留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2复合碳化全再生骨料混凝土力学特性及强化机制

张美香 丁亚红 杨小林 孙博

张美香, 丁亚红, 杨小林, 等. 纳米SiO2复合碳化全再生骨料混凝土力学特性及强化机制[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 张美香, 丁亚红, 杨小林, 等. 纳米SiO2复合碳化全再生骨料混凝土力学特性及强化机制[J]. 复合材料学报, 2024, 42(0): 1-10.
ZHANG Meixiang, DING Yahong, YANG Xiaolin, et al. Mechanical properties and strengthening mechanism of fully recycled aggregate concrete prepared by nano-SiO2 composite carbonated recycled aggregates[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Meixiang, DING Yahong, YANG Xiaolin, et al. Mechanical properties and strengthening mechanism of fully recycled aggregate concrete prepared by nano-SiO2 composite carbonated recycled aggregates[J]. Acta Materiae Compositae Sinica.

纳米SiO2复合碳化全再生骨料混凝土力学特性及强化机制

基金项目: 国家自然科学基金 (U1904188)
详细信息
    通讯作者:

    丁亚红,博士,教授,博士生导师,研究方向为建筑固废资源化利用、高性能混凝土等 E-mail: dingyahong@hpu.edu.cn

  • 中图分类号: TU528.59

Mechanical properties and strengthening mechanism of fully recycled aggregate concrete prepared by nano-SiO2 composite carbonated recycled aggregates

Funds: National Natural Science Foundation of China (U1904188)
  • 摘要: 为探究碳化改性骨料对全再生骨料混凝土(FRAC)力学特性的影响规律,采用纳米SiO2复合碳化改性再生骨料并制备FRAC,测试了其抗压性能、劈裂抗拉性能及抗折性能等宏观力学特性,采用纳米压痕测试了其微观力学性能,并结合SEM微观测试,揭示了碳化全再生骨料混凝土(CFRAC)多重界面强化机制。结果表明,NS复合碳化实现了再生粗骨料高效碳化改性,CFRAC力学特性均得到显著提高,其中抗压强度、劈裂抗拉强度及抗折强度最大提高幅度分别为33.12%、48.73%及24.53%;CFRAC各相平均弹性模量及显微硬度显著提高,最大提高幅度分别为171.05%、62.96%,其中旧砂浆及骨料-旧砂浆界面过渡区(ITZ1)微观力学性能提高幅度最显著;通过“骨料墙效应”及“ITZ碳化强化效应”揭示了CFRAC强化机制。成果为再生骨料品质提升研究及FRAC推广应用提供理论支撑。

     

  • 图  1  河砂及再生细骨料颗粒级配曲线

    Figure  1.  Particle size distribution curve for sand and recycled fine aggregate

    图  2  碳化前后再生粗骨料酚酞喷涂

    Figure  2.  Phenolphthalein spraying of recycled coarse aggregate before and after carbonation

    图  3  FRAC100与CFRAC100多重界面微观力学测试

    Figure  3.  Micromechanical test of multiple interfaces for FRAC100 and CFRAC100

    图  4  荷载-压痕深度典型曲线

    Figure  4.  Typical curve of load-indentation depth

    Pmax represents the maximum load of the indenter, hf represents the indentation depth after unloading, hc represents the contact depth, hmax represents the maximum indentation depth, S represents the initial slope of the load-indentation depth unloading curve

    图  5  FRAC宏观力学特性

    Figure  5.  Macroscopic mechanical properties of FRAC

    图  6  FRAC荷载-压痕深度曲线

    Figure  6.  Curve of load-indentation depth of FRAC

    图  7  FRAC各相弹性模量(GPa)

    Figure  7.  Each phase elastic modulus of FRAC (GPa)

    图  8  FRAC各相显微硬度(GPa)

    Figure  8.  Each phase microhardness of FRAC (GPa)

    图  9  FRAC ITZ微观形貌SEM图像

    Figure  9.  SEM images of ITZ for FRAC

    图  10  NS复合碳化FRAC强化机制模型

    Figure  10.  Strengthening mechanism model of NS composite carbonated FRAC

    表  1  碳化前后再生骨料物理特性

    Table  1.   Physical properties of recycled aggregate before and after carbonation

    Aggregate type Water absorption/% Crush value/% Apparent density/(kg·m−3)
    Natural aggregate 0.6 8.1 2760
    Sand 0.5 10.2 2591
    Recycled fine aggregate 9.0 25.93 2453
    Carbonated recycled fine aggregate 6.84(↓24%) 23.40(↓9.76%) 2512(↑2.41%)
    Recycled coarse aggregate 4.71 16.2 2648
    Carbonated recycled coarse aggregate 3.63(↓22.93%) 15.60(↓3.70%) 2694(↑1.74%)
    下载: 导出CSV

    表  2  试验方案

    Table  2.   Test scheme

    Series Recycled coarse aggregate
    replacement percentage
    Recycled fine aggregate
    replacement percentage
    Carbonation Number of test
    blocks ( blocks )
    NA 0 0 3
    RC 100% 0、30%、50%、70%、100% No 15
    RF 0、30%、50%、70%、100% 100% No 15
    CRC 100% 0、30%、50%、70%、100% Yes 15
    CRF 0、30%、50%、70%、100% 100% Yes 15
    Notes: NA represents concrete prepared by natural aggregates, RC represents fully recycled coarse aggregate concrete, RF represents fully recycled fine aggregate concrete, CRC represents carbonated fully recycled coarse aggregate concrete, CRF represents carbonated fully recycled fine aggregate concrete.
    下载: 导出CSV

    表  3  全再生骨料混凝土(FRAC)配合比(kg/m3)

    Table  3.   Mix proportion of fully recycled aggregate concrete (FRAC) (kg/m3)

    Series Natural aggregate Recycled coarse aggregate Sand Recycled fine aggregate Water Cement
    NA 1220.36 0 703.38 0.00 167.31 371.80
    RC0 0 579.96 1002.30 0.00 232.68 517.07
    RC30 0 722.70 640.98 260.04 221.14 491.43
    RC50 0 823.16 427.36 404.55 213.02 473.38
    RC70 0 928.20 237.29 524.13 204.53 454.51
    RC100 0 1095.05 0.00 652.91 191.04 424.54
    RF0 1521.78 0.00 0 475.97 98.97 219.93
    RF30 1065.41 445.05 0 475.97 130.81 290.68
    RF50 761.94 742.93 0 482.18 149.82 332.92
    RF70 403.47 918.13 0 554.58 167.30 371.77
    Notes: In RC0, RC represents fully recycled coarse aggregate concrete, and 0 represents the replacement rate of recycled fine aggregate is 0%. In RF0, RF represents fully recycled fine aggregate concrete, and 0 represents the replacement rate of recycled coarse aggregate is 0%.
    下载: 导出CSV
  • [1] Tang Y X, Xiao J Z, Zhang H H, et al. Mechanical properties and uniaxial compressive stress-strain behavior of fully recycled aggregate concrete[J]. Construction and Building Materials, 2022, 323: 126546. doi: 10.1016/j.conbuildmat.2022.126546
    [2] Zhang H H, Xiao J Z, Tang Y X, et al. Long-term shrinkage and mechanical properties of fully recycled aggregate concrete: Testing and modelling[J]. Cement and Concrete Composites, 2022, 130: 104527. doi: 10.1016/j.cemconcomp.2022.104527
    [3] Zhao M Z, Geng Y, Wang Y Y, et al. Compounding effect and an expanded theoretical model for recycled coarse and fine aggregate concretes under uniaxial loading[J]. Construction and Building Materials, 2022, 320: 126226. doi: 10.1016/j.conbuildmat.2021.126226
    [4] Shi C J, Li Y K, Zhang J K, et al. Performance enhancement of recycled concrete aggregate – A review[J]. Journal of Cleaner Production, 2016, 112: 466-472. doi: 10.1016/j.jclepro.2015.08.057
    [5] 冯春花, 黄益宏, 崔卜文, 等. 建筑再生骨料强化方法研究进展[J]. 材料导报, 2022, 36(21): 88-95.

    FENG Chunhua, HUANG Yihong, CUI Buwen, et al. Research progress on treatment methods of building recycled concrete aggregates[J]. Materials Reports, 2022, 36(21): 88-95( in Chinese).
    [6] Fernández Bertos M, Simons S J R, Hills C D, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2[J]. Journal of Hazardous Materials, 2004, 112(3): 193-205. doi: 10.1016/j.jhazmat.2004.04.019
    [7] Kou S C, Zhan B J, Poon C S. Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates[J]. Cement and Concrete Composites, 2014, 45: 22-28. doi: 10.1016/j.cemconcomp.2013.09.008
    [8] Liang C F, Pan B H, Ma Z M, et al. Utilization of CO2 curing to enhance the properties of recycled aggregate and prepared concrete: A review[J]. Cement and Concrete Composites, 2020, 105: 103446. doi: 10.1016/j.cemconcomp.2019.103446
    [9] 赵增丰, 姚磊, 肖建庄, 等. 再生骨料CO2碳化强化技术研究进展[J]. 硅酸盐学报, 2022, 50(8): 2296-2304.

    ZHAO Zengfeng, YAO Lei, XIAO Jianzhuang, et al. Development on accelerated carbonation technology to enhance recycled aggregates[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2296-2304( in Chinese).
    [10] Björn Lagerblad. Carbon Dioxide Uptake During Concrete Life Cycle - State of the art[M]. Swedish Cement and Concrete Research Institute - CBI, 2005.
    [11] 高越青, 潘碧豪, 梁超锋, 等. CO2强化再生骨料的特性及其对再生混凝土性能的影响[J]. 土木与环境工程学报(中英文), 2021, 43(6): 95-102.

    GAO Yueqing, PAN Bihao, LIANG Chaofeng, et al. Properties of CO2-modified reinforced recycled aggregate and its effect on the performance of recycled aggregate concrete[J]. Journal of Civil and Environmental Engineering, 2021, 43(6): 95-102( in Chinese).
    [12] LUO S R, YE S C, XIAO J Z, et al. Carbonated recycled coarse aggregate and uniaxial compressive stress-strain relation of recycled aggregate concrete[J]. Construction and Building Materials, 2018, 188: 956-965. doi: 10.1016/j.conbuildmat.2018.08.159
    [13] Pu Y H, Li L, Wang Q Y, et al. Accelerated carbonation treatment of recycled concrete aggregates using flue gas: A comparative study towards performance improvement[J]. Journal of CO2 Utilization, 2021, 43: 101362. doi: 10.1016/j.jcou.2020.101362
    [14] Fang X L, Xuan D X, Shen P L, et al. Fast enhancement of recycled fine aggregates properties by wet carbonation[J]. Journal of Cleaner Production, 2021, 313: 127867. doi: 10.1016/j.jclepro.2021.127867
    [15] Jiang Y, Li L, Lu J X, et al. Mechanism of carbonating recycled concrete fines in aqueous environment: The particle size effect[J]. Cement and Concrete Composites, 2022, 133: 104655. doi: 10.1016/j.cemconcomp.2022.104655
    [16] ZHAN B J, XUAN D X, POON C S. Enhancement of recycled aggregate properties by accelerated CO2 curing coupled with limewater soaking process[J]. Cement and Concrete Composites, 2018, 89: 230-237. doi: 10.1016/j.cemconcomp.2018.03.011
    [17] ZHAO Z F. Improving the properties of recycled concrete aggregates by accelerated carbonation[J]. Proceedings of the Institution of Civil Engineers - Construction Materials, 2018, 171(3): 126-132. doi: 10.1680/jcoma.17.00015
    [18] ZHANG J Z, SHI C J, LI Y K, et al. Performance Enhancement of Recycled Concrete Aggregates through Carbonation[J]. Journal of Materials in Civil Engineering, 2015, 27(11): 04015029. doi: 10.1061/(ASCE)MT.1943-5533.0001296
    [19] Fang X L, Zhan B J, Poon C S. Enhancement of recycled aggregates and concrete by combined treatment of spraying Ca2+ rich wastewater and flow-through carbonation[J]. Construction and Building Materials, 2021, 277: 122202. doi: 10.1016/j.conbuildmat.2020.122202
    [20] Xuan D X, Zhan B J, Poon C S. Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates[J]. Cement and Concrete Composites, 2016, 65: 67-74. doi: 10.1016/j.cemconcomp.2015.10.018
    [21] XUAN D X, ZHAN B J, POON C S. Durability of recycled aggregate concrete prepared with carbonated recycled concrete aggregates[J]. Cement and Concrete Composites, 2017, 84: 214-221. doi: 10.1016/j.cemconcomp.2017.09.015
    [22] Gao S, Guo J, Gong Y Y, et al. Study on the penetration and diffusion of chloride ions in interface transition zone of recycled concrete prepared by modified recycled coarse aggregates[J]. Case Studies in Construction Materials, 2022, 16: e01034. doi: 10.1016/j.cscm.2022.e01034
    [23] Liu H, Zhu X D, Zhu P H, et al. Carbonation treatment to repair the damage of repeatedly recycled coarse aggregate from recycled concrete suffering from coupling action of high stress and freeze-thaw cycles[J]. Construction and Building Materials, 2022, 349: 128688. doi: 10.1016/j.conbuildmat.2022.128688
    [24] FANG X L, XUAN D X, POON C S. Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation conditions[J]. Materials and Structures, 2017, 50(4): 200. doi: 10.1617/s11527-017-1066-y
    [25] FANG X L, ZHAN B J, POON C S. Enhancing the accelerated carbonation of recycled concrete aggregates by using reclaimed wastewater from concrete batching plants[J]. Construction and Building Materials, 2020, 239: 117810. doi: 10.1016/j.conbuildmat.2019.117810
    [26] LIU J, MA K L, SHEN J T, et al. Influence of CO2 enhancement of recycled aggregate on microstructure of ITZs in recycled concrete[J]. Journal of Building Engineering, 2023, 65: 130772.
    [27] 陈旭勇, 周启, 程子扬, 等. 纳米SiO2对再生混凝土新旧砂浆界面过渡区的影响[J]. 材料导报, 2022, 36(S2): 191-195.

    CHEN Xuyong, ZHOU Qi, CHENG Ziyang, et al. Effect of nano-SiO2 on the interfacial transition zone between new and old mortar of recycled concrete[J]. Materials Reports, 2022, 36(S2): 191-195( in Chinese).
    [28] LIU X Y, XIE X, LIU R D, et al. Research on the durability of nano-SiO2 and sodium silicate co-modified recycled coarse aggregate (RCA) concrete[J]. Construction and Building Materials, 2023, 378: 131185. doi: 10.1016/j.conbuildmat.2023.131185
    [29] LI L, XUAN D X, CHU S H, et al. Efficiency and mechanism of nano-silica pre-spraying treatment in performance enhancement of recycled aggregate concrete[J]. Construction and Building Materials, 2021, 301: 124093. doi: 10.1016/j.conbuildmat.2021.124093
    [30] ZHANG M X, YANG X L, DING Y H, et al. High-efficiency carbonation modification methods of recycled coarse aggregates[J]. Journal of Wuhan University of Technology ( Materials Science ), 2024, (39): 386-398.
    [31] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081-2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People 's Republic of China. Standard for test methods of physical and mechanical properties of concrete : GB/T 50081-2019[S]. Beijing : China Building Industry Press, 2019. ( in Chinese).
    [32] 沈奇真, 潘钢华, 占华刚, 等. 加速碳化条件下界面过渡区的纳米力学性能[J]. 东南大学学报(自然科学版), 2016, (1): 146-151. doi: 10.3969/j.issn.1001-0505.2016.01.024

    SHEN Qizhen, PAN Ganghua, ZHAN Huangang, et al. Nanomechanical properties of interfacial transition zone under accelerated carbonation[J]. Journal of Southeast University (Natural Science Edition), 2016, (1): 146-151( in Chinese). doi: 10.3969/j.issn.1001-0505.2016.01.024
  • 加载中
计量
  • 文章访问数:  103
  • HTML全文浏览量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-19
  • 修回日期:  2024-05-10
  • 录用日期:  2024-05-17
  • 网络出版日期:  2024-06-14

目录

    /

    返回文章
    返回