留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2改性滨海水泥土的短龄期力学性能与微观机制

王伟 刘静静 李娜 马露

王伟, 刘静静, 李娜, 等. 纳米SiO2改性滨海水泥土的短龄期力学性能与微观机制[J]. 复合材料学报, 2022, 39(4): 1701-1714. doi: 10.13801/j.cnki.fhclxb.20210702.001
引用本文: 王伟, 刘静静, 李娜, 等. 纳米SiO2改性滨海水泥土的短龄期力学性能与微观机制[J]. 复合材料学报, 2022, 39(4): 1701-1714. doi: 10.13801/j.cnki.fhclxb.20210702.001
WANG Wei, LIU Jingjing, LI Na, et al. Mechanical properties and micro mechanism of nano-SiO2 modified coastal cement soil at short age[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1701-1714. doi: 10.13801/j.cnki.fhclxb.20210702.001
Citation: WANG Wei, LIU Jingjing, LI Na, et al. Mechanical properties and micro mechanism of nano-SiO2 modified coastal cement soil at short age[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1701-1714. doi: 10.13801/j.cnki.fhclxb.20210702.001

纳米SiO2改性滨海水泥土的短龄期力学性能与微观机制

doi: 10.13801/j.cnki.fhclxb.20210702.001
基金项目: 国家自然科学基金(41772311)
详细信息
    通讯作者:

    马露,博士研究生,讲师,研究方向为软土地基处理 E-mail:mal@ahstu.edu.cn

  • 中图分类号: TU43;TB383.1

Mechanical properties and micro mechanism of nano-SiO2 modified coastal cement soil at short age

  • 摘要: 为了研究纳米SiO2对滨海水泥土短龄期的力学改性效果,开展了纳米SiO2掺量(与水泥质量比)分别为0%、1.5%、3.0%、4.5%和6.0%的水泥土无侧限抗压试验、劈裂抗拉试验、pH试验、SEM试验。力学试验表明,纳米SiO2能够提高水泥土的无侧限抗压强度、劈裂抗拉强度和弹性模量,但加剧了水泥土的脆性;纳米SiO2改性水泥土的抗压强度大约为抗拉强度的10倍;pH测试表明,纳米SiO2能够改善水泥土的碱性环境。SEM微观测试发现,水泥土颗粒形态、孔隙特征变化规律与强度发展规律关系紧密,随着纳米SiO2掺量的增加,土颗粒形态分布由松散变为聚集,并伴随孔隙的减少。综上发现,纳米SiO2掺量为4.5%时,强度改善效果最佳,微观孔隙最少,4.5%为最优掺量。最后,建立了纳米SiO2改性水泥土力学强度与微观孔隙率之间的二次多项式模型。

     

  • 图  1  滨海软土的SEM图像 (a) 和EDX图谱 (b)

    Figure  1.  SEM image (a) and EDX spectrum (b) of coastal soft soil

    图  2  M32.5硅酸盐水泥SEM图像 (a) 和EDX图谱 (b)

    Figure  2.  SEM image (a) and EDX spectrum (b) of M32.5 silicate cement

    图  3  纳米SiO2的SEM图像 (a) 和EDX图谱 (b)

    Figure  3.  SEM image (a) and EDX spectrum (b) of nano-SiO2

    图  4  无侧限抗压试验获得的不同纳米SiO2掺量水泥土抗压强度应力-应变曲线

    Figure  4.  Stress-strain curves of compressive strength of cement soils with different nano-SiO2 contents obtained from unconfined compression test

    图  5  无侧限抗压试验获得的不同纳米SiO2掺量水泥土抗压强度与残余强度变化

    Figure  5.  Variation of compressive strength and residual strength of cement soils with different nano-SiO2 contents obtained from unconfined compression test

    图  6  不同纳米SiO2掺量水泥土无侧限抗压试验试样破坏图

    Figure  6.  Failure diagrams of unconfined compression test samples of cement soils with different nano-SiO2 contents

    图  7  不同纳米SiO2掺量水泥土弹性模量变化

    Figure  7.  Variation of elastic modulus of cement soil with different nano-SiO2 contents

    图  8  劈裂试验获得的不同纳米SiO2掺量水泥土抗拉强度曲线

    Figure  8.  Tensile strength curves of cement soils with different nano-SiO2 contents obtained from splitting test

    图  9  无侧限试验与pH试验获得的不同纳米SiO2掺量水泥土无侧限抗压强度与pH关系

    Figure  9.  Relationship between unconfined compressive strength and pH of cement soils with different nano-SiO2 contents obtained from unconfined test and pH test

    S—Soil

    图  10  2 000放大倍数下nano-SiO2/CS试样SEM图像

    Figure  10.  SEM images of nano-SiO2/CS at 2 000 magnification

    图  11  取自图10a1b2c3d4点的nano-SiO2/CS 5000放大倍数下SEM图像

    Figure  11.  SEM images of a1,b2,c3 and d4 at 5000 magnification from Figure 10

    图  12  不同倍数下纳米SiO2/CS孔隙率灰白二值图

    Figure  12.  Gray binary diagrams of nano-SiO2/CS porosity at different times

    图  13  不同放大倍数下纳米SiO2/CS孔隙率变化

    Figure  13.  Porosity variation of nano-SiO2/CS at different magnifications

    图  14  无侧限抗压试验获得的不同纳米SiO2掺量水泥土抗压强度与孔隙率的拟合曲线

    Figure  14.  Curve of unconfined compressive strength and porosity of cement soils with different nano-SiO2 contents obtained by unconfined compression test

    表  1  滨海软土的物理性质指标

    Table  1.   Physical property index of coastal soft soil

    Density/(g·cm−3)Pore ratioWater content/%Liquid limit/%Plastic limit/%Liquidity indexPlastic index
    1.65 1.64 30.0 46.2 26.4 0.18 19.8
    下载: 导出CSV

    表  2  M32.5硅酸盐水泥基本物理性能指标

    Table  2.   Basic physical properties of M32.5 silicate cement

    Fineness/%Initial setting time/minFinal setting time/minIgnition loss/%Compressive strength/MPaFlexural strength/MPa
    3 days28 days3 days28 days
    3.4 210 295 1.4 26.9 48.1 4.9 9.0
    下载: 导出CSV

    表  3  纳米SiO2基本物理性能指标

    Table  3.   Basic physical properties of nano-SiO2

    ColorAverage particle size/nmBulk density/(g·L−1)Specific surface area /(m2·g−1)pHWater content/%Burn/%SiO2/%
    White205025-2003.7-4.7≤1.5≤1.0≥99.8
    下载: 导出CSV

    表  4  不同纳米SiO2掺量水泥土试样成分组成和测试龄期

    Table  4.   Composition and testing age of cement soil (CS) samples with different nano-SiO2 contents

    Sample codeWater content/%Cement content/%Nano-SiO2 content/%Curing time/days
    0%nano-SiO2/CS 30 7 0 7
    1.5%nano-SiO2/CS 30 7 1.5 7
    3.0%nano-SiO2/CS 30 7 3.0 7
    4.5%nano-SiO2/CS 30 7 4.5 7
    6.0%nano-SiO2/CS 30 7 6.0 7
    Notes: Water content—Mass ratio to mixture; Cement content—Mass ratio to soil; Nano-SiO2 content—Mass ratio to cement.
    下载: 导出CSV

    表  5  不同纳米SiO2掺量水泥土的抗压强度平均值与变异系数CV

    Table  5.   Average values and coefficients of variation CV of compressive strength of cement soils with different nano-SiO2 content

    Sample codeAverage compressive strength/kPaCV
    0%nano-SiO2/CS 1021 0.04
    1.5%nano-SiO2/CS 1149 0.02
    3.0%nano-SiO2/CS 1307 0.03
    4.5%nano-SiO2/CS 1683 0.03
    6.0%nano-SiO2/CS 1524 0.03
    下载: 导出CSV

    表  6  不同放大倍数下纳米SiO2/CS孔隙率n与强度的关系

    Table  6.   Relationship between porosity n and strength of nano-SiO2/CS at different magnifications

    Sample codeCompressive strength/kPaTensile strength/kPaPorosity n/%
    ×500×2 000×5000
    0%nano-SiO2/CS 1 021 110 9.7 10.8 7.2
    1.5%nano-SiO2/CS 1 149 121 8.4 8.4 5.3
    3.0%nano-SiO2/CS 1 307 133 6.2 6.4 4.5
    4.5%nano-SiO2/CS 1 683 167 4.6 5.6 3.8
    6.0%nano-SiO2/CS 1 524 155 5.6 5.8 4.3
    下载: 导出CSV
  • [1] HAJI A F, ADNAN A, KAM C C. Geotechnical properties of a chemically stabilized soil from Malaysia with rice husk ash as an additive[J]. Geotechnical & Geological Engineering,1992,10(2):117-134.
    [2] EA B, ROSLAN H, HB M, et al. Stabilization of residual soil with rice husk ash and cement[J]. Construction and Building Materials,2005,19(6):448-453. doi: 10.1016/j.conbuildmat.2004.08.001
    [3] CATTON M D. Research on the physical relations of soil and soil-cement mixtures[C]//Highway Research Board Proceedings. Washington, 1941.
    [4] ARULRAJAH A, YAGHOUBI M, DISFANI M M, et al. Evaluation of fly ash-and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing[J]. Soils and Foundations,2018,58(6):1358-1370. doi: 10.1016/j.sandf.2018.07.005
    [5] AHMAD M R, CHEN B, YU J. A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash[J]. Composites Part B: Engineering,2019,168:204-217. doi: 10.1016/j.compositesb.2018.12.065
    [6] ODERJI S Y, CHEN B, AHMAD M R, et al. Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators[J]. Journal of Cleaner Production,2019,225:1-10. doi: 10.1016/j.jclepro.2019.03.290
    [7] QIN L, GAO X. Properties of coal gangue-Portland cement mixture with carbonation[J]. Fuel,2019,245:1-12. doi: 10.1016/j.fuel.2019.02.067
    [8] 梅利芳, 徐光黎. 纤维聚苯乙烯泡沫颗粒轻质土的制备及力学性能[J]. 复合材料学报, 2016, 33(10):2355-2362.

    MEI L F, XU G L. Preparation and mechanical properties of fiber expanded polystyrene particle lightweight soil[J]. Acta Materiae Compositae Sinica,2016,33(10):2355-2362(in Chinese).
    [9] 高常辉, 马芹永. 水泥砂浆固化粉质黏土分离式Hopkinson压杆试验与分析[J]. 复合材料学报, 2018, 35(6):1629-1635.

    GAO C H, MA Q Y. Analysis of silty clay stabilized by cement mortar based on split Hopkinson pressure bar experiment[J]. Acta Materiae Compositae Sinica,2018,35(6):1629-1635(in Chinese).
    [10] ZHANG T, GAI G, LIU S. Reclaimed lignin-stabilized silty soil: Undrained shear strength, atterberg limits, and microstructure characteristics[J]. Journal of Materials in Civil Engineering,2018,30(11):04018277. doi: 10.1061/(ASCE)MT.1943-5533.0002492
    [11] YAO K, WANG W, LI N, et al. Investigation on strength and microstructure characteristics of nano-MgO admixed with cemented soft soil[J]. Construction and Building Materials,2019,206:160-168. doi: 10.1016/j.conbuildmat.2019.01.221
    [12] 马冬冬, 马芹永, 黄坤, 等. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究[J]. 岩土工程学报, 2021, 43(3):572-578.

    MA D D, MA Q Y, HUANG K, et al. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering,2021,43(3):572-578(in Chinese).
    [13] LIN D, LIN K, CHANG W et al. Improvements of nano-SiO2 on sludge/fly ash mortar[J]. Waste Management,2008,28(6):1081-1087. doi: 10.1016/j.wasman.2007.03.023
    [14] KUO W, LIN K, CHANG W, et al. Effects of nano-materials on properties of waterworks sludge ash cement paste[J]. Journal of Industrial and Engineering Chemistry,2006,12(5):702-709.
    [15] YUN W C, YONG J K, CHOI O, et al. Utilization of tailings from tungsten mine waste as a substitution material for cement[J]. Construction & Building Materials,2009,23(7):2481-2486.
    [16] SOBOLEV K, FLORES I, HERMOSILLO R, et al. Nanomaterials and nanotechnology for high-performance cement composites[J]. ACI Materials Journal,2008,254:91-118.
    [17] NIMA F, ABANG A, DEMIRBOGA R. Development of nanotechnology in high performance concrete[J]. Advanced Materials Research,2011,364:115-118. doi: 10.4028/www.scientific.net/AMR.364.115
    [18] KONG R, ZHANG F Y, WANG G, et al. Stabilization of loess using nano-SiO2[J]. Materials,2018,11(6):1014. doi: 10.3390/ma11061014
    [19] KONG R, YAN B, XU J, et al. Physical homogenization and chemical stability of nano-SiO2 treated loess[J]. Soil Mechanics and Foundation Engineering,2019,56(5):336-339. doi: 10.1007/s11204-019-09611-9
    [20] CHANGIZI F, HADDAD A. Effect of nano-SiO2 on the geotechnical properties of cohesive soil[J]. Geotechnical & Geological Engineering,2016,34(2):725-733.
    [21] AK A, MG B, MR C, et al. Influence of nano-SiO2 on geotechnical properties of fine soils subjected to freeze-thaw cycles[J]. Cold Regions Science and Technology,2019,161:129-136. doi: 10.1016/j.coldregions.2019.03.011
    [22] GIVI A N, RASHID S A, AZIZ F, et al. The effects of lime solution on the properties of SiO2 nanoparticles binary blended concrete[J]. Composites,2011,42B(3):562-569.
    [23] KAWASHIMA S, HOU P, CORR D J, et al. Modification of cement-based materials with nanoparticles[J]. Cement & Concrete Composites,2016,36(1):8-15.
    [24] LI H X, ZHANG H, LI L, et al. Utilization of low-quality desulfurized ash from semi-dry flue gas desulfurization by mixing with hemihydrate gypsum[J]. Fuel,2019,255:115783. doi: 10.1016/j.fuel.2019.115783
    [25] LANG L, LIU N, CHEN B. Strength development of solidified dredged sludge containing humic acid with cement, lime and nano-SiO2[J]. Construction and Building Materials,2020,230:116971. doi: 10.1016/j.conbuildmat.2019.116971
    [26] 朱静. 掺加纳米SiO2水泥复合固化土力学性能研究及数值分析[D]. 杭州: 浙江大学, 2016.

    ZHU J. Study on effect of mechanical property test of cement composite stabilized soil mixed with nanometer-SiO2 and numerical analysis[D]. Hangzhou: Zhejiang University, 2016(in Chinese).
    [27] ZHANG X, GAO J, FAN H, et al. Study on the mechanism of nano-SiO2 for improving the properties of cement-based soil stabilizer[J]. Nanomaterials,2020,10(3):405. doi: 10.3390/nano10030405
    [28] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国标准出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for soil test methods: GB/T 50123—2019[S]. Beijing: China Standards Press, 2019(in Chinese).
    [29] LO K W, LIN K L, CHENG T W, et al. Effect of nano-SiO2 on the alkali-activated characteristics of spent catalyst metakaolin-based geopolymers[J]. Construction & Building Materials,2017,143(JUL.15):455-463.
    [30] 姜恒超, 李青林, 杨志勇, 等. 玻璃纤维水泥改良土劈裂抗拉强度试验研究[J]. 铁道科学与工程学报, 2019, 16(11):2742-2747.

    JIANG H C, LI Q L, YANG Z Y, et al. Experimental study on split tensile strength of glass fiber cement improved soil[J]. Journal of Railway Science and Engineering,2019,16(11):2742-2747(in Chinese).
    [31] 刘永翔, 张经双, 段雪雷. 聚丙烯纤维水泥土强度增长机理分析[J]. 中国科技论文, 2020, 15(6):622-627. doi: 10.3969/j.issn.2095-2783.2020.06.004

    LIU Y X, ZHANG J S, DUAN X L. Mechanism analysis of strength growth of polypropylene fiber cement soil[J]. China Sciencepaper,2020,15(6):622-627(in Chinese). doi: 10.3969/j.issn.2095-2783.2020.06.004
    [32] TAHA M R, TAHA O. Influence of nano-material on the expansive and shrinkage soil behavior[J]. Journal of Nanoparticle Research,2012,14(10):1190. doi: 10.1007/s11051-012-1190-0
    [33] GIVI A N, RASHID S A, AZIZ F, et al. Influence of 15 and 80 nano-SiO2 particles addition on mechanical and physical properties of ternary blended concrete incorporating rice husk ash[J]. Journal of Experimental Nanoscience,2013,8(1):1-18. doi: 10.1080/17458080.2010.548834
    [34] ZYGANITIDIS I, STEFANIDOU M, KALFAGIANNIS N, et al. Nanomechanical characterization of cement-based pastes enriched with SiO2 nanoparticles[J]. Materials Science and Engineering: B,2011,176(19):1580-1584. doi: 10.1016/j.mseb.2011.05.005
    [35] HESSAM B S, BK H B, AFSHIN A, et al. Stabilization of residual soil using SiO2 nanoparticles and cement[J]. Construction and Building Materials,2014,64:350-359. doi: 10.1016/j.conbuildmat.2014.04.086
    [36] AHMADI H, JANATI S, CHENARI R J. Strength parameters of stabilized clay using polypropylene fibers and nano-MgO: An experimental study[J]. Geotechnical and Geological Engineering,2020,38(3):2845-2858.
    [37] 吕东东, 李彦荣, 赵金贵. 山西晋中马兰黄土劈裂特性及抗拉强度研究[J]. 河南理工大学学报(自然科学版), 2021, 40(2):173-178.

    LV D D, LI Y R, ZHAO J G. Study on splitting characteristics and tensile strength of Malan loess in Jinzhong, Shanxi Province[J]. Journal of Henan Polytechnic University (Natural Science),2021,40(2):173-178(in Chinese).
    [38] AHMADI H, SHAFIEE O. Experimental comparative study on the performance of nano-SiO2 and microsilica in stabilization of clay[J]. The European Physical Journal Plus,2019,134(9):459. doi: 10.1140/epjp/i2019-12918-1
    [39] JANALIZADEH C A, ALI V, SAMAN S K. Static and cyclic triaxial behavior of cemented sand with nanosilica[J]. Jour-nal of Materials in Civil Engineering,2018,30(10):04018269. doi: 10.1061/(ASCE)MT.1943-5533.0002464
    [40] LIN D F, LUO H L, DARN-HORNG Hsiao. Enhancing soft subgrade soil with a sewage sludge ash/cement mixture and nano-silicon dioxide[J]. Environmental Earth Sciences,2016,75(7):619.1-619.11.
    [41] LIU Y, CHEN E J, QUEK S T, et al. Effect of spatial variation of strength and modulus on the lateral compression response of cement-admixed clay slab[J]. Géotechnique,2015,65(10):851-865.
    [42] 孔冉. 纳米二氧化硅固化黄土力学性能和结构特征研究[D]. 兰州: 兰州大学, 2019.

    KONG R. Study on mechanical properties and structural characteristics of nano-SiO2 stabilized loess[D]. Lanzhou: Lanzhou University, 2019(in Chinese).
    [43] 付艳华. 一种基于证据综合权重折扣的加权平均法[J]. 东北大学学报(自然科学版), 2010, 31(7):917-920. doi: 10.3969/j.issn.1005-3026.2010.07.002

    FU Y H. A weighted averaging method based on overall weight of discounted evidences[J]. Journal of Northeastern University (Natural Science),2010,31(7):917-920(in Chinese). doi: 10.3969/j.issn.1005-3026.2010.07.002
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  1329
  • HTML全文浏览量:  567
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-19
  • 修回日期:  2021-06-11
  • 录用日期:  2021-06-24
  • 网络出版日期:  2021-07-02
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回