Low velocity impact response of porous metal ceramic functionally graded rectangular plate
-
摘要:
功能梯度材料(FGM)是由两种或两种以上不同性能的材料通过连续改变材料的组成和结构而合成的一种非均质复合材料。功能梯度材料因具有较高机械强度、抗冲击、耐高温性能等特点,被广泛应用于航空航天工程、汽车、海军工程等领域。与分层复合材料不同,其材料组分可沿特定方向以预定形式逐渐变化,并在材料变化方向上对陶瓷与金属进行精确分级,使其性能具有可裁剪性。但大多数有关功能梯度材料的研究工作是从理想模型出发,忽略了实际制造中孔隙的存在。由于孔隙可改变材料的力学性能,且低速冲击对结构局部位置产生侵彻,故开展具有孔隙的FGM板的低速冲击响应研究具有很高的研究意义。论文提出了一种基于赫兹弹性理论和一阶剪切变形板理论的数值分析模型,系统地研究了多孔金属陶瓷FGM矩形板在低速冲击下的动力学响应,论文有以下技术贡献:1.提出了用于预测冲击载荷下多孔FGM矩形板接触力和横向位移的响应解析解,揭示了低速冲击下多孔FGM矩形板的变形机理,拓展了FGM矩形板在工程领域中的潜在应用。2.讨论了低速冲击下孔隙率、功能梯度指数、冲击速度和宽厚比等参数对多孔金属陶瓷FGM矩形板冲击性能的影响,为能够制造各工作条件下适用的FGM板提供了新思路,如 图1 所示。低速冲击下多孔金属陶瓷功能梯度矩形板的理论模型 Abstract: In order to study the dynamic response of porous metal ceramic functionally graded rectangular plate under low velocity impact, a numerical analysis model based on Hertzian elastic theory and first-order shear deformation plate theory was presented, the analytical solution of response of porous cermet functionally graded rectangular plate under low velocity impact was obtained. According to Hamilton's principle, the equation of motion of functionally graded rectangular plate was derived, a spring-mass (S-M) model with two degrees of freedom was introduced to obtain the time-dependent contact forces during impact, using the Duhamel principle and Navier method to calculate the transverse displacement of porous functionally graded rectangular plate. The results obtained were compared with literature data to verify the validity. On this basis, the influence of related parameters on the impact resistance of functionally graded rectangular plate was compared and analyzed. The results show that with the decrease of porosity, functionally graded index and width to thickness ratio, the maximum transverse displacement of the functionally graded rectangular plate decreases, energy absorption and impact resistance are increased. -
图 2 冲击过程接触力与接触位移示意图
Figure 2. Schematic diagram of contact force and contact displacement during impact
$ {m_1} $ and $ {m_2} $ are the mass of the spherical impactor and the porous FGM rectangular plate; ${w_{\text{1}}}$ and ${w_{\text{2}}}$ are the displacement response of $ {m_1} $ and $ {m_2} $; $ \delta $ is the contact displacement; $F$ is the contact force
表 1 多孔FGM矩形板各组分材料特性
Table 1. Material properties of components of porous FGM rectangular plate
Material Al6061 SiC Young's modulus/GPa 67 302 Poisson's ratio 0.33 0.17 Density/(kg·m−3) 2702 3100 表 2 含孔隙FGM板的无量纲频率验证
Table 2. Non-dimensional frequencies verification of porous FGM plate
$ \eta $ Method Porosity Non-dimensional frequency $ p = 0 $ $ p = 0.5 $ $ p = 1 $ 20 Present 0.2 0.03 0.0245 0.021 Razaei[27] 0.03 0.0245 0.021 10 Present 0.2 0.117 0.0959 0.0823 Razaei[27] 0.117 0.0961 0.0824 5 Present 0.2 0.4284 0.3542 0.3052 Razaei[27] 0.4313 0.3562 0.3068 Notes:$ \eta $ is the width to thickness ratio; $ p $ is the functionally graded index. -
[1] TAN C, CHEW Y, BI G, et al. Additive manufacturing of steel-copper functionally graded material with ultrahigh bonding strength[J]. Journal of Materials Science& Technology,2021,72:217-222. [2] KUMAR R, DUTTA S C, PANDA S K. Linear and non-liner dynamic instability of functionally graded plate subjected to non-uniform loading[J]. Composite structures,2016,154:219-230. doi: 10.1016/j.compstruct.2016.07.050 [3] OKTEM A S, MANTARI J L, SOARES C G. Static response of functionally graded plates and doubly-curved shells based on a higher order shear deformation theory[J]. European journal of mechanics A/solids,2012,36(36):163-172. [4] 叶仁传, 张志浩, 敖力君, 等. 冲击载荷作用下船用软芯功能梯度夹层板动态响应分析[J]. 船舶力学, 2022, 26(6):933-947. doi: 10.3969/j.issn.1007-7294.2022.06.013YE Renchuan, ZHANG Zhihao, AO Lijun, et al. Dynamic Response of Shipbuilding Sandwich Plates with Functionally Graded Soft Core Subjected to Impulse Loading[J]. Journal of Ship Mechanics,2022,26(6):933-947(in Chinese). doi: 10.3969/j.issn.1007-7294.2022.06.013 [5] ABRATE S. Modeling of impacts on composite structures[J]. Composite Structures,2001,51(2):129-138. doi: 10.1016/S0263-8223(00)00138-0 [6] KHALILI S M R, MALEKZADEH K, VEYSI GORGABAD A. Low velocity transverse impact response of functionally graded plates with temperature dependent properties[J]. Composite Structures,2013,96:64-74. doi: 10.1016/j.compstruct.2012.07.035 [7] KIRAN M C, KATTIMANI S C, VINYAS M. Porosity influence on structural behaviour of skew functionally graded magneto-electro-elastic plate[J]. Composite Structures,2018,191:36-77. doi: 10.1016/j.compstruct.2018.02.023 [8] DAIKH A A, ZENKOUR A M. Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory[J]. Materials Research Express,2019,6(11):115707. doi: 10.1088/2053-1591/ab48a9 [9] KITIPORNCHAI S, CHEN D, YANG J. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets[J]. Materials and Design,2017,116:656-665. doi: 10.1016/j.matdes.2016.12.061 [10] SHOJAEEFARD M H, GOOGARCHIN H S, GHADIRI M, et al. Micro temperature-dependent FG porous plate: Free vibration and thermal buckling analysis using mod-ified couple stress theory with CPT and FSDT[J]. Appl Math Model,2017,50:633-55. doi: 10.1016/j.apm.2017.06.022 [11] WANG Y Q, WAN Y H, ZHANG Y F. Vibrations of longitudinally traveling functionally graded material plates with porosities[J]. Eur J Mech A/Solids,2017,66:55-68. doi: 10.1016/j.euromechsol.2017.06.006 [12] WANG Y Q, ZU JEAN W. Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment[J]. Aerosp Sci Technol,2017,69:550-562. doi: 10.1016/j.ast.2017.07.023 [13] Ömer Sinan Şahin, Aydın Güneş, Abdullah Aslan. Low-Velocity Impact Behavior of Porous Metal Matrix Composites Produced by Recycling of Bronze and Iron Chip[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering,2019,43:53-60. doi: 10.1007/s40997-017-0139-4 [14] GUNES R, AYDIN M, APALAK M K, et al. Experimental and numerical investigations of low velocity impact on functionally graded circular plates[J]. Composites Part B-Engineering,2014,59:21-32. doi: 10.1016/j.compositesb.2013.11.022 [15] 刘涛, 李朝东, 汪超, 等. 基于三阶剪切变形理论的压电功能梯度板静力学等几何分析[J]. 振动与冲击, 2021, 40(1):73-85. doi: 10.13465/j.cnki.jvs.2021.01.011LIU Tao, LI Chaodong, WANG Chao, et al. Static iso-geometric analysis of piezoelectric functionally graded plate based on third-order shear deformation theory[J]. Journal of Vibration and Shock,2021,40(1):73-85(in Chinese). doi: 10.13465/j.cnki.jvs.2021.01.011 [16] SUN G Y, WANG E D, WANG H X, et al. Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores[J]. Materials& Design,2018,160:1117-1136. [17] 高晟耀, 彭德炜, 唐宇航, 等. 基于一阶剪切变形理论的功能梯度球环振动特性[J]. 复合材料学报, 2020, 37:935-943. doi: 10.13801/j.cnki.fhclxb.20190909.001GAO Shengyao, PENG Dewei, TANG Yuhang, et al. Free vibration characteristics of functionally graded spherical torus based on first-order shear deformation theory[J]. Acta Materiae Compositae Sinica,2020,37:935-943(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190909.001 [18] LARSON R A, PALAZOTTO A N, GARDENIER H E. Impact response of titanium and titanium boride monolithic and functionally graded composite plates[J]. American Institute of Aeronautics and Astronautics,2009,47(3):676-691. doi: 10.2514/1.38577 [19] ICARDI U, FERRERO L. Impact analysis of sandwich composites bases on a refined plate element with strain energy updating[J]. Compos Structures,2009,89(1):35-51. doi: 10.1016/j.compstruct.2008.06.018 [20] MAO Y Q, FU Y M. Nonlinear dynamic response and active vibration control for piezoelectric functionally graded plate[J]. Journal of Sound and Vibration,2010,329(11):2015-2028. doi: 10.1016/j.jsv.2010.01.005 [21] VOLT H. Impact properties of fiber metal laminates[J]. Composites Engineering,1993,3(10):991-927. [22] 钟锐, 胡双卫, 秦斌, 等. 功能梯度开孔平行四边形板的等几何振动分析[J]. 哈尔滨工程大学学报, 2022, 43(7):999-1005. doi: 10.11990/jheu.202103048ZHONG Rui, HU Shuangwei, QIN Bin, et al. Isogeometric vibration analysis of functionally graded perforated parallelogram plates with holes[J]. Journal of Harbin Engineering University,2022,43(7):999-1005(in Chinese). doi: 10.11990/jheu.202103048 [23] ZHOU C L, ZHAN Z X, ZHANG J, et al. Vibration analysis of FG porous rectangular plates reinforced by graphene platelets[J]. Steel and Composite Structures, An International Journal,2020,34(2):215-226. [24] REDDY J N. Mechanics of laminated composite plates and shells: theory and analysis[M]. Boca Raton, FL: CRC Press, 2004. [25] TAN T M, SUN C T. Use of statical indentation laws in the impact analysis of laminated composite plates[J]. Journal of Applied Mechanics,1985,52(1):6-12. doi: 10.1115/1.3169029 [26] YANG F L, WANG Y Q, LIU Y F. Low-velocity impact response of axially moving functionally graded graphene platelet reinforced metal foam plate[J]. Aerospace Science and Technology,2022,123:107496. doi: 10.1016/j.ast.2022.107496 [27] REZAEI A S, SAIDI A R, ABRISHAMDARI M. Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: An analytical approach[J]. Thin-Walled Structures,2017,120:366-377. doi: 10.1016/j.tws.2017.08.003 [28] WU H Y T, CHANG F K. Transient dynamic analysis of laminated composite plates subjected to transverse impact[J]. Computers and Structures,1989,31:453-466. doi: 10.1016/0045-7949(89)90393-3 [29] NAJAFI F, SHOJAEEFARD M H, SAEIDI GOOGARCHIN H. Low-velocity impact response of functionally graded doubly curved panels with Winkler-Pasternak elastic foundation: an analytical approach[J]. Composite Structures,2017,162:351-364. doi: 10.1016/j.compstruct.2016.11.094 -

计量
- 文章访问数: 174
- HTML全文浏览量: 147
- 被引次数: 0