留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车用CFRP在酸环境中的吸湿特性

闫凯波 段辉 陆思思 高正源 舒洋 杨杰 李慧

闫凯波, 段辉, 陆思思, 等. 车用CFRP在酸环境中的吸湿特性[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 闫凯波, 段辉, 陆思思, 等. 车用CFRP在酸环境中的吸湿特性[J]. 复合材料学报, 2024, 42(0): 1-12.
YAN Kaibo, DUAN Hui, LU Sisi, et al. Water absorption characteristics of CFRP using in vehicles in acidic environments[J]. Acta Materiae Compositae Sinica.
Citation: YAN Kaibo, DUAN Hui, LU Sisi, et al. Water absorption characteristics of CFRP using in vehicles in acidic environments[J]. Acta Materiae Compositae Sinica.

车用CFRP在酸环境中的吸湿特性

基金项目: 国家自然科学基金 (52402466);中国博土后科学基金面上项目 (2022M723001, 2022M713014);重庆市博土后研究项目特别资助 (2022CQBSHTB2020);重庆市教育委员会科学技术研究项目 (KJQN202200724, KJQN202100727);重庆市研究生科研创新项目 (CYS240491)
详细信息
    通讯作者:

    陆思思,工学博士,副教授,硕士生导师,研究方向为结构冲击动力学、复合材料细观力学 E-mail: sisi_lu2020@yeah.net

  • 中图分类号: TB332

Water absorption characteristics of CFRP using in vehicles in acidic environments

Funds: National Natural Science Foundation of China (52402466); China Postdoctoral Science Foundation (2022M723001, 2022M713014); Chongqing Postdoctoral Science Foundation Special Funded Project (2022CQBSHTB2020); Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202200724, KJQN202100727); Chongqing Graduate Student Research and Innovation Project (CYS240491)
  • 摘要: 碳纤维增强聚合物(CFRP)作为一种新型材料广泛运用于车辆轻量化设计领域,然而,大量酸性物质的排放导致CFRP服役环境呈现酸性。开展了CFFR在酸环境中的吸湿试验,分析了单向铺层角度、结构尺寸和溶液pH值对CFRP吸湿特性的影响。研究表明,当纤维和基体总量一定时,纤维沿垂直长轴方向排列,基体含量会更多,其对吸湿的促进作用超过了纤维的屏障效应,增强了材料的吸湿行为,同时,界面相对CFRP吸湿过程的影响不可忽略;当材料的比表面积过大时,会产生边缘效应,导致沿厚度方向的酸热吸湿扩散系数大于长度和宽度方向,带来吸湿增强现象;强酸环境会导致更高的吸湿扩散系数和饱和吸湿率;同时发现CFRP在强酸环境中的老化会导致其拉伸强度增加和压缩强度下降。相关研究结果可用于指导真实服役环境下CFRP轻量化车身的设计和优化,以提升其在酸环境中的服役寿命。

     

  • 图  1  碳纤维增强聚合物(CFRP)制备工艺

    Figure  1.  Carbon fiber reinforced polymer (CFRP) Preparation Process

    图  2  CFRP酸热老化试件

    Figure  2.  CFRP acid-thermal aging samples

    图  3  CFRP酸热老化试验环境

    Figure  3.  CFRP acid-thermal aging test environment

    图  4  CFRP力学性能测试

    Figure  4.  Mechanical Properties Testing of CFRP

    图  5  0°铺层管与90°铺层管的吸湿曲线图

    Figure  5.  Water e adsorption curves of 0°and 90° tubes

    图  6  0°铺层管、90°铺层管基体含量示意图

    Figure  6.  Diagram of matrix content in 0° and 90° tubes

    图  7  不同铺层CFRP的酸热吸湿示意

    Figure  7.  Diagram of acid-thermal water absorption for different CFRP lay-ups

    图  8  CFRP酸热吸湿曲线图

    Figure  8.  CFRP acid-thermal Water absorption curve

    图  9  pH=2.0与pH=4.5 CFRP酸热吸湿模型

    Figure  9.  Acid-thermal water absorption models of CFRP at pH=2.0 and pH=4.5

    图  10  Langmuir模型与菲克模型吸湿误差棒图

    Figure  10.  Error bar chart of water absorption for Langmuir model and Fick's model

    图  11  老化后的CFRP力学性能随吸湿率变化曲线

    Figure  11.  Curve of mechanical properties of aged CFRP with water absorption rate

    表  1  碳纤维材料与环氧树脂材料属性

    Table  1.   Properties of carbon fibre and epoxy resin materials

    Material parameters TTP-15000-BII31 12K CFRP YPS-08A/B Epoxy resin
    Tensile strength/MPa 4440 96
    Elongation at break/% 1.660 50
    Densities/g/cm3 1.780 1.380
    Sizing agent content/% 1.300 /
    Tensile modulus of elasticity/GPa 253.370 4
    下载: 导出CSV

    表  2  CFRP结构尺寸

    Table  2.   Structural sizes of CFRP

    Length /mm Width /mm Thickness /mm
    0°Laminate 250 12.500 1
    90°Laminate 170 25 2
    0°Tube 29 10 10
    90°Tube 29 10 10
    下载: 导出CSV

    表  3  吸湿率及其变异系数

    Table  3.   Water absorption rate and CV

    0°Laminate 90°Laminate 0°Tube 90°Tube
    Duration/s0.5 Mean/% CV/% Mean/% CV/% Mean/% CV/% Mean/% CV/%
    168 0.013 2.901 0.015 6.692 0.018 2.820 0.040 2.730
    336 0.041 0.943 0.015 4.417 0.028 1.771 0.061 2.037
    504 0.055 0.705 0.017 2.568 0.030 1.620 0.061 2.037
    672 0.066 0.589 0.017 2.478 0.030 1.620 0.063 2.511
    840 0.074 0.739 0.017 2.405 0.030 1.626 0.063 2.511
    1008 0.071 0.739 0.020 2.900 0.033 1.997 0.063 2.511
    1176 0.074 0.583 0.023 3.074 0.035 1.399 0.066 2.126
    1344 0.077 0.511 0.025 2.751 0.037 1.404 0.068 2.064
    1512 0.077 0.511 0.033 2.142 0.042 1.571 0.070 2.005
    1680 0.077 0.511 0.033 1.637 0.042 1.571 0.070 2.005
    1848 0.077 0.511 0.033 1.637 0.044 1.138 0.070 2.005
    2016 0.077 0.511 0.033 1.637 0.047 1.820 0.070 2.005
    2184 0.078 0.504 0.036 1.964 0.047 1.820 0.073 1.924
    2352 0.078 0.504 0.036 1.964 0.047 1.820 0.073 1.920
    下载: 导出CSV

    表  4  力学参数及其变异系数

    Table  4.   Mechanical parameters and CV

    0°Laminate 90°Laminate 0°Tube 90°Tube
    Duration/s0.5 Ty/MPa CV/% Tx/MPa CV/% Cy/MPa CV/% Cx/MPa CV/%
    0 1139 3.800 30.800 3.100 294.520 2.500 91.250 1.400
    1008 1696 3.500 31.200 1.500 297.070 1.700 91.180 1.100
    2016 2076 2.800 25.200 1.800 210.830 0.270 81.160 1.220
    2352 2208 1.700 33 3.400 176.810 1.740 60.020 1.330
    Notes: Tx and Ty represent the transverse tensile strengthand and longitudinal tensile strength; Cx and Cy correspond to the transverse compressive strength and longitudinal compressive strength.
    下载: 导出CSV

    表  5  三维菲克第二定律与混合律模型的扩散系数(mm2/h)

    Table  5.   Diffusion coefficients of the three-dimensional Fick’s second law and the rule of mixtures (mm2/h)

    DxDyDzD//D
    0°Tube1.813×10−31.522×10−21.810×10−30.965×10−80.681×10−11
    90°Tube8.890×10−21.056×10−21.057×10−20.876×10−80.781×10−10
    Notes: Dx, Dy, and Dz represent the diffusion coefficients along the X, Y, and Z directions; D// and D represent the diffusion coefficients along the fiber direction and perpendicular to the fiber direction.
    下载: 导出CSV

    表  6  三维菲克第二定律模型参数

    Table  6.   Parameters of the three-dimensional Fick's second law model

    Dx/(mm2·h−1)Dy/(mm2·h−1)Dz/(mm2·h−1)p
    0°Laminate3.900×10−60.600×10−31.700×10−32.17
    0°Tube1.813×10−31.522×10−21.810×10−30.47
    90°Laminate9.730×10−106.220×10−91.070×10−31.1
    90°Tube8.890×10−21.056×10−21.057×10−20.47
    Notes: p is the edge factor.
    下载: 导出CSV

    表  7  菲克模型参数

    Table  7.   Fick's model parameters

    Solution pH valueDx/(mm2·h−1)Dy/(mm2·h−1)Dz/(mm2·h−1)Me/%
    pH=2.03.900×10−60.600×10−31.700×10−30.081
    pH=4.52.450×10−60.260×10−35.400×10−50.031
    Notes: Me is the saturated water absorption rate.
    下载: 导出CSV

    表  8  Langmuir模型参数

    Table  8.   Langmuir model parameters

    Solution pH valuerbMe/%
    pH=2.01.1100.0500.079
    pH=4.50.9000.0300.026
    Notes: r and b are both Langmuir constants, where b describes the water absorption strength, and r describes the diffusion rate.
    下载: 导出CSV
  • [1] 吕淑扬, 郑凯, 赵英男, 等. 碳纤维增强复合材料在航空航天领域的应用[J]. 聚酯工业, 2024, 37(3): 71-73.

    LV Shuyang, ZHENG Kai, ZHAO Yingnan, et al. Application of carbon fiber reinforced composite materials in the aerospace field[J]. Polyester Industry, 2024, 37(3): 71-73(in Chinese).
    [2] 武海鹏, 王威力. 复合材料层合板低速冲击下剩余强度的评价[J]. 材料导报, 2020, 34(S2): 1598-1602.

    WU Haipeng, WANG Weili. Research on composite laminates damage tolerance under low-velocity impact[J]. Materials Reports, 2020, 34(S2): 1598-1602(in Chinese).
    [3] 李汶蔚, 梅杰, 黄威. 碳纤维增强复合材料层合板的抗冲击性能[J]. 高压物理学报, 2020, 34(2): 59-66.

    LI Wenwei, MEI Jie, HUANG Wei. Impulsive resistance of the CFRP/Epoxy laminate[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 59-66(in Chinese).
    [4] ALMUDAIHESH F, HOLFORD K, PULLIN R, et al. The influence of water absorption on unidirectional and 2D woven CFRP composites and their mechanical performance[J]. Composites Part B, 2020, 182: 107626. doi: 10.1016/j.compositesb.2019.107626
    [5] ISLAM S M, PICKERING L K, FOREMAN J N. Influence of Hygrothermal Ageing on the pHysico-Mechanical Properties of Alkali Treated Industrial Hemp Fibre Reinforced Polylactic Acid Composites[J]. Journal of Polymers and the Environment, 2010, 18(4): 696-704. doi: 10.1007/s10924-010-0225-9
    [6] HADDAR N, KSOURI I, KALLEL T, et al. Effect of hygrothermal ageing on the monotonic and cyclic loading of glass fiber reinforced polyamide[J]. Polymer Composites, 2014, 35(3): 501-508. doi: 10.1002/pc.22688
    [7] MENG M, RIZVI M, GROVE S, et al. Effects of hygrothermal stress on the failure of CFRP composites[J]. Composite Structures, 2015, 133: 1024-1035. doi: 10.1016/j.compstruct.2015.08.016
    [8] 冯振宇, 解江, 迟琪琳, 等. 湿热环境对复合材料单向板拉伸性能的影响[J]. 高分子材料科学与工程, 2018, 34(11): 37-43.

    FENG Zhenyu, XIE Jiang, CHI Qilin, et al. Influence of hygrothermal environment on tensile property of unidirectional composite laminates[J]. Polymer Materials Science & Engineering, 2018, 34(11): 37-43(in Chinese).
    [9] 蔺越国, 卢翔, 谭娜, 等. 航空碳纤维复合材料湿热特性实验及理论模型研究[J]. 高科技纤维与应用, 2017, 42(3): 18-21+29.

    LIN Yueguo, Lu Xiang, TAN Na, et al. Experimental and theoretical analysis model of moisture property of CFRP composites for aeronautical applications[J]. Hi-Tech Fiber and Application, 2017, 42(3): 18-21+29(in Chinese).
    [10] 谷卫敏. 湿热环境下碳纤维复合材料冲击损伤与破坏试验研究 [D]. 武汉: 武汉理工大学, 2017.

    GU Weimin. Experimental Study on the Impact Damage and Fracture Mechanisms of Carbon Fiber Reinforced Polymer Composites under Hygrothermal Environment [D]. Wuhan: Wuhan University of Technology, 2017(in Chinese).
    [11] JIANG X, KOLSTEIN H, BIJLAARD F, et al. Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: Moisture diffusion characteristics[J]. Composites Part A, 2014, 57: 49-58. doi: 10.1016/j.compositesa.2013.11.002
    [12] JOLIFF Y, REKIK W, BELEC L, et al. Study of the moisture/stress effects on glass fibre/epoxy composite and the impact of the interphase area[J]. Composite Structures, 2014, 108: 876-885. doi: 10.1016/j.compstruct.2013.10.001
    [13] BOND A D. Moisture Diffusion in a Fiber-reinforced Composite: Part I - Non-Fickian Transport and the Effect of Fiber Spatial Distribution[J]. Journal of Composite Materials, 2005, 39(23): 2113-2141. doi: 10.1177/0021998305052030
    [14] UTHAMAN A, XIAN G, THOMAS S, et al. Durability of an Epoxy Resin and Its Carbon Fiber-Reinforced Polymer Composite upon Immersion in Water, Acidic, and Alkaline Solutions[J]. Polymers, 2020, 12(3): 614-614. doi: 10.3390/polym12030614
    [15] 萧以德, 张三平, 周学杰, 等. 我国西部地区大气环境腐蚀性及材料腐蚀特征 [C] //中国机械工程学会表面工程分会. 第五届全国表面工程学术会议论文集. 武汉材料保护研究所: 2004: 7.

    XIAO Yide, ZHANG Sanping, ZHOU Xuejie, et al. Atmospheric corrosivity and material corrosion characteristics in the western region of China [C] //Chinese Mechanical Engineering Society, Surface Engineering Branch. Proceedings of the Fifth National Academic Conference on Surface Engineering. Wuhan Institute of Materials Protection: 2004: 7(in Chinese).
    [16] FENG P, WANG J, WANG Y, et al. Effects of corrosive environments on properties of pultruded GFRP plates[J]. Composites Part B, 2014, 67: 427-433. doi: 10.1016/j.compositesb.2014.08.021
    [17] BANNA M, SHIROKOFF J, MOLGAARD J. Effects of two aqueous acidic solutions on polyester and bisphenol A epoxy vinyl ester resins[J]. Materials Science Engineering A, 2010, 528(4): 2137-2142.
    [18] POST N. Investigation of 3D Moisture Diffusion Coefficients and Damage in a Pultruded E-glass/Polyester Structural Composite[J]. Journal of Composite Materials, 2009, 43(1): 75-96. doi: 10.1177/0021998308098152
    [19] PIERRON F. A Novel Procedure for Identification of 3D Moisture Diffusion Parameters on Thick Composites: Theory, Validation and Experimental Results[J]. Journal of Composite Materials, 2002, 36(19): 2219-2243. doi: 10.1177/0021998302036019003
    [20] 中国国家标准化管理委员会. 纤维增强塑料压缩性能试验方法: GB/T 1448-2005[S]. 北京: 中国标准出版社, 2005(in Chinese).

    National Standardization Administration of China. Fiber-reinforced plastics composites—Determination of compressive properties: GB/T 1448-2005 [S]. Beijing: China Standard Press, 2005.
    [21] 中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354-2014[S]. 北京: 中国标准出版社, 2014(in Chinese).

    National Standardization Administration of China. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials: GB/T 3354-2014 [S]. Beijing: China Standard Press, 2014.
    [22] PETER D, MAEL A. Fatigue Behaviour of Acrylic Matrix Composites: Influence of Seawater[J]. Applied Composite Materials, 2019, 26(2): 507-518. doi: 10.1007/s10443-018-9713-1
    [23] BING S, HONGJUN L, SHENGLI L, et al. Acid Aging of CFRP Composite Materials for Solar UAV Structure[J]. International Journal of Aerospace Engineering, 2021: 1664847.
    [24] 敖子强, 瞿丽雅, 林文杰, 等. 贵州鹿冲关和雷公山酸雨化学特征的对比研究[J]. 中国岩溶, 2007, (1): 61-66.

    AO Ziqiang, QU Liya, LIN Wenjie, et al. Comparative study on chemical characteristics of acid rain in Luchongguan and Leigongshan, Guizhou[J]. China Karst, 2007, (1): 61-66(in Chinese).
    [25] 国家标准化管理委员会. 碳纤维增强复合材料耐湿热性能评价方法: GB/T 43113-2023[S]. 北京: 中国标准出版社, 2023.

    Standardization Administration of PRC. Standard practices for evaluating the hydrothermal resistance of carbon fiber reinforced polymer composites: GB/T 43113-2023 [S]. Beijing: China Standard Press, 2023(in Chinese).
    [26] BOUKHOULDA B, ADDA-BEDIA E, MADANI K. The effect of fiber orientation angle in composite materials on moisture absorption and material degradation after hygrothermal ageing[J]. Composite Structures, 2005, 74(4): 406-418.
    [27] C. JH. Primer on Composite Materials Analysis, Second Edition (revised) [M]. CRC Press: 2017-10-19.
    [28] QI Z, CHUNHONG W, XIAOYUAN P, et al. Analysis and prediction of tensile properties based on rule of mixtures model for multi-scale ramie plain woven fabric reinforced composite[J]. Composite Structures, 2023, 311: 116785. doi: 10.1016/j.compstruct.2023.116785
    [29] LEVENTA, K YH, CENGIZ M A. Combined Edge and Anisotropy Effects on Fickian Mass Diffusion in Polymer Composites[J]. Journal of Engineering Materials and Technology, 2004, 126(4): 427-435. doi: 10.1115/1.1789959
    [30] STARKOVA O, ANISKEVICH K, SEVCENKO J. Long-term moisture absorption and durability of FRP pultruded rebars[J]. Materials Today: Proceedings, 2021: 36-40.
    [31] KUMOSA L, BENEDIKT B, ARMENTROUT D, et al. Moisture absorption properties of unidirectional glass/polymer composites used in composite (non-ceramic) insulators[J]. Composites Part A, 2004, 35(9): 1049-1063. doi: 10.1016/j.compositesa.2004.03.008
    [32] WAN FEIXUE. Moisture Absorption Behavior of Carbon Fiber-Reinforced Monomer Casting Nylon Composites[J]. Journal of Reinforced Plastics and Composites, 2004, 23(10): 1031-1040. doi: 10.1177/0731684404033961
    [33] SINDHU K. Degradation Studies of Coir Fiber/Polyester and Glass Fiber/Polyester Composites under Different Conditions[J]. Journal of Reinforced Plastics and Composites, 2007, 26(15): 1571-1585. doi: 10.1177/0731684407079665
    [34] SARKER M, HADIGHEH A S, DIAS DA COSTA D. A performance-based characterisation of CFRP composite deterioration using active infrared thermography[J]. Composite Structures, 2020, 241: 112134. doi: 10.1016/j.compstruct.2020.112134
    [35] STAMENOVIć M, PUTIć S, RAKIN M, et al. Effect of alkaline and acidic solutions on the tensile properties of glass–polyester pipes[J]. Materials and Design, 2011, 32(4): 2456-2461. doi: 10.1016/j.matdes.2010.11.023
  • 加载中
计量
  • 文章访问数:  16
  • HTML全文浏览量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-18
  • 修回日期:  2024-08-02
  • 录用日期:  2024-08-17
  • 网络出版日期:  2024-09-02

目录

    /

    返回文章
    返回