留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电磁场仿真的金属-石墨烯多层复合薄膜结构设计与可控制备

刘伟 贾琨 王东红 沈腊珍 周必成

刘伟, 贾琨, 王东红, 等. 基于电磁场仿真的金属-石墨烯多层复合薄膜结构设计与可控制备[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 刘伟, 贾琨, 王东红, 等. 基于电磁场仿真的金属-石墨烯多层复合薄膜结构设计与可控制备[J]. 复合材料学报, 2024, 42(0): 1-11.
LIU Wei, JIA Kun, WANG Donghong, et al. Structural design and controllable preparation of metal-graphene multilayer composite films based on electromagnetic field simulation[J]. Acta Materiae Compositae Sinica.
Citation: LIU Wei, JIA Kun, WANG Donghong, et al. Structural design and controllable preparation of metal-graphene multilayer composite films based on electromagnetic field simulation[J]. Acta Materiae Compositae Sinica.

基于电磁场仿真的金属-石墨烯多层复合薄膜结构设计与可控制备

基金项目: 国家重点研发计划(2023YFB3811300;2023YFB3811304);中央引导地方科技发展项目(YDZJSX2022B017);山西省基础研究计划(202103021224448;202103021223453;201901D211576)
详细信息
    通讯作者:

    贾 琨,硕士,高级工程师,硕士生导师,研究方向为碳基电磁防护材料 E-mail: jiakun511451432@126.com

    王东红,博士,研究员,硕士生导师,研究方向为多功能集成电磁防护超材料 E-mail: cetc33 wdh@163.com

  • 中图分类号: TB34; TB333

Structural design and controllable preparation of metal-graphene multilayer composite films based on electromagnetic field simulation

Funds: National Key Research & Development Program (2023YFB3811300、2023YFB3811304); Central Guidance on Local Science & Technology Development Fund of Shanxi Province (YDZJSX2022B017); Fundamental Research Program of Shanxi Province (202103021224448; 202103021223453; 201901D211576)
  • 摘要: 石墨烯薄膜因其独特的层状结构、高电导率以及良好的柔韧性,在电磁屏蔽领域被广泛研究。然而,石墨烯薄膜存在趋肤深度大的问题,导致其难以兼顾超薄厚度和高屏蔽效能。针对以上问题,基于传输线理论对石墨烯薄膜进行表面修饰和多层阻抗失配界面设计,建立金属-石墨烯多层异质结构模型并开展电磁仿真模拟研究,探索了金属类型、厚度、周期数等结构参数对电磁屏蔽性能的影响规律;依据仿真模型,采用磁控溅射方式构筑了Ag-石墨烯-Ag三明治结构复合薄膜(A-G-A CF)并研究了其电磁屏蔽性能及屏蔽机制。结果表明:石墨烯薄膜表面镀Ag后,电导率提高了近两个数量级,使趋肤深度大幅度减小,4~18 GHz频率范围的屏蔽效能由24 dB提高至44 dB。同时,三明治结构的构筑也增强了电磁波的损耗,使屏蔽效能进一步提高至51 dB。随着金属镀层厚度增加,A-G-A CF的屏蔽效能逐渐提高,金属镀层厚度约580 nm的A-G-A CF的屏蔽效能高达65 dB,可以屏蔽超99.9999%的电磁波能量。

     

  • 图  1  金属-石墨烯多层异质结构的电磁仿真模型

    Figure  1.  Electromagnetic simulation model of metal-graphene multilayer heterostructure

    图  2  Ag-石墨烯-Ag三明治结构复合薄膜(A-G-A CF)的制备流程示意图

    Figure  2.  Schematic representation of the preparation process of Ag-graphene-Ag sandwich composite films (A-G-A CF)

    图  3  金属-石墨烯多层复合薄膜的屏蔽效能仿真结果:(a) 金属类型,(b) 石墨烯层厚度,(c) 金属层厚度,(d) 周期数对屏蔽效能的影响

    Figure  3.  Simulation results of shielding effectiveness for metal-graphene multilayer composite films: the influence of (a) metal type, (b) thickness of graphene layer, (c) thickness of metal layer, and (d) period number on shielding effectiveness

    图  4  不同周期数的金属-石墨烯多层复合薄膜的电磁波传射特性示意图:(a) 1个周期;(b) 1.5个周期

    Figure  4.  Schematic representation of electromagnetic wave transmission characteristics of metal-graphene multilayer composite films with different periods: (a) 1 period; (b) 1.5 periods

    图  5  (a) A-G-A CF的实物图;(b) A-G-A CF的横截面SEM图;(c) A-G-A CF的横截面EDS mapping图;不同溅射时间制备的A-G-A CF的表面形貌:(d) 10 min;(e) 20 min;(f) 30 min

    Figure  5.  (a) Photograph of A-G-A CF; (b) cross-section SEM image of A-G-A CF; cross-section EDS mapping of A-G-A CF; surface morphologies of A-G-A CF at different sputtering times: (d) 10 min; (e) 20 min; (f) 30 min

    图  6  A-G-A CF的结构信息:(a) XRD图谱;(b) Ag(111)晶面的高分辨率XRD图谱;(c) XPS图谱;(d) Ag 3d峰的高分辨率XPS图谱

    Figure  6.  Structural information of A-G-A CF: (a) XRD pattern; (b) high-resolution XRD patterns of Ag (111) crystal plane; (b) XPS spectra; (d) high-resolution XPS spectrum of Ag 3d peak

    图  7  石墨烯薄膜、A-G CF和A-G-A CF的屏蔽性能: (a) 趋肤深度,(b) 屏蔽效能,(d) SERSEASEtotal值,(e) 透射系数T、反射系数R和吸收系数A;不同溅射时间制备的A-G-A CF的屏蔽性能:(c) 屏蔽效能,(f) SERSEASEtotal

    Figure  7.  (a) Skin depth, (b) shielding effectiveness, (d) SER, SEA, and SEtotal values, and (e) transmittance, reflectance, and absorbance of graphene film, A-G CF, and A-G-A CF; (c) shielding effectiveness, and (f) SER, SEA, and SEtotal values of A-G-A CF with different magnetron sputtering time

    表  1  石墨烯薄膜、不同溅射时间制备的Ag-石墨烯复合薄膜(A-G CF)和A-G-A CF的镀层厚度和导电性能

    Table  1.   Coating thickness, and conductivity of graphene film, Ag-graphene composite films (A-G CF) and A-G-A CF prepared with different sputtering time

    Samples Sputtering time /min Coating thickness /μm Conductivity/(S·m−1)
    1#graphene film 0 1.9×104
    2# A-G CF 20 0.20 7.8×105
    3# A-G CF 30 0.29 9.0×105
    4# A-G CF 40 0.38 1.0×106
    5# A-G CF 50 0.49 1.3×106
    6# A-G CF 60 0.58 1.6×106
    7#A-G-A CF 2×10 0.20 7.1×105
    8# A-G-A CF 2×15 0.28 8.1×105
    9# A-G-A CF 2×20 0.36 9.3×105
    10# A-G-A CF 2×25 0.48 1.1×106
    11# A-G-A CF 2×30 0.58 1.4×106
    下载: 导出CSV

    表  2  A-G-A CF与先前报道的石墨烯基复合薄膜的电磁屏蔽性能对比

    Table  2.   EMI shielding performance of graphene-based composite film reported in previous references and A-G-A CF

    SamplesThickness /μmShielding effectiveness /dBFrequency range /GHzReferences
    Graphene film8.4208~1214
    Fe3O4/graphene film5052.768~1217
    CNF/RGO@Ni film15~2032.28~1222
    Iodine-doped graphene film12.552.28~1830
    Cu/graphene film7.8521~1831
    Graphene/polyimide composite films15131.378~1232
    Graphene/MXene composite films10096.38~1233
    A-G-A CF26654~18This work
    Note: CNF—cellulose nanofibers; RGO—Reduced graphene oxide.
    下载: 导出CSV
  • [1] SINGH A K, SHISHKIN A, KOPPEL T, et al. A review of porous lightweight composite materials for electromagnetic interference shielding[J]. Composites Part B-Engineering, 2018, 149: 188-197. doi: 10.1016/j.compositesb.2018.05.027
    [2] WANG C, MURUGADOSS V, KONG J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding[J]. Carbon, 2018, 140: 696-733. doi: 10.1016/j.carbon.2018.09.006
    [3] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: A review[J]. Advanced Functional Materials, 2020, 30(47): 2000883. doi: 10.1002/adfm.202000883
    [4] KHODIRI A A, AL-ASHRY M Y, EL-SHAMY A G. Novel hybrid nanocomposites based on polyvinyl alcohol/graphene/magnetite nanoparticles for high electromagnetic shielding performance[J]. Journal of Alloys and Compounds, 2020, 847: 156430. doi: 10.1016/j.jallcom.2020.156430
    [5] GANGULY S, GHOSH S, DAS P, et al. Poly(N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution[J]. Polymer Bulletin, 2020, 77(6): 2923-2943. doi: 10.1007/s00289-019-02892-y
    [6] CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon, 2010, 48(3): 788-796. doi: 10.1016/j.carbon.2009.10.028
    [7] 杨继飞, 刘珊, 樊峤, 等. 轻质聚合物基电磁屏蔽材料的研究进展[J]. 复合材料学报, 2023, 40(7): 3785-3794.

    YANG Jifei, LIU Shan, FAN Qiao, et al. Research progress of lightweight polymer electromagnetic shielding materials[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3785-3794(in Chinese).
    [8] SANKARAN S, DESHMUKH K, AHAMED M B, et al. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review[J]. Composites Part A-Applied Science and Manufacturing, 2018, 114: 49-71. doi: 10.1016/j.compositesa.2018.08.006
    [9] WEI Q W, PEI S F, QIAN X T, et al. Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film[J]. Advanced Materials, 2020, 32(14): 1907411. doi: 10.1002/adma.201907411
    [10] WANG Y, WANG W, XU R, et al. Flexible, durable and thermal conducting thiol-modified rGO-WPU/cotton fabric for robust electromagnetic interference shielding[J]. Chemical Engineering Journal, 2019, 360: 817-828. doi: 10.1016/j.cej.2018.12.045
    [11] WAN Y J, ZHU P L, YU S H, et al. Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding[J]. Small, 2018, 14(27): e1800534. doi: 10.1002/smll.201800534
    [12] FAN X, ZHANG G, LI J, et al. Study on foamability and electromagnetic interference shielding effectiveness of supercritical CO2 foaming epoxy/rubber/MWCNTs composite[J]. Composites Part A-Applied Science and Manufacturing, 2019, 121: 64-73. doi: 10.1016/j.compositesa.2019.03.008
    [13] HOU T, WANG B, MA M, et al. Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties[J]. Composites Part B-Engineering, 2020, 180: 107577. doi: 10.1016/j.compositesb.2019.107577
    [14] SHEN B, ZHAI W, ZHENG W. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials, 2014, 24(28): 4542-4548. doi: 10.1002/adfm.201400079
    [15] XI J, LI Y, ZHOU E, et al. Graphene aerogel films with expansion enhancement effect of high-performance electromagnetic interference shielding[J]. Carbon, 2018, 135: 44-51. doi: 10.1016/j.carbon.2018.04.041
    [16] BHATTACHARJEE Y, ARIEF I, BOSE S. Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives[J]. Journal of Materials Chemistry C, 2017, 5(30): 7390-7403. doi: 10.1039/C7TC02172K
    [17] LIU W, JIA K, WANG D, et al. Growth of magnetic graphene films with higher electromagnetic interference shielding at moderate annealing temperatures[J]. Journal of Materials Science: Materials in Electronics, 2022, 33: 23781-23791. doi: 10.1007/s10854-022-09136-2
    [18] SONG P, QIU H, WANG L, et al. Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance[J]. Sustainable Materials and Technologies, 2020, 24: e00153. doi: 10.1016/j.susmat.2020.e00153
    [19] ZENG S, LI X, LI M, et al. Flexible PVDF/CNTs/Ni@CNTs composite films possessing excellent electromagnetic interference shielding and mechanical properties under heat treatment[J]. Carbon, 2019, 155: 34-43. doi: 10.1016/j.carbon.2019.08.024
    [20] LIU W, YAO T, JIA K, et al. Flexible and thermal conducting multi-walled carbon nanotubes/waterborne polyurethane composite film from in situ polymerization for efficient electromagnetic interference shielding[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(4): 4393-4403. doi: 10.1007/s10854-020-05182-w
    [21] SHU R W, ZHANG J B, GUO C L, et al. Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band[J]. Chemical Engineering Journal, 2020, 384: 123266. doi: 10.1016/j.cej.2019.123266
    [22] HAN G J, MA Z G, ZHOU B, et al. Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding[J]. Journal of Colloid and Interface Science, 2021, 583: 571-578. doi: 10.1016/j.jcis.2020.09.072
    [23] YU J, WANG L, LIU Z, et al. Electrodeposition-based fabrication of graphene/copper composites with excellent overall properties[J]. Journal of Alloys and Compounds, 2022, 924: 166610. doi: 10.1016/j.jallcom.2022.166610
    [24] WANG Z, MAO B, WANG Q, et al. Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness[J]. Small, 2018, 14(20): e1704332. doi: 10.1002/smll.201704332
    [25] CHOI H Y, LEE T-W, LEE S-E, et al. Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements[J]. Composites Science and Technology, 2017, 150: 45-53. doi: 10.1016/j.compscitech.2017.07.008
    [26] 王文波, 宋彦平, 李年, 等. 激光诱导石墨烯的纳米银颗粒原位修饰及其导电性能调控[J]. 复合材料学报, 2024, 41(8): 4112-4121.

    WANG Wenbo, SONG Yanping, LI Nian, et al. In-situ modification of laser-induced graphene with silver nanoparticles and its electronic conductivity modulation[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4112-4121(in Chinese).
    [27] ZHIDKOV I S, KURMAEV E Z, CONDORELLI M, et al. X-ray photoelectron spectra of Ag-Au colloidal nanoparticles after interaction with linear carbon chains[J]. Applied Sciences, 2021, 11(2): 685. doi: 10.3390/app11020685
    [28] TJENG L H, MEINDERS M B J, VANELP J, et al. Electronic-structure of Ag2O[J]. Physical Review B, 1990, 41(5): 3190-3199. doi: 10.1103/PhysRevB.41.3190
    [29] 刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽及吸波材料 [M]. 北京: 化学工业出版社, 2013: 59-61.

    LIU Shunhua, LIU Junmin, DONG Xinglong, et al. Electromagnetic wave shielding and absorbing materials [M]. Beijing: Chemical industry press, 2013: 59-61. (in Chinese).
    [30] WAN Y J, ZHU P L, YU S H, et al. Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy[J]. Carbon, 2017, 122: 74-81. doi: 10.1016/j.carbon.2017.06.042
    [31] WANG Z, MAO B, WANG Q, et al. Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness[J]. Small, 2018, 14(20): e1704332. doi: 10.1002/smll.201704332
    [32] LI Z, LIN Z, HAN M, et al. Vertical graphene nanosheet/polyimide composite films for electromagnetic interference shielding[J]. ACS Applied Nano Materials, 2021, 4(7): 7461-7470. doi: 10.1021/acsanm.1c01471
    [33] LI H, NG Z K, TAY R Y, et al. Flexible graphene/MXene composite thin films for high-performance electromagnetic interference shielding and Joule heating[J]. ACS Applied Nano Materials, 2023, 6(18): 16730-16739. doi: 10.1021/acsanm.3c02925
  • 加载中
计量
  • 文章访问数:  64
  • HTML全文浏览量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-17
  • 修回日期:  2024-06-23
  • 录用日期:  2024-07-02
  • 网络出版日期:  2024-07-12

目录

    /

    返回文章
    返回