Water absorption characteristics of CFRP using in vehicles in acidic environments
-
摘要: 碳纤维增强聚合物(CFRP)作为一种新型材料广泛运用于车辆轻量化设计领域,然而,大量酸性物质的排放导致CFRP服役环境呈现酸性。开展了CFFR在酸环境中的吸湿试验,分析了单向铺层角度、结构尺寸和溶液pH值对CFRP吸湿特性的影响。研究表明,当纤维和基体总量一定时,纤维沿垂直长轴方向排列,基体含量会更多,其对吸湿的促进作用超过了纤维的屏障效应,增强了材料的吸湿行为,同时,界面相对CFRP吸湿过程的影响不可忽略;当材料的比表面积过大时,会产生边缘效应,导致沿厚度方向的酸热吸湿扩散系数大于长度和宽度方向,带来吸湿增强现象;强酸环境会导致更高的吸湿扩散系数和饱和吸湿率;同时发现CFRP在强酸环境中的老化会导致其拉伸强度增加和压缩强度下降。相关研究结果可用于指导真实服役环境下CFRP轻量化车身的设计和优化,以提升其在酸环境中的服役寿命。Abstract: Carbon fiber reinforced polymer (CFRP) is a new material widely used in the field of vehicle lightweight design. However, the emission of a large amount of acid causes the CFRP operational environment to become acidic. The water absorption test of CFRP in an acid environment was carried out to analyze the effects of unidirectional ply angle, structural size, and solution pH on the water absorption characteristics of CFRP. The results showed that when the total amount of fibers and matrix is constant, arranging the fibers along the vertical long-axis direction increases the matrix content. This promotion of water absorption exceeds the barrier effect of the fibers, enhancing the material's water absorption behavior.It is also found that the influence of the interface on the water absorption process of CFRP cannot be ignored. When the specific surface area of the material is too large, it produces an edge effect, resulting in the acid-thermal water absorption diffusion coefficient along the thickness direction being greater than those in the length and width directions, leading to enhanced water absorption. A strongly acidic environment will lead to higher water absorption diffusion coefficients and saturated water absorption rate, It was also found that aging of CFRP in a strong acidic environment leads to an increase in tensile strength and a decrease in compressive strength. The results of this study can be used to guide the design and operational of CFRP bodies in real service environments to improve their service life in acidic environments.
-
表 1 碳纤维材料与环氧树脂材料属性
Table 1. Properties of carbon fibre and epoxy resin materials
Material parameters TTP-15000-BII31 12K CFRP YPS-08A/B Epoxy resin Tensile strength/MPa 4440 96 Elongation at break/% 1.660 50 Densities/g/cm3 1.780 1.380 Sizing agent content/% 1.300 / Tensile modulus of elasticity/GPa 253.370 4 表 2 CFRP结构尺寸
Table 2. Structural sizes of CFRP
Length /mm Width /mm Thickness /mm 0°Laminate 250 12.500 1 90°Laminate 170 25 2 0°Tube 29 10 10 90°Tube 29 10 10 表 3 吸湿率及其变异系数
Table 3. Water absorption rate and CV
0°Laminate 90°Laminate 0°Tube 90°Tube Duration/s0.5 Mean/% CV/% Mean/% CV/% Mean/% CV/% Mean/% CV/% 168 0.013 2.901 0.015 6.692 0.018 2.820 0.040 2.730 336 0.041 0.943 0.015 4.417 0.028 1.771 0.061 2.037 504 0.055 0.705 0.017 2.568 0.030 1.620 0.061 2.037 672 0.066 0.589 0.017 2.478 0.030 1.620 0.063 2.511 840 0.074 0.739 0.017 2.405 0.030 1.626 0.063 2.511 1008 0.071 0.739 0.020 2.900 0.033 1.997 0.063 2.511 1176 0.074 0.583 0.023 3.074 0.035 1.399 0.066 2.126 1344 0.077 0.511 0.025 2.751 0.037 1.404 0.068 2.064 1512 0.077 0.511 0.033 2.142 0.042 1.571 0.070 2.005 1680 0.077 0.511 0.033 1.637 0.042 1.571 0.070 2.005 1848 0.077 0.511 0.033 1.637 0.044 1.138 0.070 2.005 2016 0.077 0.511 0.033 1.637 0.047 1.820 0.070 2.005 2184 0.078 0.504 0.036 1.964 0.047 1.820 0.073 1.924 2352 0.078 0.504 0.036 1.964 0.047 1.820 0.073 1.920 表 4 力学参数及其变异系数
Table 4. Mechanical parameters and CV
0°Laminate 90°Laminate 0°Tube 90°Tube Duration/s0.5 Ty/MPa CV/% Tx/MPa CV/% Cy/MPa CV/% Cx/MPa CV/% 0 1139 3.800 30.800 3.100 294.520 2.500 91.250 1.400 1008 1696 3.500 31.200 1.500 297.070 1.700 91.180 1.100 2016 2076 2.800 25.200 1.800 210.830 0.270 81.160 1.220 2352 2208 1.700 33 3.400 176.810 1.740 60.020 1.330 Notes: Tx and Ty represent the transverse tensile strengthand and longitudinal tensile strength; Cx and Cy correspond to the transverse compressive strength and longitudinal compressive strength. 表 5 三维菲克第二定律与混合律模型的扩散系数(mm2/h)
Table 5. Diffusion coefficients of the three-dimensional Fick’s second law and the rule of mixtures (mm2/h)
Dx Dy Dz D// D⊥ 0°Tube 1.813×10−3 1.522×10−2 1.810×10−3 0.965×10−8 0.681×10−11 90°Tube 8.890×10−2 1.056×10−2 1.057×10−2 0.876×10−8 0.781×10−10 Notes: Dx, Dy, and Dz represent the diffusion coefficients along the X, Y, and Z directions; D// and D⊥ represent the diffusion coefficients along the fiber direction and perpendicular to the fiber direction. 表 6 三维菲克第二定律模型参数
Table 6. Parameters of the three-dimensional Fick's second law model
Dx/(mm2·h−1) Dy/(mm2·h−1) Dz/(mm2·h−1) p 0°Laminate 3.900×10−6 0.600×10−3 1.700×10−3 2.17 0°Tube 1.813×10−3 1.522×10−2 1.810×10−3 0.47 90°Laminate 9.730×10−10 6.220×10−9 1.070×10−3 1.1 90°Tube 8.890×10−2 1.056×10−2 1.057×10−2 0.47 Notes: p is the edge factor. 表 7 菲克模型参数
Table 7. Fick's model parameters
Solution pH value Dx/(mm2·h−1) Dy/(mm2·h−1) Dz/(mm2·h−1) Me/% pH=2.0 3.900×10−6 0.600×10−3 1.700×10−3 0.081 pH=4.5 2.450×10−6 0.260×10−3 5.400×10−5 0.031 Notes: Me is the saturated water absorption rate. 表 8 Langmuir模型参数
Table 8. Langmuir model parameters
Solution pH value r b Me/% pH=2.0 1.110 0.050 0.079 pH=4.5 0.900 0.030 0.026 Notes: r and b are both Langmuir constants, where b describes the water absorption strength, and r describes the diffusion rate. -
[1] 吕淑扬, 郑凯, 赵英男, 等. 碳纤维增强复合材料在航空航天领域的应用[J]. 聚酯工业, 2024, 37(3): 71-73.LV Shuyang, ZHENG Kai, ZHAO Yingnan, et al. Application of carbon fiber reinforced composite materials in the aerospace field[J]. Polyester Industry, 2024, 37(3): 71-73(in Chinese). [2] 武海鹏, 王威力. 复合材料层合板低速冲击下剩余强度的评价[J]. 材料导报, 2020, 34(S2): 1598-1602.WU Haipeng, WANG Weili. Research on composite laminates damage tolerance under low-velocity impact[J]. Materials Reports, 2020, 34(S2): 1598-1602(in Chinese). [3] 李汶蔚, 梅杰, 黄威. 碳纤维增强复合材料层合板的抗冲击性能[J]. 高压物理学报, 2020, 34(2): 59-66.LI Wenwei, MEI Jie, HUANG Wei. Impulsive resistance of the CFRP/Epoxy laminate[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 59-66(in Chinese). [4] ALMUDAIHESH F, HOLFORD K, PULLIN R, et al. The influence of water absorption on unidirectional and 2D woven CFRP composites and their mechanical performance[J]. Composites Part B, 2020, 182: 107626. doi: 10.1016/j.compositesb.2019.107626 [5] ISLAM S M, PICKERING L K, FOREMAN J N. Influence of Hygrothermal Ageing on the pHysico-Mechanical Properties of Alkali Treated Industrial Hemp Fibre Reinforced Polylactic Acid Composites[J]. Journal of Polymers and the Environment, 2010, 18(4): 696-704. doi: 10.1007/s10924-010-0225-9 [6] HADDAR N, KSOURI I, KALLEL T, et al. Effect of hygrothermal ageing on the monotonic and cyclic loading of glass fiber reinforced polyamide[J]. Polymer Composites, 2014, 35(3): 501-508. doi: 10.1002/pc.22688 [7] MENG M, RIZVI M, GROVE S, et al. Effects of hygrothermal stress on the failure of CFRP composites[J]. Composite Structures, 2015, 133: 1024-1035. doi: 10.1016/j.compstruct.2015.08.016 [8] 冯振宇, 解江, 迟琪琳, 等. 湿热环境对复合材料单向板拉伸性能的影响[J]. 高分子材料科学与工程, 2018, 34(11): 37-43.FENG Zhenyu, XIE Jiang, CHI Qilin, et al. Influence of hygrothermal environment on tensile property of unidirectional composite laminates[J]. Polymer Materials Science & Engineering, 2018, 34(11): 37-43(in Chinese). [9] 蔺越国, 卢翔, 谭娜, 等. 航空碳纤维复合材料湿热特性实验及理论模型研究[J]. 高科技纤维与应用, 2017, 42(3): 18-21+29.LIN Yueguo, Lu Xiang, TAN Na, et al. Experimental and theoretical analysis model of moisture property of CFRP composites for aeronautical applications[J]. Hi-Tech Fiber and Application, 2017, 42(3): 18-21+29(in Chinese). [10] 谷卫敏. 湿热环境下碳纤维复合材料冲击损伤与破坏试验研究 [D]. 武汉: 武汉理工大学, 2017.GU Weimin. Experimental Study on the Impact Damage and Fracture Mechanisms of Carbon Fiber Reinforced Polymer Composites under Hygrothermal Environment [D]. Wuhan: Wuhan University of Technology, 2017(in Chinese). [11] JIANG X, KOLSTEIN H, BIJLAARD F, et al. Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: Moisture diffusion characteristics[J]. Composites Part A, 2014, 57: 49-58. doi: 10.1016/j.compositesa.2013.11.002 [12] JOLIFF Y, REKIK W, BELEC L, et al. Study of the moisture/stress effects on glass fibre/epoxy composite and the impact of the interphase area[J]. Composite Structures, 2014, 108: 876-885. doi: 10.1016/j.compstruct.2013.10.001 [13] BOND A D. Moisture Diffusion in a Fiber-reinforced Composite: Part I - Non-Fickian Transport and the Effect of Fiber Spatial Distribution[J]. Journal of Composite Materials, 2005, 39(23): 2113-2141. doi: 10.1177/0021998305052030 [14] UTHAMAN A, XIAN G, THOMAS S, et al. Durability of an Epoxy Resin and Its Carbon Fiber-Reinforced Polymer Composite upon Immersion in Water, Acidic, and Alkaline Solutions[J]. Polymers, 2020, 12(3): 614-614. doi: 10.3390/polym12030614 [15] 萧以德, 张三平, 周学杰, 等. 我国西部地区大气环境腐蚀性及材料腐蚀特征 [C] //中国机械工程学会表面工程分会. 第五届全国表面工程学术会议论文集. 武汉材料保护研究所: 2004: 7.XIAO Yide, ZHANG Sanping, ZHOU Xuejie, et al. Atmospheric corrosivity and material corrosion characteristics in the western region of China [C] //Chinese Mechanical Engineering Society, Surface Engineering Branch. Proceedings of the Fifth National Academic Conference on Surface Engineering. Wuhan Institute of Materials Protection: 2004: 7(in Chinese). [16] FENG P, WANG J, WANG Y, et al. Effects of corrosive environments on properties of pultruded GFRP plates[J]. Composites Part B, 2014, 67: 427-433. doi: 10.1016/j.compositesb.2014.08.021 [17] BANNA M, SHIROKOFF J, MOLGAARD J. Effects of two aqueous acidic solutions on polyester and bisphenol A epoxy vinyl ester resins[J]. Materials Science Engineering A, 2010, 528(4): 2137-2142. [18] POST N. Investigation of 3D Moisture Diffusion Coefficients and Damage in a Pultruded E-glass/Polyester Structural Composite[J]. Journal of Composite Materials, 2009, 43(1): 75-96. doi: 10.1177/0021998308098152 [19] PIERRON F. A Novel Procedure for Identification of 3D Moisture Diffusion Parameters on Thick Composites: Theory, Validation and Experimental Results[J]. Journal of Composite Materials, 2002, 36(19): 2219-2243. doi: 10.1177/0021998302036019003 [20] 中国国家标准化管理委员会. 纤维增强塑料压缩性能试验方法: GB/T 1448-2005[S]. 北京: 中国标准出版社, 2005(in Chinese).National Standardization Administration of China. Fiber-reinforced plastics composites—Determination of compressive properties: GB/T 1448-2005 [S]. Beijing: China Standard Press, 2005. [21] 中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354-2014[S]. 北京: 中国标准出版社, 2014(in Chinese).National Standardization Administration of China. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials: GB/T 3354-2014 [S]. Beijing: China Standard Press, 2014. [22] PETER D, MAEL A. Fatigue Behaviour of Acrylic Matrix Composites: Influence of Seawater[J]. Applied Composite Materials, 2019, 26(2): 507-518. doi: 10.1007/s10443-018-9713-1 [23] BING S, HONGJUN L, SHENGLI L, et al. Acid Aging of CFRP Composite Materials for Solar UAV Structure[J]. International Journal of Aerospace Engineering, 2021: 1664847. [24] 敖子强, 瞿丽雅, 林文杰, 等. 贵州鹿冲关和雷公山酸雨化学特征的对比研究[J]. 中国岩溶, 2007, (1): 61-66.AO Ziqiang, QU Liya, LIN Wenjie, et al. Comparative study on chemical characteristics of acid rain in Luchongguan and Leigongshan, Guizhou[J]. China Karst, 2007, (1): 61-66(in Chinese). [25] 国家标准化管理委员会. 碳纤维增强复合材料耐湿热性能评价方法: GB/T 43113-2023[S]. 北京: 中国标准出版社, 2023.Standardization Administration of PRC. Standard practices for evaluating the hydrothermal resistance of carbon fiber reinforced polymer composites: GB/T 43113-2023 [S]. Beijing: China Standard Press, 2023(in Chinese). [26] BOUKHOULDA B, ADDA-BEDIA E, MADANI K. The effect of fiber orientation angle in composite materials on moisture absorption and material degradation after hygrothermal ageing[J]. Composite Structures, 2005, 74(4): 406-418. [27] C. JH. Primer on Composite Materials Analysis, Second Edition (revised) [M]. CRC Press: 2017-10-19. [28] QI Z, CHUNHONG W, XIAOYUAN P, et al. Analysis and prediction of tensile properties based on rule of mixtures model for multi-scale ramie plain woven fabric reinforced composite[J]. Composite Structures, 2023, 311: 116785. doi: 10.1016/j.compstruct.2023.116785 [29] LEVENTA, K YH, CENGIZ M A. Combined Edge and Anisotropy Effects on Fickian Mass Diffusion in Polymer Composites[J]. Journal of Engineering Materials and Technology, 2004, 126(4): 427-435. doi: 10.1115/1.1789959 [30] STARKOVA O, ANISKEVICH K, SEVCENKO J. Long-term moisture absorption and durability of FRP pultruded rebars[J]. Materials Today: Proceedings, 2021: 36-40. [31] KUMOSA L, BENEDIKT B, ARMENTROUT D, et al. Moisture absorption properties of unidirectional glass/polymer composites used in composite (non-ceramic) insulators[J]. Composites Part A, 2004, 35(9): 1049-1063. doi: 10.1016/j.compositesa.2004.03.008 [32] WAN FEIXUE. Moisture Absorption Behavior of Carbon Fiber-Reinforced Monomer Casting Nylon Composites[J]. Journal of Reinforced Plastics and Composites, 2004, 23(10): 1031-1040. doi: 10.1177/0731684404033961 [33] SINDHU K. Degradation Studies of Coir Fiber/Polyester and Glass Fiber/Polyester Composites under Different Conditions[J]. Journal of Reinforced Plastics and Composites, 2007, 26(15): 1571-1585. doi: 10.1177/0731684407079665 [34] SARKER M, HADIGHEH A S, DIAS DA COSTA D. A performance-based characterisation of CFRP composite deterioration using active infrared thermography[J]. Composite Structures, 2020, 241: 112134. doi: 10.1016/j.compstruct.2020.112134 [35] STAMENOVIć M, PUTIć S, RAKIN M, et al. Effect of alkaline and acidic solutions on the tensile properties of glass–polyester pipes[J]. Materials and Design, 2011, 32(4): 2456-2461. doi: 10.1016/j.matdes.2010.11.023
计量
- 文章访问数: 16
- HTML全文浏览量: 13
- 被引次数: 0