留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳化硅纤维增强碳化硅基复合材料的疲劳行为模拟分析

孙朝旭 任泽涛 宋广平 高进 秦可斌 范皓隆 郑永挺 赫晓东 柏跃磊

孙朝旭, 任泽涛, 宋广平, 等. 碳化硅纤维增强碳化硅基复合材料的疲劳行为模拟分析[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 孙朝旭, 任泽涛, 宋广平, 等. 碳化硅纤维增强碳化硅基复合材料的疲劳行为模拟分析[J]. 复合材料学报, 2024, 42(0): 1-12.
SUN Zhaoxu, REN Zetao, SONG Guangping, et al. Simulation Analysis of Fatigue Behavior of SiC Fiber Reinforced SiC Matrix Composites[J]. Acta Materiae Compositae Sinica.
Citation: SUN Zhaoxu, REN Zetao, SONG Guangping, et al. Simulation Analysis of Fatigue Behavior of SiC Fiber Reinforced SiC Matrix Composites[J]. Acta Materiae Compositae Sinica.

碳化硅纤维增强碳化硅基复合材料的疲劳行为模拟分析

基金项目: 国家自然科学基金 (51972080)
详细信息
    通讯作者:

    柏跃磊,博士,教授,博士生导师,研究方向为陶瓷及陶瓷基复合材料及其在极端环境下的行为 E-mail: baiyl@hit.edu.cn

  • 中图分类号: TB332

Simulation Analysis of Fatigue Behavior of SiC Fiber Reinforced SiC Matrix Composites

Funds: National Natural Science Foundation of China (No. 51972080)
  • 摘要: 连续碳化硅纤维增强碳化硅基复合材料(SiCf/SiC)因其轻质、耐高温和高损伤容限的优点而成为下一代航空发动机的重要热结构材料。然而,疲劳实验周期长、成本高,严重制约了对复杂细观结构SiCf/SiC的深入理解及其工程应用。为充分发挥SiCf/SiC的优势与可调性,实现对结构载荷响应预测并进行优化设计,本文采用疲劳迟滞模型和渐进损伤理论分别对单向、正交和二维编织SiCf/SiC的疲劳寿命曲线进行了分析。通过对界面剪应力(±20%)、纤维强度(±5%)、纤维威布尔模量(±1%)和纤维体积分数(±5%)进行偏值处理实现了对SiCf/SiC疲劳寿命的敏感性评价,得到的疲劳寿命曲线上下限能够包络主要实验结果。根据上述分析结果,验证了以损伤参数控制危险估计和保守估计的疲劳寿命曲线拟合方法,并以SiCf/SiC涡轮叶片模拟结构为例现实了该方法用于实际工程评价分析的可行性。

     

  • 图  1  连续碳化硅纤维增强碳化硅基复合材料(SiCf/SiC)疲劳失效机制示意图

    Figure  1.  Continuous carbon fiber reinforced silicon carbide matrix composite (SiCf/SiC) fatigue failure mechanism diagram

    图  2  室温下单向SiCf/SiC的拉—拉疲劳寿命曲线拟合分析结果:(a)界面剪应力随循环次数衰退曲线;(b)纤维强度随循环次数衰退曲线;(c)不同疲劳峰值下纤维失效体积百分数随循环次数变化曲线;(d)疲劳寿命拟合曲线及试验数据对比

    Figure  2.  The analysis result of the fitting curve of tensile fatigue life for unidirectional SiCf/SiC at room temperature: (a) Interfacial shear stress decay curve with cycle number; (b) Fiber strength decline curve with cycle number; (c) Fiber failure volume ratio change curve with cycle number under different fatigue peaks; (d) Comparison of the fatigue life fitting curve and the test data

    图  3  室温下正交SiCf/SiC的拉—拉疲劳寿命曲线拟合分析结果:(a)界面剪应力随循环次数衰退曲线;(b)纤维强度随循环次数衰退曲线;(c)不同疲劳峰值下纤维失效体积百分数随循环次数变化曲线;(d)疲劳寿命拟合曲线及试验数据对比

    Figure  3.  The analysis result of the fitting curve of tensile fatigue life for orthogonality SiCf/SiC at room temperature: (a) Interfacial shear stress decay curve with cycle number; (b) Fiber strength decline curve with cycle number; (c) Fiber failure volume ratio change curve with cycle number under different fatigue peaks; (d) Comparison of the fatigue life fitting curve and the test data

    图  4  室温下二维编织SiCf/SiC的拉—拉疲劳寿命曲线拟合结果分析结果:(a)界面剪应力随循环次数衰退曲线;(b)纤维强度随循环次数衰退曲线;(c)不同疲劳峰值下纤维失效体积百分数随循环次数变化曲线;(d)疲劳寿命拟合曲线及试验数据对比

    Figure  4.  The analysis result of the fitting curve of tensile fatigue life for two-dimensional braiding SiCf/SiC at room temperature: (a) Interfacial shear stress decay curve with cycle number; (b) Fiber strength decline curve with cycle number; (c) Fiber failure volume ratio change curve with cycle number under different fatigue peaks; (d) Comparison of the fatigue life fitting curve and the test data

    图  5  界面剪应力对下(a)单向、(b)正交和(c)二维编织SiCf/SiC拉—拉疲劳寿命曲线的影响

    Figure  5.  The influence of interfacial shear stress on tensile fatigue life curves of (a) unidirectional, (b) orthogonal and (c) two-dimensional braided SiCf/SiC

    图  6  纤维强度对(a)单向、(b)正交和(c)二维编织SiCf/SiC拉—拉疲劳寿命曲线的影响

    Figure  6.  The influence of fiber strength on tensile fatigue life curves of (a) unidirectional, (b) orthogonal, and (c) two-dimensional braided SiCf/SiC

    图  7  纤维威布尔模量对(a)单向、(b)正交和(c)二维编织SiCf/SiC拉—拉疲劳寿命曲线的影响

    Figure  7.  The influence of fiber Weibull modulus on tensile fatigue life curves of (a) unidirectional, (b) orthogonal and (c) two-dimensional braided SiCf/SiC

    图  8  纤维体积分数对(a)单向、(b)正交和(c)二维编织SiCf/SiC拉—拉疲劳寿命曲线的影响

    Figure  8.  The influence of fiber volume fraction on tensile fatigue life curves of (a) unidirectional, (b) orthogonal and (c) two-dimensional braided SiCf/SiC

    图  9  航空发动机涡轮叶片(a)模型及其(b-d)离心载荷计算结果(MPa)

    Figure  9.  Aero engine turbine blade (a) model and (b-d) Centrifugal Load calculation results (MPa)

    图  10  (a)涡轮叶片疲劳交变等效应力(MPa)和(b)疲劳寿命估计,及其(c)破坏区域局部放大

    Figure  10.  (a) turbine blade fatigue alternating equivalent stress (MPa) and (b) fatigue life estimation, and (c) local magnification of failure area

    表  1  SiCf/SiC不同预制体结构的材料基本参数和拟合参数

    Table  1.   Material parameters and fitting parameters of different SiCf/SiC prefabricated structures

    Unidirectional
    SiCf/SiC[17]
    Orthogonality
    SiCf/SiC[28]
    Two-dimensional braiding
    SiCf/SiC[12]
    Fiber volume fraction(Vf)/%5017.520
    Fiber radius(rf)/µm778
    Fiber Weibull modulus(mf)42.52.5
    Fatigue loading frequency(f)/Hz101010
    Stress ratio(R)0.050.10.1
    下载: 导出CSV
  • [1] 罗潇, 徐友良, 郭小军, 等. 涡轮发动机用陶瓷基复合材料涡轮转子研究进展[J]. 推进技术, 2021, 42(1): 230-240.

    LUO X, XU Y L, GUO X J, et al. Research progress of ceramic matrix composite turbine rotors for turbine engines[J]. Journal of Propulsion Technology, 2021, 42(1): 230-240(in Chinese).
    [2] SHI Y. Development status and prospect of aviation materials in China[J]. IOP Conference Series: Earth and Environmental Science, 2021, 632(5): 052038. doi: 10.1088/1755-1315/632/5/052038
    [3] SOMMERS A, WANG Q, HAN X, et al. Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems—A review[J]. Applied Thermal Engineering, 2010, 30(11): 1277-1291.
    [4] AN Q L, CHEN J, MING W, et al. Machining of SiC ceramic matrix composites: A review[J]. Chinese Journal of Aeronautics: English, 2021, 34(4): 28.
    [5] PATEL A, SATO E, TAKAGI T, et al. Effect of oxidation on the bending fatigue behavior of an advanced SiC/SiC CMC component at 1000℃ in air[J]. Journal of the European Ceramic Society, 2022, 42(10): 4121-4132. doi: 10.1016/j.jeurceramsoc.2022.03.061
    [6] YU J, FEI Q, ZHANG P, et al. Fatigue life of a 2.5D C/SiC composite under tension–tension cyclic loading: experimental investigation and sensitivity analysis[J]. Acta Mechanica Solida Sinica, 2021, 34(5): 645-657. doi: 10.1007/s10338-021-00228-w
    [7] ZHANG G P, SCHWAIGER R, VOLKERT C A, et al. Effect of film thickness and grain size on fatigue-induced dislocation structures in Cu thin films[J]. Philosophical Magazine Letters, 2003, 83(8): 477-483. doi: 10.1080/0950083031000151383
    [8] MOMON S, GODIN N, REYNAUD P, et al. Unsupervised and supervised classification of AE data collected during fatigue test on CMC at high temperature[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(2): 254-260. doi: 10.1016/j.compositesa.2011.10.016
    [9] GAO J, BAI Y, FAN H, et al. Phase-field simulation of microscale crack propagation/deflection in SiCf/SiC composites with weak interphase[J]. Journal of the American Ceramic Society, 2023, 106(8): 4877-4890. doi: 10.1111/jace.19117
    [10] SHOJAEI A, LI G, FISH J, et al. Multi-scale constitutive modeling of ceramic matrix composites by continuum damage mechanics[J]. International Journal of Solids and Structures, 2014, 51(23): 4068-4081.
    [11] JOHNSON W S, MASTERS J E, O'BRIEN T K, et al. Modeling damage in a plain weave fabric-reinforced composite material[J]. Journal of Composites Technology and Research, 1993, 15(2): 136-142. doi: 10.1520/CTR10364J
    [12] 梁小强. 编织陶瓷基复合材料结构高温疲劳损伤分析与失效模拟 [D]. 南京航空航天大学, 2021.

    LIANG X Q. Fatigue damage analysis and failure simulation of 2D CMCs structure under elevated temperature [D]. Nanjing University of Aeronautics and Astronautics, 2021.
    [13] MURTHY P L, NEMETH N N, BREWER D N, et al. Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane[J]. Composites Part B: Engineering, 2008, 39(4): 694-703. doi: 10.1016/j.compositesb.2007.05.006
    [14] ROUBY D, REYNAUD P. Fatigue behaviour related to interface modification during load cycling in ceramic-matrix fibre composites[J]. Composites Science and Technology, 1993, 48(1): 109-118.
    [15] ZOU X, XU Z, GAO J, et al. An explicit multi-phase field damage model for long fiber-reinforced composites[J]. Composite Structures, 2023, 309 116737.
    [16] YANG Z, PEI C, YAN H, et al. Fatigue damage modeling of ceramic-matrix composites: A short review[J]. Material Design & Processing Communications, 2020, 2(2): e129.
    [17] EVANS A G, ZOK F W, MCMEEKING R M. Fatigue of ceramic matrix composites[J]. Acta Metallurgica et Materialia, 1995, 43(3): 859-875. doi: 10.1016/0956-7151(94)00304-Z
    [18] MIN J B, XUE D, SHI Y. Micromechanics modeling for fatigue damage analysis designed for fabric reinforced ceramic matrix composites[J]. Composite Structures, 2014, 111 213-223.
    [19] 李龙彪. 基于迟滞耗散能的纤维增强陶瓷基复合材料疲劳寿命预测方法[J]. 复合材料学报, 2016, 33(4): 841.

    LI L B. Fatigue life prediction approach of fiber-reinforced ceramic-matrix composites based on hysteresis dissipated energy[J]. Acta Materiae Compositae Sinica, 2016, 33(4): 841(in Chinese).
    [20] ZHU S, MIZUNO M, KAGAWA Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: a review[J]. Composites Science and Technology, 1999, 59(6): 833-851. doi: 10.1016/S0266-3538(99)00014-7
    [21] LI L B. Effect of cyclic fatigue loading on matrix multiple fracture of fiber-reinforced ceramic-matrix composites[J]. Ceramics, 2019, 2(2): 327-346. doi: 10.3390/ceramics2020027
    [22] JING X, CHENG Z, NIU H, et al. Deformation and rupture behaviors of SiC/SiC under creep, fatigue and dwell-fatigue load at 1300 °C[J]. Ceramics International, 2019, 45(17, Part A): 21440-21447.
    [23] YANG Z, LI W, CHEN Y, et al. Life assessment of thermomechanical fatigue in a woven SiC/SiC ceramic matrix composite with an environmental barrier coating at elevated temperature[J]. International Journal of Fatigue, 2023, 172: 107584. doi: 10.1016/j.ijfatigue.2023.107584
    [24] 李龙彪. 长纤维增强陶瓷基复合材料疲劳损伤模型与寿命预测 [D]. 南京航空航天大学, 2012.

    LI L B. Fatigue damage models and life prediction of long-fiber-reinforced ceramic matrix composites [D]. Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
    [25] PHOENIX S L, RAJ R. Overview no. 100 Scalings in fracture probabilities for a brittle matrix fiber composite[J]. Acta Metallurgica et Materialia, 1992, 40(11): 2813-2828. doi: 10.1016/0956-7151(92)90447-M
    [26] CURTIN W A. Theory of mechanical properties of ceramic-matrix composites[J]. Journal of the American Ceramic Society, 1991, 74(11): 2837-2845. doi: 10.1111/j.1151-2916.1991.tb06852.x
    [27] LEE S S, STINCHCOMB W W, Damage mechanisms of cross-ply Nicalon/CAS-II laminates under cyclic tension [J], Ceramic Engineering and Science Proceedings, 1994, 15(4): 40-48.
    [28] YASMIN A, BOWEN P. Fatigue behaviour of cross-ply Nicalon/CAS-II glass–ceramic matrix composite at room and elevated temperatures[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(1): 83-94. doi: 10.1016/j.compositesa.2003.08.009
  • 加载中
计量
  • 文章访问数:  81
  • HTML全文浏览量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-01
  • 修回日期:  2024-05-29
  • 录用日期:  2024-06-02
  • 网络出版日期:  2024-06-18

目录

    /

    返回文章
    返回