留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti3C2/SrTiO3复合材料的制备及其光电化学阴极保护性能

苏新悦 孔存辉 庆达 赵英娜 王建省

苏新悦, 孔存辉, 庆达, 等. Ti3C2/SrTiO3复合材料的制备及其光电化学阴极保护性能[J]. 复合材料学报, 2023, 40(7): 3964-3972. doi: 10.13801/j.cnki.fhclxb.20220909.004
引用本文: 苏新悦, 孔存辉, 庆达, 等. Ti3C2/SrTiO3复合材料的制备及其光电化学阴极保护性能[J]. 复合材料学报, 2023, 40(7): 3964-3972. doi: 10.13801/j.cnki.fhclxb.20220909.004
SU Xinyue, KONG Cunhui, QING Da, et al. Preparation of Ti3C2/SrTiO3 composites and their photoelectrochemical cathodic protection[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3964-3972. doi: 10.13801/j.cnki.fhclxb.20220909.004
Citation: SU Xinyue, KONG Cunhui, QING Da, et al. Preparation of Ti3C2/SrTiO3 composites and their photoelectrochemical cathodic protection[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3964-3972. doi: 10.13801/j.cnki.fhclxb.20220909.004

Ti3C2/SrTiO3复合材料的制备及其光电化学阴极保护性能

doi: 10.13801/j.cnki.fhclxb.20220909.004
基金项目: 河北省自然科学基金钢铁联合基金(E2021209002);唐山市科技局项目(21130211D)
详细信息
    通讯作者:

    赵英娜,博士,教授,硕士生导师,研究方向为纳米功能材料、无机金属材料、光催化材料等 E-mail: zhyn@ncst.edu.cn

  • 中图分类号: TB34;TB331

Preparation of Ti3C2/SrTiO3 composites and their photoelectrochemical cathodic protection

Funds: Natural Science Foundation-Steel and Iron Foundation of Hebei Province (E2021209002); Tangshan Science and Technology Bureau Project (21130211D)
  • 摘要: 由于钛酸锶(SrTiO3)存在禁带宽度大、光生载流子分离率低等缺点,限制了其光电化学阴极保护性能,为解决此问题,可对其进行负载助催化剂Ti3C2进行改性。首先采用水热法制备了SrTiO3和蚀刻法制备了Ti3C2,然后通过机械法混合制备了Ti3C2/SrTiO3复合材料。通过XRD、XPS、SEM、UV-vis DRS、PL对样品物相结构、化学状态、微观形貌、光吸收性能等特征进行了表征。最后分析了Ti3C2/SrTiO3复合材料对304不锈钢(304SS)的光电化学阴极保护性能。结果表明,Ti3C2/SrTiO3复合材料拓宽了可见光利用范围;其中,加入Ti3C2含量为15wt%的15%-Ti3C2/SrTiO3复合材料的光生载流子分离率更高,光电流密度达到2.5 μA·cm−2;在3.5wt% NaCl溶液中,304SS与该复合材料偶联后,光照条件下,其电势电位下降了200 mV,可以有效保护304SS,经过4次开闭光循环测试,Ti3C2/SrTiO3复合材料性能稳定。

     

  • 图  1  Ti3C2/SrTiO3复合材料制备流程图

    Figure  1.  Flowchart of preparation of Ti3C2/SrTiO3 composite

    图  2  光电化学阴极保护测试装置图

    Figure  2.  Test device diagram for photoelectrochemical cathodic protection

    GW—Ground wire; CE—Counter electrode; RE—Reference electrode; WE—Working electrode; SCE—Saturated calomel electrode; 304SS—304 stainless steel; hv—Light intensity

    图  3  Ti3AlC2和Ti3C2 (a),SrTiO3、Ti3C2和Ti3C2/SrTiO3复合材料 (b) 的 XRD 图谱

    Figure  3.  XRD patterns of Ti3AlC2 and Ti3C2 (a), SrTiO3, Ti3C2 and Ti3C2/SrTiO3 composites (b)

    图  4  (a) SrTiO3、Ti3C2 和15%-Ti3C2/SrTiO3的XPS全谱图;SrTiO3和15%-Ti3C2/SrTiO3的Ti2p峰(b)、Sr3d峰(c)和O1s峰(d)的高分辨率XPS图谱;(e) Ti3C2 和15%-Ti3C2/SrTiO3的C1s峰的高分辨率XPS图谱

    Figure  4.  (a) XPS survey spectra of SrTiO3、Ti3C2 和15%-Ti3C2/SrTiO3; High-resolution XPS spectra of Ti2p (b)、Sr3d (c) and O1s (d) of SrTiO3 and 15%-Ti3C2/SrTiO3; (e) High-resolution XPS spectra of C1s of Ti3C2 and 15%-Ti3C2/SrTiO3

    VO—Oxygen vacancy; LO—Lattice oxygen

    图  5  SrTiO3 ((a),(b))、Ti3AlC2 ((c), (d))、Ti3C2 ((e), (f)) 和15%-Ti3C2/SrTiO3复合材料 ((g), (h)) 的SEM图像

    Figure  5.  SEM images of SrTiO3 ((a), (b)), Ti3AlC2 ((c), (d)), Ti3C2 ((e), (f)) and 15%-Ti3C2/SrTiO3 composite ((g), (h))

    图  6  SrTiO3、Ti3C2和Ti3C2/SrTiO3复合材料UV-vis DRS图谱 (a) 及Tauc图谱 (b)

    Figure  6.  UV-vis DRS diagram (a) and Tauc diagram (b) of SrTiO3, Ti3C2 and Ti3C2/SrTiO3 composites

    Ehv—Photon energy value; Eg—Band gap energy value; α—Absorbance

    图  7  SrTiO3、Ti3C2和 Ti3C2/SrTiO3复合材料的光致发光图谱

    Figure  7.  Photoluminescent spectra of SrTiO3, Ti3C2 and Ti3C2/SrTiO3 composites

    图  8  SrTiO3和Ti3C2/SrTiO3复合材料的电化学阻抗图谱

    Figure  8.  Electrochemical impedance spectra of SrTiO3 and Ti3C2/SrTiO3 composites

    Z'—Real part of impedance; Z"—Imaginary part of impedance; Rs—electrolyte solution resistance; Ret—semiconductor depletion layer resistance; Zw—Charge transfer resistance; Cdl—Electrochemical capacitance

    图  9  SrTiO3和 Ti3C2/SrTiO3复合材料的光电流密度-时间曲线

    Figure  9.  Photocurrent density-time curves of SrTiO3 and Ti3C2/SrTiO3 composites

    图  10  SrTiO3和 Ti3C2/SrTiO3复合材料的开路电位-时间曲线

    Figure  10.  Open-circuit potential-time curves of SrTiO3 and Ti3C2/SrTiO3 composites

    E304SS—Self-corrosion potential of 304SS

    图  11  Ti3C2/SrTiO3复合材料的光电化学阴极保护机制图

    Figure  11.  Photochemical cathodic protection mechanism diagram of Ti3C2/SrTiO3 composites

    EF—Energy of the fermi level; ECB—Energy of the conduction band (CB); EVB—Energy of the valence band (VB); NHE—Normal hydrogen electrode

    表  1  Ti3C2/SrTiO3复合材料配比表

    Table  1.   Ti3C2/SrTiO3 composites material ratio table

    SamplesSrTiO3/gTi3C2/g
    SrTiO310
    5%-Ti3C2/SrTiO310.053
    10%-Ti3C2/SrTiO310.111
    15%-Ti3C2/SrTiO310.176
    20%-Ti3C2/SrTiO310.25
    Ti3C200.2
    下载: 导出CSV
  • [1] 赵明月, 裴晓园, 王维, 等. 二维纳米材料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(5):2049-2059. doi: 10.13801/j.cnki.fhclxb.20211009.001

    ZHAO Mingyue, PEI Xiaoyuan, WANG Wei, et al. Application of two-dimensional nanomaterial/epoxy composite coating in corrosion protection[J]. Acta Materiae Compositae Sinica,2022,39(5):2049-2059(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211009.001
    [2] BU Y Y, AO J P. A review on photoelectrochemical cathodic protection semiconductor thin films for metals[J]. Green Energy and Environment,2017,2(4):331-362. doi: 10.1016/j.gee.2017.02.003
    [3] 韩恩厚, 陈建敏, 宿彦京, 等. 海洋工程结构与船舶的腐蚀防护现状与趋势[J]. 中国材料进展, 2014, 33(2):65-76, 113.

    HAN Enhou, CHEN Jianmin, SU Yanjing, et al. Corrosion protection techniques of marine engineering structure and ship equipment—Current status and future trend[J]. Materials China,2014,33(2):65-76, 113(in Chinese).
    [4] 何萌. RGO/WO3/SrTiO3复合涂层对304不锈钢的光阴极保护性能研究[D]. 北京: 北京理工大学, 2017.

    HE Meng. RGO/WO3/SrTiO3 nanocomposite for enhanced photocathodic protection of stainless steel[D]. Beijing: Beijing Institute of Technology, 2017(in Chinese).
    [5] SAJI V S. Review—Photoelectrochemical cathodic protection in the dark: A review of nanocomposite and energy-storing photoanodes[J]. Journal of the Electrochemical Society, 2020, 167(12): 121505.
    [6] 许进博, 董晓珠, 赵英娜, 等. 钛酸锶光电化学阴极保护材料研究进展[J]. 中国陶瓷, 2021, 57(2):1-6. doi: 10.16521/j.cnki.issn.1001-9642.2021.02.001

    XU Jinbo, DONG Xiaozhu, ZHAO Yingna, et al. Research progress of SrTiO3 for photoelectrochemical cathodic protection materials[J]. China Ceramics,2021,57(2):1-6(in Chinese). doi: 10.16521/j.cnki.issn.1001-9642.2021.02.001
    [7] 邓洪达. 碳钢表面纳米结构氧化铁薄膜光阴极保护性研究[C]//第十一届全国腐蚀与防护大会论文摘要集. 沈阳: 中国腐蚀与防护学会, 2021: 521-522.

    DENG Hongda. Photocathodic protection of nanostructured iron oxide film on the surface of carbon steel[C]//Abstracts of the 11th National Conference on Corrosion and Protection. Shenyang: Chinese Society for Corrosion and Protection, 2021: 521-522(in Chinese).
    [8] CHEN Y, LI X, CAI G N, et al. In situ formation of (001) TiO2/Ti3C2 heterojunctions for enhanced photoelectrochemical detection of dopamine[J]. Electrochemistry Communications,2021,125:106987. doi: 10.1016/j.elecom.2021.106987
    [9] 罗强. 二维层状Ti3C2材料在光催化领域的应用研究现状[J]. 科技视界, 2020, 318(24):144-145. doi: 10.19694/j.cnki.issn2095-2457.2020.24.55

    LUO Qiang. Application research status of two-dimensional layered Ti3C2 materials in the field of photocatalysis[J]. Science & Technology Vision,2020,318(24):144-145(in Chinese). doi: 10.19694/j.cnki.issn2095-2457.2020.24.55
    [10] QUYEN V T, HA L T T, THANH D M, et al. Advanced synthesis of MXene-derived nanoflower-shaped TiO2@Ti3C2 heterojunction to enhance photocatalytic degradation of rhodamine B[J]. Environmental Technology & Innovation,2020,21:101286.
    [11] ZHU J F, TANG Y, YANG C H, et al. Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance[J]. Journal of the Electrochemical Society,2016,163(5):A785-A791. doi: 10.1149/2.0981605jes
    [12] KONG C H, SU X Y, QING D, et al. Controlled synthesis of various SrTiO3 morphologies and their effects on photoelectrochemical cathodic protection performance[J]. Ceramics International,2022,48(14):20228-20236. doi: 10.1016/j.ceramint.2022.03.302
    [13] LI Y J, YIN Z H, JI G R, et al. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity[J]. Applied Catalysis B: Environmental,2019,246:12-20. doi: 10.1016/j.apcatb.2019.01.051
    [14] LIU Z Y, ZHOU Y H, YANG L J, et al. Green preparation of in-situ oxidized TiO2/Ti3C2 heterostructure for photocatalytic hydrogen production[J]. Advanced Powder Technology,2021,32(12):4857-4861. doi: 10.1016/j.apt.2021.10.021
    [15] HUANG K L, LI C H, MENG X C. In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science,2020,580:669-680. doi: 10.1016/j.jcis.2020.07.044
    [16] LI H P, SUN B, GAO T T, et al. Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity of methyl orange degradation and hydrogen production[J]. Chinese Journal of Catalysis,2022,43:461-471. doi: 10.1016/S1872-2067(21)63915-3
    [17] BAO X L, LI H L, WANG Z Y, et al. TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde[J]. Applied Catalysis B: Environmental,2021,286:119885. doi: 10.1016/j.apcatb.2021.119885
    [18] MA X M, MA Z, ZHANG H G, et al. Interfacial schottky junction of Ti3C2Tx MXene/g-C3N4 for promoting spatial charge separation in photoelectrochemical cathodic protection of steel[J]. Journal of Photochemistry and Photobiology A: Chemistry,2022,426:113772. doi: 10.1016/j.jphotochem.2022.113772
    [19] ZHANG Y J, XU Z F, LI G Y, et al. Direct observation of oxygen vacancy self-healing on TiO2 photocatalysts for solar water splitting[J]. Angewandte Chemie International Edition,2019,58(40):14229-14233. doi: 10.1002/anie.201907954
    [20] CHAO P, YANG X F, et al. Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces,2016,8(9):6051-6060. doi: 10.1021/acsami.5b11973
    [21] LI P Y, SHEN J, YU X H, et al. Construction of Ti3C2 MXene/O-doped g-C3N4 2D-2D Schottky-junction for enhanced photocatalytic hydrogen evolution[J]. Ceramics International,2019,45(18):24656-24663. doi: 10.1016/j.ceramint.2019.08.203
    [22] OU Q D, BAO X Z, ZHANG Y N, et al. Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications[J]. Nano Materials Science,2019,1(4):268-287.
    [23] 艾子政. 基于能带工程的CdS复合光催化材料的设计、制备及性能研究[D]. 济南: 山东大学, 2020.

    AI Zizheng. Design, preparation and properties of Cds composite photocatalytic materials based on energy band engineering[D]. Jinan: Shandong University, 2020(in Chinese).
    [24] 董晓珠, 曾雄丰, 王建省, 等. β-FeOOH/TiO2复合薄膜的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3):1173-1179. doi: 10.13801/j.cnki.fhclxb.20210414.002

    DONG Xiaozhu, ZENG Xiongfeng, WANG Jiansheng, et al. Preparation of β-FeOOH/TiO2 composite film and its photocatalytic performance[J]. Acta Materiae Compositae Sinica,2022,39(3):1173-1179(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210414.002
    [25] 崔言娟, 徐红赟, 祝玉鑫, 等. SnO2/C3N4二维复合光催化剂制备及其光催化还原性能[J]. 复合材料学报, 2022, 39(8):3852-3862.

    CUI Yanjuan, XU Hongyun, ZHU Yuxin, et al. Preparation and photocatalytic reduction performance of 2D SnO2/C3N4 composite photocatalyst[J]. Acta Materiae Compositae Sinica,2022,39(8):3852-3862(in Chinese).
    [26] 郭佳允, 傅炀杰, 张柯杰, 等. g-C3N4/POPs 异质结制备及其可见光催化性能[J]. 复合材料学报, 2023, 40(2):904-910.

    GUO Jiayun, FU Yangjie, ZHANG Kejie, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction[J]. Acta Materiae Compositae Sinica,2023,40(2):904-910(in Chinese).
    [27] 许进博, 董晓珠, 孔存辉, 等. SrTiO3/TiO2复合薄膜的制备及其光电化学阴极保护性能[J]. 复合材料学报, 2022, 39(8): 3929-3935.

    XU Jinbo, DONG Xiaozhu, KONG Cunhui, et al. Preparation of SrTiO3/TiO2 composite film for photoelectrochemical cathodic protection[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3929-3935(in Chinese).
    [28] ZAGONEL L F, BAURER M, BAILLY A. et al. Orientation-dependent work function of in situ annealed strontium titanate[J]. Journal of Physics: Condensed Matter,2009,21(31):314013. doi: 10.1088/0953-8984/21/31/314013
    [29] SUSAKI T, SHIGAKI N, MATSUZAKI K, et al. Work function modulation in MgO/Nb:SrTiO3 by utilizing highly nonequilibrium thin-film growth[J]. Physical Review B,2014,90(3):035453. doi: 10.1103/PhysRevB.90.035453
    [30] WANG L, LI Y K, WU C, et al. Tracking charge transfer pathways in SrTiO3/CoP/Mo2C nanofibers for enhanced photocatalytic solar fuel production[J]. Chinese Journal of Catalysis,2022,43(2):507-518. doi: 10.1016/S1872-2067(21)63898-6
    [31] TRANG T N Q, DOANH T T, TRINH N T P, et al. Self-assembly of Ag photosensitized SrTiO3 3D binary architectures for highly efficient visible light-driven dyeing wastewater splitting[J]. Journal of Alloys and Compounds,2022,916:165323. doi: 10.1016/j.jallcom.2022.165323
    [32] KONG C H, QING D, SU X Y, et al. Improved photoelectrochemical cathodic protection properties of a flower-like SrTiO3 photoanode decorated with g-C3N4[J]. Journal of Alloys and Compounds,2022,924:166629. doi: 10.1016/j.jallcom.2022.166629
    [33] LIN S F, ZHANG N, WANG F C, et al. Carbon vacancy mediated incorporation of Ti3C2 quantum dots in a 3D inverse opal g-C3N4 Schottky junction catalyst for photocatalytic H2O2 production[J]. ACS Sustainable Chemistry & Engineering,2020,9(1):481-488.
    [34] YANG W X, MA G Z, FU Y, et al. Rationally designed Ti3C2 MXene@TiO2/CuInS2 Schottky/S-scheme integrated heterojunction for enhanced photocatalytic hydrogen evolution[J]. Chemical Engineering Journal,2022,429:132381. doi: 10.1016/j.cej.2021.132381
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  712
  • HTML全文浏览量:  441
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 修回日期:  2022-09-02
  • 录用日期:  2022-09-02
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回