 (14): 101-106(in Chinese).
    [6] 阎培渝, 张增起. 复合胶凝材料的水化硬化机理[J]. 硅酸盐学报. 2017, 45(8): 1066-1072.

    Yan Peiyu, Zhang Zengqi The hydration hardening mechanism of composite cementitious materials [J] Journal of Silicates 2017, 45 (8): 1066-1072(in Chinese).
    [7] Li G. A new way to increase the long-term bond strength of new-to-old concrete by the use of fly ash[J]. Cement and Concrete Research, 2003, 33(6): 799-806. doi: 10.1016/S0008-8846(02)01064-5
    [8] Behforouz B, Tavakoli D, Gharghani M, et al. Bond strength of the interface between concrete substrate and overlay concrete containing fly ash exposed to high temperature[J]. Structures, 2023, 49: 183-197. doi: 10.1016/j.istruc.2023.01.122
    [9] Feng S, Xiao H, Li H. Comparative studies of the effect of ultrahigh-performance concrete and normal concrete as repair materials on interfacial bond properties and microstructure[J]. Engineering Structures, 2020, 222: 111122. doi: 10.1016/j.engstruct.2020.111122
    [10] 李港来. UHPC中胶凝材料的后续水化及对其稳定性的影响[D]. 湖南大学, 2021.

    Li Ganglai. Subsequent hydration of cementitious materials in UHPC and its impact on their stability [D] Hunan University, 2021(in Chinese).
    [11] Beushausen H, Höhlig B, Talotti M. The influence of substrate moisture preparation on bond strength of concrete overlays and the microstructure of the OTZ[J]. Cement and Concrete Research, 2017, 92: 84-91. doi: 10.1016/j.cemconres.2016.11.017
    [12] Zhang Y, Zhu P, Liao Z, et al. Interfacial bond properties between normal strength concrete substrate and ultra-high performance concrete as a repair material[J]. Construction and Building Materials, 2020, 235: 117431. doi: 10.1016/j.conbuildmat.2019.117431
    [13] Bentz D P, De la Varga I, Muñoz J F, et al. Influence of substrate moisture state and roughness on interface microstructure and bond strength: Slant shear vs. pull-off testing[J]. Cement and Concrete Composites, 2018, 87: 63-72. doi: 10.1016/j.cemconcomp.2017.12.005
    [14] Xiong G, Luo B, Wu X, et al. Influence of silane coupling agent on quality of interfacial transition zone between concrete substrate and repair materials[J]. Cement and Concrete Composites, 2006, 28(1): 97-101. doi: 10.1016/j.cemconcomp.2005.09.004
    [15] Semendary A A, Svecova D. Factors affecting bond between precast concrete and cast in place ultra high performance concrete (UHPC)[J]. Engineering Structures, 2020, 216: 110746. doi: 10.1016/j.engstruct.2020.110746
    [16] 吴琛, 储福玮, 龚明子, 等. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报. 2023, 37(24): 163-170.

    Wu Chen, Chu Fuwei, Gong Mingzi, et al. Experimental study on the interfacial bonding performance between non steam cured ultra-high performance concrete and existing concrete [J] Material Guide 2023, 37 (24): 163-170(in Chinese).
    [17] 郭旗, 薛善彬, 荆蜂杰, 等. 新拌修补砂浆与基体水分交换行为及其对复合体性能的影响[J]. 硅酸盐学报. 2023, 51(5): 1115-1125.

    Guo Qi, Xue Shanbin, Jing Fengjie, et al. The water exchange behavior between freshly mixed repair mortar and matrix and its impact on the performance of the composite [J] Journal of Silicates 2023, 51 (5): 1115-1125(in Chinese).
    [18] Xue S, Zhang P, Lehmann E H, et al. Neutron radiography of water exchange across the interface between old and fresh mortar[J]. Measurement, 2021, 183: 109882. doi: 10.1016/j.measurement.2021.109882
    [19] Xue S, Meng F, Zhang P, et al. Influence of substrate moisture conditions on microstructure of repair mortar and water imbibition in repair-old mortar composites[J]. Measurement, 2021, 183: 109769. doi: 10.1016/j.measurement.2021.109769
    [20] 孟繁强. 新旧砂浆粘结性能及水分传输规律试验研究[D]. 青岛理工大学, 2021.

    Meng Fanqiang Experimental study on the bonding performance and water transfer law of new and old mortar [D] Qingdao University of Technology, 2021(in Chinese).
    [21] 张立卿, 潘延念, 胡文兵, 等. 废弃瓷砖粉对超高性能混凝土的抗压强度影响规律与机制[J]. 复合材料学报. 2023, 40(3): 1611-1623.

    Zhang Liqing, Pan Yannian, Hu Wenbing, et al. The influence and mechanism of waste ceramic tile powder on the compressive strength of ultra-high performance concrete [J] Journal of Composite Materials 2023, 40 (3): 1611-1623(in Chinese).
    [22] 杨正宏, 高双双, 于龙, 等. 养护温度对陶粒内水分向水泥浆体中迁移行为的影响[J]. 建筑材料学报. 2020, 23(1): 138-144.

    Yang Zhenghong, Gao Shuangshuang, Yu Long, etc The effect of curing temperature on the migration behavior of water inside ceramic particles into cement slurry [J] Journal of Building Materials 2020, 23 (1): 138-144(in Chinese).
    [23] Zhang G, Chen H, Yang J, et al. Relationship between chloride ion permeation resistance of ultra-high performance concrete and lightweight aggregate ratio[J]. Journal of Building Engineering, 2023, 76: 107360. doi: 10.1016/j.jobe.2023.107360
    [24] Shen P, Lu J, Zheng H, et al. Expansive ultra-high performance concrete for concrete-filled steel tube applications[J]. Cement and Concrete Composites, 2020, 114: 103813. doi: 10.1016/j.cemconcomp.2020.103813
    [25] 张媛媛, 毛倩瑾, 李松涛, 等. 高吸水树脂作为混凝土内养护材料的研究进展[J]. 硅酸盐学报. 2022, 50(11): 3009-3020.

    Zhang Yuanyuan, Mao Qianjin, Li Songtao, et al. Research progress on high water absorbent resin as an internal curing material for concrete [J] Journal of Silicates 2022, 50 (11): 3009-3020(in Chinese).
    [26] 于本田, 陈延飞, 王焕, 等. 大掺量高吸附性石粉高强机制砂混凝土收缩开裂抑制试验[J]. 复合材料学报. 2021, 38(8): 2737-2746.

    Yu Bentian, Chen Yanfei, Wang Huan, et al. Experimental Study on Shrinkage and Cracking Inhibition of High Strength Mechanized Sand Concrete with High Content and Adsorption of Stone Powder [J] Journal of Composite Materials 2021, 38 (8): 2737-2746(in Chinese).
    [27] Liu J, Wang M, Liu N, et al. Development of ultra-fine SAP powder for lower-shrinkage and higher-strength cement pastes made with ultra-low water-to-binder ratio[J]. Composites Part B:Engineering, 2023, 262: 110810. doi: 10.1016/j.compositesb.2023.110810
    [28] 张高展, 王宇譞, 葛竞成, 等. 轻集料对超高性能混凝土工作和力学性能的影响[J]. 建筑材料学报. 2021, 24(3): 499-507.

    Zhang Gaozhan, Wang Yuqian, Ge Jingcheng, et al. The influence of lightweight aggregates on the workability and mechanical properties of ultra-high performance concrete [J] Journal of Building Materials 2021, 24 (3): 499-507(in Chinese).
    [29] 李春云, 薛善彬, 张鹏, 等. 轻骨料对砂浆力学与毛细吸水性能的影响[J]. 硅酸盐通报. 2022, 41(1): 41-50.

    Li Chunyun, Xue Shanbin, Zhang Peng, et al. The influence of lightweight aggregates on the mechanical and capillary water absorption properties of mortar [J] Silicate notification 2022, 41 (1): 41-50(in Chinese).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  98
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-09
  • 修回日期:  2024-02-15
  • 录用日期:  2024-03-08
  • 网络出版日期:  2024-04-13
  • 刊出日期:  2024-12-15

目录

    /

    返回文章
    返回