Design of Fano resonance-like acoustic metamaterials for low-frequency acoustic isolation
-
摘要: 由于当前铁路声屏障存在低频降噪效果差、降噪量较低及通风性能不佳的情况,本文研究创新设计了一种基于类Fano共振原理的声学超材料,旨在显著提升对低频噪声的隔绝效果。利用基于离散状态的共振散射和连续状态的背景散射之间的干扰,从而诱导出类Fano的非对称传输剖面。该超材料单胞为环绕型迷宫结构,将其周期性排列后得到类Fano共振的低频隔声型超材料声屏障,本结构设计为兼顾隔声效果和可通风全向性的几何形状,中空部分还能够节省成本。首先介绍了超材料单胞的几何构型以及传声理论,分析了结构参数对所提出声学超材料性能的影响,为优化其声学特性提供了重要依据。另外对超材料性能进行数值模拟与仿真分析,深入探究其声学特性,计算出结构在[20,
2900 ]Hz时,平均声传输损失达到50 dB左右。将超材料单元周期性排列嵌套在单元板内组成声屏障模型,发现超材料单元个数的增加不会影响声屏障隔声性能。最后将3D打印的声学超材料进行声学实验验证了仿真结果的准确性,为声屏障设计与工程应用提供了思路。Abstract: Due to the poor low-frequency noise reduction, low noise reduction and poor ventilation performance of the current railroad sound barriers, the research in this paper innovatively designs an acoustic metamaterial based on the Fano-like resonance principle, aiming to significantly enhance the insulation effect on low-frequency noise. The interference between the resonant scattering based on the discrete state and the background scattering in the continuous state is utilized, thus inducing a Fano-like asymmetric transmission profile. The metamaterial single cell is a wrap-around labyrinth structure, and the Fano resonance-like low-frequency acoustic isolation type metamaterial acoustic barrier is obtained by arranging it periodically. The structure is designed to be a geometry that takes into account the acoustic isolation effect and ventilatable omni-directionality, and the hollow part is also able to save the cost. Firstly, the geometrical configuration of the metamaterial cell and the theory of sound transmission are introduced, and the influence of structural parameters on the performance of the proposed acoustic metamaterial is analyzed, which provides an important basis for optimizing its acoustic properties. In addition, numerical simulation and simulation analysis of the metamaterial properties are carried out to explore its acoustic properties in depth, and the average acoustic transmission loss of the structure is calculated to be about 50 dB at [20,2900 ] Hz. The acoustic barrier is modeled by periodically arranging the metamaterial units nested inside the unit plate, and it is found that the increase in the number of metamaterial units does not affect the acoustic performance of the acoustic barrier. Finally, the 3D printed acoustic metamaterials are subjected to acoustic experiments to verify the accuracy of the simulation results, which provides ideas for sound barrier design and engineering applications. -
-
[1] 中国城际铁路协会. 2022年中国内地城轨交通线 路概况[R]. 北京: 中国城际铁路协会, 2022.China Intercity Railway Association. Overview of Urban Rail Transit Lines in Mainland China in 2022[R]. Beijing: China Intercity Railway Association, 2022. (in Chinese) [2] 易强, 王平, 赵才友, 等. 高架铁路环境噪声空间分布特性及控制措施效果研究[J]. 铁道学报, 2017, 39(3): 120-127. doi: 10.3969/j.issn.1001-8360.2017.03.019YI Qiang, WANG Ping, ZHAO Caiyou, et al. Spatial distribution characteristics and reduction measures of environmental noise in elevated railway region[J]. Journal of the China Railway Society, 2017, 39(3): 120-127(in Chinese). doi: 10.3969/j.issn.1001-8360.2017.03.019 [3] DENG Yongquan, XIAO Xinbiao, HE Bin, et al. Analysis of external noise spectrum of high-speed railway[J]. Cent. South Univ, 2014, 21: 4753-4761. doi: 10.1007/s11771-014-2485-3 [4] 刘存真, 李莉, 卜征, 等. 不同轨道结构对地铁车内噪声影响实验研究[J]. 铁道标准设计, 2021, 65(01): 154-159.Liu C. Z. , Li L. , Bu Z. , et al. Experimental study on the influence of different track structures on metro vehicle interior noise[J]. Railway Standard Design, 2021, 65 (1): 154-159. (in Chinese) [5] Geovana Queiroz Barbaresco, Anelise Vitória Pires Reis, Gabriella Da Rocha Lopes, et al. Effects of environmental noise pollution on perceived stress and cortisol levels in street vendors[J]. Journal of Toxicology and Environmental Health, 2019, 82(5): 331-337. doi: 10.1080/15287394.2019.1595239 [6] Kunikazu Hirosawa. Numerical study on the influence of fiber cross-sectional shapes on the sound absorption efficiency of fibrous porous materials[J]. Applied Acoustics, 2020, 164: 107222. doi: 10.1016/j.apacoust.2020.107222 [7] 钱佳林, 李广军, 王瑞乾, 等. 阶梯式复合微穿孔板吸声特性研究[J]. 噪声与振动控制, 2023, 43(4): 262-267+294. doi: 10.3969/j.issn.1006-1355.2023.04.040QIAN Jialin, LI Guangjun, WANG Ruiqian, et al. Study on Sound Absorption Characteristics of Stepped Composite Micro-perforated Plates[J]. Noise and Vibration Control, 2023, 43(4): 262-267+294(in Chinese). doi: 10.3969/j.issn.1006-1355.2023.04.040 [8] 温激鸿, 蔡力, 郁殿龙, 等. 声学超构材料基础理论与应用[M]. 北京: 科学出版社, 2018.WEN Jiaohong, CAI Li, YU Dianlong, et al. Basic theory and application of acoustic superstructured materials[M]. BEIJING: China Science Publishing & Media Ltd, 2018. (in Chinese) [9] Amer1 Y. A. , El-Sayed A. T. , Ahmed E. Elemam. Vibration reduction of a non-linear ship model using positive position feedback controllers[J]. International Journal of Dynamics and Control, 2022, 10: 409–426. [10] Desai R, Guha A, Seshu P. Modelling and simulation of active and passive seat suspensions for vibration attenuation of vehicle occupants[J] International Journal of Dynamics and Control, 2021, 9: 1423–1443. [11] LI Xiaofeng, CHENG Shuliang, YANG Hongyun, et al. Integrated analysis of bandgap optimization regulation and wave propagation mechanism of hexagonal multi-ligament derived structures[J]. European Journal of Mechanics - A/Solids, 2023, 99: 104952. doi: 10.1016/j.euromechsol.2023.104952 [12] LI Xiaofeng, CHENG Shuliang, YANG Hongyun, et al. Bandgap tuning and in-plane wave propagation of chiral and anti-chiral hybrid metamaterials with assembled six oscillators[J]. Physica A: Statistical Mechanics and its Applications, 2023, 615: 128600. doi: 10.1016/j.physa.2023.128600 [13] LI Xiaofeng, CHENG Shuliang, YANG Hongyun, et al. Optimization of vibration characteristics and directional propagation of plane waves in branching ligament structures of wind models[J]. Results in Physics, 2023, 47: 106345. doi: 10.1016/j.rinp.2023.106345 [14] Caiyou Zhao, Xinhao Zhang, Ping Wang, et al. Optimized Modular Design of Acoustic Metamaterials: Targeted Noise Attenuation[J]. Annalen der Physik, 2023, 535(7): 2300063. doi: 10.1002/andp.202300063 [15] 鹿海军, 礼嵩明, 黄浩, 等. 宽频蜂窝夹层结构吸波复合材料的低频隐身介质超材料研究[J]. 复合材料学报, 2024, 41(1): 188-195.LU Haijun, LI Songming, HUANG Hao, et al. Study on the low frequency radar-stealth dielectric metamaterial of broadband wave-absorbing honeycomb sandwich composites[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 188-195(in Chinese). [16] 熊剑荣, 任凤鸣, 田时雨, 等. 超材料混凝土减振性能研究现状与展望[J]. 复合材料学报, 2024, 41(2): 656-671.XIONG Jianrong, REN Fengming, TIAN Shiyu, et al. Status and prospects of research on vibration reduction performance of metaconcrete[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 656-671(in Chinese). [17] 马瑶, 王建宝, 石立华, 等. 一款透明柔性超材料宽频微波吸收器[J]. 复合材料学报, 2022, 39(4): 1601-1609.MA Yao, WANG Jianbao, SHI Lihua, et al. A wideband, transparent and flexible microwave metamaterial absorber[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1601-1609(in Chinese). [18] Cummer SA, Christensen J, Alu A. Controlling sound with acoustic metamaterials[J]. Nat Rev Mater, 2016, 1: 16001. doi: 10.1038/natrevmats.2016.1 [19] Haberman MR, Guild MD. Acoustic metamaterials[J]. Phys Today, 2016, 69(6): 42-8. doi: 10.1063/PT.3.3198 [20] Ma G, Sheng P. Acoustic metamaterials: From local resonances to broad horizons[J]. Sci Adv, 2016, 2(2): 1501595. doi: 10.1126/sciadv.1501595 [21] Liang Z, Li J. Extreme acoustic metamaterial by coiling up space[J]. Phys Rev Lett, 2012, 108(11): 114301. doi: 10.1103/PhysRevLett.108.114301 [22] Chen C, Du Z, Hu G, et al. A low-frequency sound absorbing material with subwavelength thickness.[J]. Appl Phys Lett, 2017, 110(22): 221903. doi: 10.1063/1.4984095 [23] Jia Z, Li J, Shen C, et al. Systematic design of broadband pathcoiling acoustic metamaterials[J]. J Appl Phys, 2018, 123(2): 025101. doi: 10.1063/1.5009488 [24] Liu CR, Wu JH, Lu K, et al. Acoustical siphon effect for reducing the thickness in membrane-type metamaterials with low-frequency broadband absorption[J]. Appl Acoust, 2019, 148: 1-8. doi: 10.1016/j.apacoust.2018.12.008 [25] Wang Peng, Jie Zhang, Meng Shi, et al. Low-frequency sound insulation optimisation design of membrane-type acoustic metamaterials based on Kriging surrogate model[J]. Materials & Design, 2023, 225: 111491. [26] Singh SK, Prakash O, Bhattacharya S. Hybrid fractal acoustic metamaterials for low-frequency sound absorber based on cross mixed micro-perforated panel mounted over the fractals structure cavity[J]. Scientific Reports, 2022, 12(1): 20444. doi: 10.1038/s41598-022-24621-8 [27] SUN M, FANG XS, MAO DX, et al. Broadband Acoustic Ventilation Barriers[J]. Physical Review Applied, 2020, 13(4): 044028. doi: 10.1103/PhysRevApplied.13.044028 [28] Xinhao Zhang, Qi Yu, Caiyou Zhao, et al. Modular reverse design of acoustic metamaterial and sound barrier engineering applications: High ventilation and broadband sound insulation[J]. Thin-Walled Structures, 2024, 196: 111498. doi: 10.1016/j.tws.2023.111498 [29] Kumar N , Pal S . Low frequency and wide band gap metamaterial with divergent shaped star units: Numerical and experimental investigations[J]. Applied Physics Letters, 2019, 115(25): 254101. [30] CHEN Ao, ZHAO X iaoguang, YANG Zhiwei, et al. Broadband labyrinthine acoustic insulator[J]. Physical Review Applied, 2022, 18(6): 064057. doi: 10.1103/PhysRevApplied.18.064057 [31] 王家声, 刘艳, 李秋彤, 等. 材料与几何参数对薄膜超材料吸声性能的影响[J]. 噪声与振动控制, 2021, 41(4): 54-59+175. doi: 10.3969/j.issn.1006-1355.2021.04.009WANG Jiasheng, LIU Yan, LI Qiutong, et al. Influence of Material and Geometric Parameters on Sound Absorption Performances of Membrane Acoustic Metamaterials[J]. Noise and Vibration Control, 2021, 41(4): 54-59+175(in Chinese). doi: 10.3969/j.issn.1006-1355.2021.04.009 [32] HU Xin, LI Ning, LI Yiwei, et al, Tunable and narrowband shortwave infrared light sensing enabled by dual-Fano resonance enhanced sum-frequency generation[J]. Applied Physics Letters, 2024, 124: 201108. [33] FAN P. , YU Z. , FAN S. , et al. Optical Fano resonance of an individual semiconductor nanostructure[J]. Nature Materials, 2014, 13(5): 471-475. [34] ZHANG Hailong, ZHU Yifan, LIANG Bin, et al. Omnidirectional Ventilated Acoustic Barrier[J]. Applied Physics Letters, 2017, 111(20): 203502. doi: 10.1063/1.4993891 [35] YANG J. , LEE J. S. , LEE H. R. , et al. Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission[J]. Appl. Phys. Lett, 2018, 112: 091901. [36] GE Yong, SUN Hongxiang, YUAN Shouqi, et al. Broadband unidirectional and omnidirectional bidirectional acoustic insulation through an open window structure with a metasurface of ultrathin hooklike meta-atoms[J]. Applied Physics Letters, 2018, 112: 243502. doi: 10.1063/1.5025812 [37] ZHANG Xinhao, ZHAO Caiyou, YU Qi, et. al. Reverse optimization design of OAM sound barrier based on acoustic metamaterials[J]. Construction and Building Construction and Building Materials, 2024, 432: 136600. doi: 10.1016/j.conbuildmat.2024.136600
点击查看大图
计量
- 文章访问数: 27
- HTML全文浏览量: 20
- 被引次数: 0