留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅灰改性钢纤维增强地聚物再生混凝土力学性能试验

夏冬桃 常闻捷 李彪 吴晨 喻诗汀 王煜 高奥星

夏冬桃, 常闻捷, 李彪, 等. 硅灰改性钢纤维增强地聚物再生混凝土力学性能试验[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 夏冬桃, 常闻捷, 李彪, 等. 硅灰改性钢纤维增强地聚物再生混凝土力学性能试验[J]. 复合材料学报, 2024, 42(0): 1-12.
XIA Dongtao, CHANG Wenjie, LI Biao, et al. Experimental study on mechanical properties of silica fume modified steel fibre reinforced geopolymer recycled aggregate concrete[J]. Acta Materiae Compositae Sinica.
Citation: XIA Dongtao, CHANG Wenjie, LI Biao, et al. Experimental study on mechanical properties of silica fume modified steel fibre reinforced geopolymer recycled aggregate concrete[J]. Acta Materiae Compositae Sinica.

硅灰改性钢纤维增强地聚物再生混凝土力学性能试验

基金项目: 国家自然科学基金项目 (52308248);湖北省自然科学基金项目 (2023AFB309)
详细信息
    通讯作者:

    李彪,博士,副教授,硕士生导师,研究方向为结构工程与材料 E-mail: libiao@hbut.edu.cn

  • 中图分类号: TU528

Experimental study on mechanical properties of silica fume modified steel fibre reinforced geopolymer recycled aggregate concrete

Funds: National Natural Science Foundation of China (NSFC) (52308248); the Natural Science Foundation of Hubei Province (2023AFB309)
  • 摘要: 钢纤维增强地聚物再生混凝土(Steel fiber reinforced geopolymer recycled concrete, SFRGRAC)具有碳排放量低、节约天然矿物资源以及延性韧性好等优点,具有广泛应用前景。为改善SFRGRAC力学性能,本文以硅灰为增强材料,通过立方体抗压、劈裂抗拉、抗折和弹性模量试验,研究硅灰取代率、钢纤维体积掺量和再生骨料取代率等因素对SFRGRAC力学性能的影响规律,并基于SEM扫描电镜和低场核磁共振测试结果揭示硅灰的改性机制。结果表明:掺入硅灰可延长SFRGRAC的凝结时间,当硅灰取代率为15%时,初凝和终凝时间分别提高了29.68%和22.98%;由于硅灰与碱激发溶液快速发生发应,加快了水化反应的速度,SFRGRAC3d抗压强度和劈裂抗拉强度可达到28d强度的85%以上;随着钢纤维体积掺量从0%增至1.5%,其抗压强度可提高17.44%,随着再生骨料取代率从0%增至50%,其强度降低了9.79%。掺入10%硅灰,总孔隙率降低了37.38%,能显著提高其抗压、劈裂抗拉和抗折强度,但当硅灰掺量为15%时,因过量硅灰降低了基体的碱度,导致地聚物水化反应不完全,使其力学性能表现出下降趋势。研究成果为再生混凝土相关规范的修订和完善提供参考依据。

     

  • 图  1  粗骨料和钢纤维

    Figure  1.  Coarse aggregate and steel fiber

    图  2  材料粒径累计分布图

    Figure  2.  Cumulative size distribution curve of raw materials

    图  3  硅灰掺量对SFRGRAC凝结时间的影响

    Figure  3.  Effect of silica fume content on the setting times of SFRGRAC

    图  4  SFRGRAC立方体抗压强度

    Figure  4.  Cubic compressive strength of SFRGRAC

    图  5  SFRGRAC劈裂抗拉强度

    Figure  5.  Splitting tensile strength of SFRGRAC

    图  6  SFRGRAC抗折强度

    Figure  6.  Flexural strength of SFRGRAC

    图  7  SFRGRAC弹性模量

    Figure  7.  Modulus of elasticity of SFRGRAC

    图  8  SFRGRAC的破坏形态

    Figure  8.  Typical failure surfaces of SFRGRAC

    图  9  不同硅灰取代率SFRGRAC的XRD图谱

    Figure  9.  XRD patterns of SFRGRAC with different contents of silica fume

    图  10  SFRGRAC孔隙分布

    Figure  10.  Pore size distribution of SFRGRAC

    图  11  SFRGRAC孔隙率与力学性能关系

    Figure  11.  Fitting relationship curve of porosity and mechanical characteristics of SFRGRAC

    图  12  硅灰改性SFRGRAC微观机理

    Figure  12.  Microscopic mechanism of silica fume modified SFRGRAC

    表  1  胶凝材料主要化学成分

    Table  1.   Chemical composition of cementitious materials

    Binder Compositions/% Specific surface
    area/(cm2·g−1)
    Density/
    (kg·m−3)
    CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2O Na2O MnO TiO2
    Slag 36.82 26.75 19.66 0.32 11.1 2.65 0.29 0.84 0.37 0.94 428 2.9
    Silica fume 0.12 96.65 0.31 0.07 0.11 1.21 0.22 0.67 0.17 0.83 200000 2.1
    下载: 导出CSV

    表  2  SFRGRAC设计配合比

    Table  2.   Designed mix proportions of SFRGRAC

    No. Specimen Proportions/(kg·m−3)
    Slag Sand Natural
    aggregate (NA)
    Recycled
    aggregate (RA)
    Silica fume Steel fiber Water Sodium
    silicate
    Sodium
    hydroxide
    Plastisizer
    1 R50F00S00 417 724 724 543 0 0 61.08 161.75 3.59 3.3
    2 R50F00S05 396.15 724 724 543 20.85 0 66.77 168.68 12.08 3.3
    3 R50F00S010 375.3 724 724 543 41.70 0 72.47 159.80 11.45 3.3
    4 R50F00S15 354.45 724 724 543 62.55 0 78.17 150.93 10.81 3.3
    5 R50F10S00 417 724 724 543 0 78.5 61.08 161.75 3.59 3.3
    6 R50F05S10 375.3 724 724 543 41.7 39.25 72.47 159.8 11.45 3.3
    7 R50F10S05 396.15 724 724 543 20.85 78.5 66.77 168.68 12.08 3.3
    8 R50F10S10 375 724 724 543 41.7 78.5 72.47 159.8 11.45 3.3
    9 R50F10S15 354.45 724 724 271.5 62.55 78.5 78.17 150.93 10.81 3.3
    10 R25F10S10 375.3 724 724 271.5 41.7 78.5 72.47 159.8 11.45 3.3
    11 R00F10S10 375.3 724 818 0 41.7 78.5 72.47 159.8 11.45 3.3
    12 R50F15S10 375.3 724 626 543 41.7 117.75 72.47 159.8 11.45 3.3
    Notes:R—Addition of recycled aggregate; F—Volume fraction of steel fiber; S—Addition of silica fume. R50F10S10represent the 50% recycled aggregate content, 1.0% steel fiber volume fraction and 10% silica fume content.
    下载: 导出CSV

    表  3  SFRGRAC强度和弹性模量测试结果

    Table  3.   Test results of machine strength and elastic modulus of SFRGRAC

    SpecimenCompressive strength/MPaSplitting tensile strength/MPaFlexural strength/MPaModulus of elasticity/GPa
    3d7d28d3d7d28d28d28d
    R50F00S0038.0743.0547.513.393.714.163.7913.02
    R50F00S0539.1548.5351.243.724.104.414.1813.35
    R50F00S1041.3648.6053.963.914.274.324.2614.75
    R50F00S1528.9536.3947.802.663.103.193.6411.29
    R50F10S0040.3048.4454.053.984.424.914.3013.85
    R50F05S1047.7849.3155.684.575.265.804.4818.48
    R50F10S0549.1553.7557.255.545.916.264.8316.43
    R50F10S1049.8554.358.765.616.156.615.1822.51
    R50F10S1540.7546.9355.915.005.516.164.0614.22
    R25F10S1052.1556.6260.215.646.566.885.3224.37
    R00F10S1055.9161.2765.146.167.017.245.6827.52
    R50F15S1053.4958.9565.395.756.466.685.3424.35
    下载: 导出CSV

    表  4  混凝土基质中孔隙率的总体积分数

    Table  4.   Total volume fraction of porosity in the concrete matrix

    Specimen Curing age Small pores (<4μm) Medium pores (4~6μm) Large pores (≥10μm) Total
    R50F10S00 3d 3.15 0.29 0.61 4.05
    28d 2.31 0.08 0.94 3.32
    R50F10S05 3d 3.06 0.12 0.72 3.91
    28d 2.11 0.06 0.61 2.78
    R50F10S10 3d 3.13 0.061 0.86 4.06
    28d 2.07 0.08 0.37 2.53
    R50F10S15 3d 4.01 0.38 0.80 5.19
    28d 2.71 0.12 0.88 3.71
    下载: 导出CSV
  • [1] SABAU M, BOMPA D, SILVA L, et al. Comparative carbon emission assessments of recycled and natural aggregate concrete: Environmental influence of cement content[J]. Geoscience Frontiers, 2021, 12(6): 101235. doi: 10.1016/j.gsf.2021.101235
    [2] 李佳彬, 肖建庄, 孙振平. 再生粗骨料特性及其对再生混凝土性能的影响[J]. 建筑材料学报, 2004, (4): 390-395. doi: 10.3969/j.issn.1007-9629.2004.04.006

    LI Jiashan, XIAO Jianzhuang, SUN Zhenping. Properties of recycled coarse aggregate and its influence on recycled concrete[J]. Journal of Building Materials, 2004, (4): 390-395 (in Chinese). doi: 10.3969/j.issn.1007-9629.2004.04.006
    [3] XIE J H, CHEN W, WANG J J, et al. Coupling effects of recycled aggregate and GGBS/metakaolin on physicochemical properties of geopolymer concrete[J]. Construction and Building Materials, 2019, 226: 345-359. doi: 10.1016/j.conbuildmat.2019.07.311
    [4] 丁兆洋, 周静海, 苏群 等. 地聚物再生骨料混凝土的力学性能研究[J]. 沈阳建筑大学学报(自然科学版), 2021, 37(1): 138-146.

    DING Zhaoyang, ZHOU Jinghai, SU Qun, et al. Mechanical properties of geopolymer recycled aggregate concrete[J]. Journal of Shenyang Jianzhu University(Natural Science), 2021, 37(1): 138-146 (in Chinese).
    [5] 龙涛, 石宵爽, 王清远, 等. 粉煤灰基地聚物再生混凝土的力学性能和微观结构[J]. 四川大学学报(工程科学版), 2013, 45(S1): 43-47.

    LONG Tao, SHI Xiaoshuang, WANG Qingyuan, et al. Mechanical properties and microstructure of fly ash based geopolymeric polymer recycled concrete[J]. Advanced Engineering Sciences, 2013, 45(S1): 43-47 (in Chinese).
    [6] ZHANG P, WANG J, LI Q F, et al. Mechanical and fracture properties of steel fiber-reinforced geopolymer concrete[J]. Science and Engineering of Composite Materials, 2021, 28(1): 299-313. doi: 10.1515/secm-2021-0030
    [7] ZHENG J H, QI L, ZHENG Y Q, et al. Mechanical properties and compressive constitutive model of steel fiber-reinforced geopolymer concrete[J]. Journal of Building Engineering, 2023, 80: 108161. doi: 10.1016/j.jobe.2023.108161
    [8] ZHAO Q H, WANG Y Q, XIE M, et al. Experimental study on mechanical behavior of steel fiber reinforced geopolymeric recycled aggregate concrete[J]. Construction and Building Materials, 2022, 356: 129267. doi: 10.1016/j.conbuildmat.2022.129267
    [9] XU Z, HUANG Z P, LIU C J, et al. Experimental study on mechanical properties and microstructures of steel fiber-reinforced fly ash-metakaolin geopolymer-recycled concrete[J]. Reviews on advanced materials science, 2021, 60(1): 578-590. doi: 10.1515/rams-2021-0050
    [10] OKOYE F, DURGAPRASAD J, SINGH N. Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete[J]. Ceramics International, 2016, 42(2): 3000-3006. doi: 10.1016/j.ceramint.2015.10.084
    [11] LIU Y W, SHI C J, ZHANG Z H, et al. Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume[J]. Cement and Concrete Composites, 2020, 112: 103665. doi: 10.1016/j.cemconcomp.2020.103665
    [12] LI B, GAO A X, LI Y, et al. Effect of silica fume content on the mechanical strengths, compressive stress–strain behavior and microstructures of geopolymeric recycled aggregate concrete[J]. Construction and Building Materials, 2023, 384: 131417. doi: 10.1016/j.conbuildmat.2023.131417
    [13] 马维, 何兆益. 碱激发矿渣粉煤灰地质聚合物力学性能改性及其混凝土性能[J/OL]. 矿产综合利用, 2024.

    MA Wei, HE Zhaoyi. Mechanical Properties Modification of Alkali-activated Slag Fly Ash based Geopolymer and its Concrete Properties[J/OL]. Multipurpose Utilization of Mineral Resources, 2024 (in Chinese).
    [14] 夏冬桃, 吴晨, 崔凯, 等. 粉煤灰和硅灰取代率对碱矿渣混凝土力学性能影响研究[J/OL]. 西南交通大学学报, 2024.

    XIA Dontao, WU Chen, CUI Kai, et al. Effect of Fly Ash and Silica Fume Contents on the Mechanical Properties of Alkali-activated Slag-based Concrete[J/OL]. Journal of Southwest Jiaotong University, 2024 (in Chinese).
    [15] 中国国家标准化管理委员会. 普通混凝土配合比设计规程: JGJ 55-2011[S]. 中国建筑工业出版社, 2011.

    Standardization Administration of the People's Republic of China. Specification for mix proportion design of ordinary concrete: JGJ 55-2011[S]. China Architecture & Building Press, 2011 (in Chinese).
    [16] 中国国家标准化管理委员会. 再生混凝土结构技术标准, JGJT 443-2018[S]. 中国建筑工业出版社, 2018.

    Standardization Administration of the People's Republic of China. Technical standard for recycled concrete structures: JGJT 443-2018[S]. China Architecture & Building Press, 2018 (in Chinese).
    [17] LI B, WU C, WANGg S N, et al. Monotonic and cyclic compressive behavior of ultra-high performance concrete with coarse aggregate: Experimental investigation and constitutive model[J]. Journal of Building Engineering, 2023, 68: 106002. doi: 10.1016/j.jobe.2023.106002
    [18] LI B, WANG C L, YU S T, et al. Effect of recycled aggregate and steel fiber contents on the mechanical properties and sustainability aspects of alkali-activated slag-based concrete[J]. Structures, 2023, 66: 105939.
    [19] 中国国家标准化管理委员会. 混凝土物理力 学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国标准出版社, 2019.

    Standardization Administration of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Standards Press, 2019 (in Chinese).
    [20] 中国国家标准化管理委员会. 普通混凝土拌和性能标准: GB/T50080-2016[S]. 中国建筑工业出版社, 2016.

    Standardization Administration of the People's Republic of China. Standard for test method of performance on ordinary fresh concrete: GB/T50080-2016[S]. China Architecture & Building Press, 2016 (in Chinese).
    [21] WAN Q, ZHANG Y M, ZHANG R B. The effect of pore behavior and gel structure on the mechanical property at different initial water content[J]. Construction and Building Materials, 2021, 309: 125146. doi: 10.1016/j.conbuildmat.2021.125146
    [22] BAI W F, LU X F, GUAN J F, et al. Experimental study on uniaxial compression mechanical properties of recycled concrete with silica fume considering the effect of curing age[J]. Construction and Building Materials, 2022, 350: 128758. doi: 10.1016/j.conbuildmat.2022.128758
    [23] SASANIPOUR H, ASLANI F, TAHERINEZHAD J. Effect of silica fume on durability of self-compacting concrete made with waste recycled concrete aggregates[J]. Construction and Building Materials, 2019, 227: 116598. doi: 10.1016/j.conbuildmat.2019.07.324
    [24] 张雄, 张恒, 张晓乐, 等. 硅灰调控混凝土力学性能的关键界面参数研究. 建筑材料学报[J]. 2019, 22(04): 626-631

    ZHANG Xiong, ZHANG Heng, ZHANG Xiaole L, et al. Key interface parameters for the control of silica fume on mechanical properties of concrete[J]. Journal of Building Materials, 2019, 22(04): 626-631 (in Chinese).
    [25] 黄华, 郭梦雪, 张伟, 等. 粉煤灰-矿渣基地聚物混凝土力 学性能与微观结构[J]. 哈尔滨工业大学学报, 2022, 54(3): 74-84. doi: 10.11918/202104058

    HUANG Hua, GUO Mengxue, ZHANG Wei, et al. Mechanical property and microstructure of geopolymer concrete based on fly ash and slag[J]. Journal of Harbin Institute of Technology, 2022, 54(3): 74-84 (in Chinese). doi: 10.11918/202104058
    [26] ZHU L, NING Q, HAN W, et al. Compressive strength and microstructural analysis of recycled coarse aggregate concrete treated with silica fume[J]. Construction and Building Materials, 2022, 32334: 127453.
    [27] 吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979, (3): 262-270.

    WU Zhongwei. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society, 1979, (3): 262-270 (in Chinese).
  • 加载中
计量
  • 文章访问数:  52
  • HTML全文浏览量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-14
  • 修回日期:  2024-06-18
  • 录用日期:  2024-07-10
  • 网络出版日期:  2024-07-30

目录

    /

    返回文章
    返回