留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于低频隔声的类Fano共振型声学超材料设计

余奇 张鑫浩 赵才友 王平

余奇, 张鑫浩, 赵才友, 等. 用于低频隔声的类Fano共振型声学超材料设计[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 余奇, 张鑫浩, 赵才友, 等. 用于低频隔声的类Fano共振型声学超材料设计[J]. 复合材料学报, 2024, 42(0): 1-10.
YU Qi, ZHANG Xinhao, ZHAO Caiyou, et al. Design of Fano resonance-like acoustic metamaterials for low-frequency acoustic isolation[J]. Acta Materiae Compositae Sinica.
Citation: YU Qi, ZHANG Xinhao, ZHAO Caiyou, et al. Design of Fano resonance-like acoustic metamaterials for low-frequency acoustic isolation[J]. Acta Materiae Compositae Sinica.

用于低频隔声的类Fano共振型声学超材料设计

基金项目: 国家重点研发计划项目(2023YFB2603700;2022YFB2603404);高速铁路基础研究联合基金 (U1734207);自然科学基金面上项目 (51978585)
详细信息
    通讯作者:

    赵才友,博士,教授,博士生导师,研究方向为铁路减振降噪 E-mail: 738970971@qq.com

  • 中图分类号: U211;TB535

Design of Fano resonance-like acoustic metamaterials for low-frequency acoustic isolation

Funds: The National Key Research and Development Program of China (2023YFB2603700; 2022YFB2603404); High-speed Rail Joint Fund Key Projects of Basic research (U1734207); National Natural Science Foundation of China (51978585)
  • 摘要: 由于当前铁路声屏障存在低频降噪效果差、降噪量较低及通风性能不佳的情况,本文研究创新设计了一种基于类Fano共振原理的声学超材料,旨在显著提升对低频噪声的隔绝效果。利用基于离散状态的共振散射和连续状态的背景散射之间的干扰,从而诱导出类Fano的非对称传输剖面。该超材料单胞为环绕型迷宫结构,将其周期性排列后得到类Fano共振的低频隔声型超材料声屏障,本结构设计为兼顾隔声效果和可通风全向性的几何形状,中空部分还能够节省成本。首先介绍了超材料单胞的几何构型以及传声理论,分析了结构参数对所提出声学超材料性能的影响,为优化其声学特性提供了重要依据。另外对超材料性能进行数值模拟与仿真分析,深入探究其声学特性,计算出结构在[20, 2900]Hz时,平均声传输损失达到50 dB左右。将超材料单元周期性排列嵌套在单元板内组成声屏障模型,发现超材料单元个数的增加不会影响声屏障隔声性能。最后将3D打印的声学超材料进行声学实验验证了仿真结果的准确性,为声屏障设计与工程应用提供了思路。

     

  • 图  1  类Fano共振低频隔声超材料声屏障(FRLAMS)模型图

    Figure  1.  Fano resonance-like low-frequency acoustical-insulating metamaterial sound barriers (FRLAMSB) model drawing of metamaterial sound barrier

    (a) Three views of the FRLAMSB; (b) FRLAMSB monoclonal; (c) Rotation diagram; (d) Cross-section view

    图  2  声传输损失(STL)曲线与倍频带图

    Figure  2.  Acoustic transmission loss (STL) curve and octave band plot

    (a) Acoustical simulation; (b) Flow chart; (c) STL curve; (d) Frequency multiplication band diagram

    图  3  不同参数的声传输损失曲线

    Figure  3.  STL curves for different parameters

    图  4  不同入射角度的声传输损失曲线

    Figure  4.  STL curves for different incidence angles

    图  5  声波通过核心降噪单元的各频率下的特征模式(应力、声压、声压级)

    Figure  5.  Characteristic patterns at each frequency of sound waves passing through the core noise reduction unit (Stress, sound pressure, sound pressure level)

    图  6  FRLAM声场图

    Figure  6.  FRLAM Sound Field Diagram

    图  7  FRLAMSB模型图

    Figure  7.  FRLAMSB model diagram

    (a) Assembly of columns and core areas; (b) Final structure of FRLAMSB; (c) Schematic diagram of train-rail-sound barrier

    图  8  超材料单元个数对声屏障隔声性能的影响

    Figure  8.  Influence of the number of supercells on the acoustic performance of sound barriers

    图  9  超材料隔声性能测试

    Figure  9.  Acoustic insulation performance testing of metamaterials

    (a) Schematic diagram of the metamaterial unit; (b) Schematic diagram of the experimental setup; (c) FRLAM 3 d printed model; (d) Acoustic isolation experiments

    图  10  超材料仿真与实验效果对比

    Figure  10.  Comparison of metamaterial simulation and experimental effects

  • [1] 中国城际铁路协会. 2022年中国内地城轨交通线 路概况[R]. 北京: 中国城际铁路协会, 2022.

    China Intercity Railway Association. Overview of Urban Rail Transit Lines in Mainland China in 2022[R]. Beijing: China Intercity Railway Association, 2022. (in Chinese)
    [2] 易强, 王平, 赵才友, 等. 高架铁路环境噪声空间分布特性及控制措施效果研究[J]. 铁道学报, 2017, 39(3): 120-127. doi: 10.3969/j.issn.1001-8360.2017.03.019

    YI Qiang, WANG Ping, ZHAO Caiyou, et al. Spatial distribution characteristics and reduction measures of environmental noise in elevated railway region[J]. Journal of the China Railway Society, 2017, 39(3): 120-127(in Chinese). doi: 10.3969/j.issn.1001-8360.2017.03.019
    [3] DENG Yongquan, XIAO Xinbiao, HE Bin, et al. Analysis of external noise spectrum of high-speed railway[J]. Cent. South Univ, 2014, 21: 4753-4761. doi: 10.1007/s11771-014-2485-3
    [4] 刘存真, 李莉, 卜征, 等. 不同轨道结构对地铁车内噪声影响实验研究[J]. 铁道标准设计, 2021, 65(01): 154-159.

    Liu C. Z. , Li L. , Bu Z. , et al. Experimental study on the influence of different track structures on metro vehicle interior noise[J]. Railway Standard Design, 2021, 65 (1): 154-159. (in Chinese)
    [5] Geovana Queiroz Barbaresco, Anelise Vitória Pires Reis, Gabriella Da Rocha Lopes, et al. Effects of environmental noise pollution on perceived stress and cortisol levels in street vendors[J]. Journal of Toxicology and Environmental Health, 2019, 82(5): 331-337. doi: 10.1080/15287394.2019.1595239
    [6] Kunikazu Hirosawa. Numerical study on the influence of fiber cross-sectional shapes on the sound absorption efficiency of fibrous porous materials[J]. Applied Acoustics, 2020, 164: 107222. doi: 10.1016/j.apacoust.2020.107222
    [7] 钱佳林, 李广军, 王瑞乾, 等. 阶梯式复合微穿孔板吸声特性研究[J]. 噪声与振动控制, 2023, 43(4): 262-267+294. doi: 10.3969/j.issn.1006-1355.2023.04.040

    QIAN Jialin, LI Guangjun, WANG Ruiqian, et al. Study on Sound Absorption Characteristics of Stepped Composite Micro-perforated Plates[J]. Noise and Vibration Control, 2023, 43(4): 262-267+294(in Chinese). doi: 10.3969/j.issn.1006-1355.2023.04.040
    [8] 温激鸿, 蔡力, 郁殿龙, 等. 声学超构材料基础理论与应用[M]. 北京: 科学出版社, 2018.

    WEN Jiaohong, CAI Li, YU Dianlong, et al. Basic theory and application of acoustic superstructured materials[M]. BEIJING: China Science Publishing & Media Ltd, 2018. (in Chinese)
    [9] Amer1 Y. A. , El-Sayed A. T. , Ahmed E. Elemam. Vibration reduction of a non-linear ship model using positive position feedback controllers[J]. International Journal of Dynamics and Control, 2022, 10: 409–426.
    [10] Desai R, Guha A, Seshu P. Modelling and simulation of active and passive seat suspensions for vibration attenuation of vehicle occupants[J] International Journal of Dynamics and Control, 2021, 9: 1423–1443.
    [11] LI Xiaofeng, CHENG Shuliang, YANG Hongyun, et al. Integrated analysis of bandgap optimization regulation and wave propagation mechanism of hexagonal multi-ligament derived structures[J]. European Journal of Mechanics - A/Solids, 2023, 99: 104952. doi: 10.1016/j.euromechsol.2023.104952
    [12] LI Xiaofeng, CHENG Shuliang, YANG Hongyun, et al. Bandgap tuning and in-plane wave propagation of chiral and anti-chiral hybrid metamaterials with assembled six oscillators[J]. Physica A: Statistical Mechanics and its Applications, 2023, 615: 128600. doi: 10.1016/j.physa.2023.128600
    [13] LI Xiaofeng, CHENG Shuliang, YANG Hongyun, et al. Optimization of vibration characteristics and directional propagation of plane waves in branching ligament structures of wind models[J]. Results in Physics, 2023, 47: 106345. doi: 10.1016/j.rinp.2023.106345
    [14] Caiyou Zhao, Xinhao Zhang, Ping Wang, et al. Optimized Modular Design of Acoustic Metamaterials: Targeted Noise Attenuation[J]. Annalen der Physik, 2023, 535(7): 2300063. doi: 10.1002/andp.202300063
    [15] 鹿海军, 礼嵩明, 黄浩, 等. 宽频蜂窝夹层结构吸波复合材料的低频隐身介质超材料研究[J]. 复合材料学报, 2024, 41(1): 188-195.

    LU Haijun, LI Songming, HUANG Hao, et al. Study on the low frequency radar-stealth dielectric metamaterial of broadband wave-absorbing honeycomb sandwich composites[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 188-195(in Chinese).
    [16] 熊剑荣, 任凤鸣, 田时雨, 等. 超材料混凝土减振性能研究现状与展望[J]. 复合材料学报, 2024, 41(2): 656-671.

    XIONG Jianrong, REN Fengming, TIAN Shiyu, et al. Status and prospects of research on vibration reduction performance of metaconcrete[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 656-671(in Chinese).
    [17] 马瑶, 王建宝, 石立华, 等. 一款透明柔性超材料宽频微波吸收器[J]. 复合材料学报, 2022, 39(4): 1601-1609.

    MA Yao, WANG Jianbao, SHI Lihua, et al. A wideband, transparent and flexible microwave metamaterial absorber[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1601-1609(in Chinese).
    [18] Cummer SA, Christensen J, Alu A. Controlling sound with acoustic metamaterials[J]. Nat Rev Mater, 2016, 1: 16001. doi: 10.1038/natrevmats.2016.1
    [19] Haberman MR, Guild MD. Acoustic metamaterials[J]. Phys Today, 2016, 69(6): 42-8. doi: 10.1063/PT.3.3198
    [20] Ma G, Sheng P. Acoustic metamaterials: From local resonances to broad horizons[J]. Sci Adv, 2016, 2(2): 1501595. doi: 10.1126/sciadv.1501595
    [21] Liang Z, Li J. Extreme acoustic metamaterial by coiling up space[J]. Phys Rev Lett, 2012, 108(11): 114301. doi: 10.1103/PhysRevLett.108.114301
    [22] Chen C, Du Z, Hu G, et al. A low-frequency sound absorbing material with subwavelength thickness.[J]. Appl Phys Lett, 2017, 110(22): 221903. doi: 10.1063/1.4984095
    [23] Jia Z, Li J, Shen C, et al. Systematic design of broadband pathcoiling acoustic metamaterials[J]. J Appl Phys, 2018, 123(2): 025101. doi: 10.1063/1.5009488
    [24] Liu CR, Wu JH, Lu K, et al. Acoustical siphon effect for reducing the thickness in membrane-type metamaterials with low-frequency broadband absorption[J]. Appl Acoust, 2019, 148: 1-8. doi: 10.1016/j.apacoust.2018.12.008
    [25] Wang Peng, Jie Zhang, Meng Shi, et al. Low-frequency sound insulation optimisation design of membrane-type acoustic metamaterials based on Kriging surrogate model[J]. Materials & Design, 2023, 225: 111491.
    [26] Singh SK, Prakash O, Bhattacharya S. Hybrid fractal acoustic metamaterials for low-frequency sound absorber based on cross mixed micro-perforated panel mounted over the fractals structure cavity[J]. Scientific Reports, 2022, 12(1): 20444. doi: 10.1038/s41598-022-24621-8
    [27] SUN M, FANG XS, MAO DX, et al. Broadband Acoustic Ventilation Barriers[J]. Physical Review Applied, 2020, 13(4): 044028. doi: 10.1103/PhysRevApplied.13.044028
    [28] Xinhao Zhang, Qi Yu, Caiyou Zhao, et al. Modular reverse design of acoustic metamaterial and sound barrier engineering applications: High ventilation and broadband sound insulation[J]. Thin-Walled Structures, 2024, 196: 111498. doi: 10.1016/j.tws.2023.111498
    [29] Kumar N , Pal S . Low frequency and wide band gap metamaterial with divergent shaped star units: Numerical and experimental investigations[J]. Applied Physics Letters, 2019, 115(25): 254101.
    [30] CHEN Ao, ZHAO X iaoguang, YANG Zhiwei, et al. Broadband labyrinthine acoustic insulator[J]. Physical Review Applied, 2022, 18(6): 064057. doi: 10.1103/PhysRevApplied.18.064057
    [31] 王家声, 刘艳, 李秋彤, 等. 材料与几何参数对薄膜超材料吸声性能的影响[J]. 噪声与振动控制, 2021, 41(4): 54-59+175. doi: 10.3969/j.issn.1006-1355.2021.04.009

    WANG Jiasheng, LIU Yan, LI Qiutong, et al. Influence of Material and Geometric Parameters on Sound Absorption Performances of Membrane Acoustic Metamaterials[J]. Noise and Vibration Control, 2021, 41(4): 54-59+175(in Chinese). doi: 10.3969/j.issn.1006-1355.2021.04.009
    [32] HU Xin, LI Ning, LI Yiwei, et al, Tunable and narrowband shortwave infrared light sensing enabled by dual-Fano resonance enhanced sum-frequency generation[J]. Applied Physics Letters, 2024, 124: 201108.
    [33] FAN P. , YU Z. , FAN S. , et al. Optical Fano resonance of an individual semiconductor nanostructure[J]. Nature Materials, 2014, 13(5): 471-475.
    [34] ZHANG Hailong, ZHU Yifan, LIANG Bin, et al. Omnidirectional Ventilated Acoustic Barrier[J]. Applied Physics Letters, 2017, 111(20): 203502. doi: 10.1063/1.4993891
    [35] YANG J. , LEE J. S. , LEE H. R. , et al. Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission[J]. Appl. Phys. Lett, 2018, 112: 091901.
    [36] GE Yong, SUN Hongxiang, YUAN Shouqi, et al. Broadband unidirectional and omnidirectional bidirectional acoustic insulation through an open window structure with a metasurface of ultrathin hooklike meta-atoms[J]. Applied Physics Letters, 2018, 112: 243502. doi: 10.1063/1.5025812
    [37] ZHANG Xinhao, ZHAO Caiyou, YU Qi, et. al. Reverse optimization design of OAM sound barrier based on acoustic metamaterials[J]. Construction and Building Construction and Building Materials, 2024, 432: 136600. doi: 10.1016/j.conbuildmat.2024.136600
  • 加载中
计量
  • 文章访问数:  50
  • HTML全文浏览量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-14
  • 修回日期:  2024-07-20
  • 录用日期:  2024-08-07
  • 网络出版日期:  2024-08-30

目录

    /

    返回文章
    返回