留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烧蚀时间对C/C-SiC复合材料高超声速富氧环境烧蚀机制的影响

高勇 王金金 查柏林 王玲玲 石易昂 孙振生

高勇, 王金金, 查柏林, 等. 烧蚀时间对C/C-SiC复合材料高超声速富氧环境烧蚀机制的影响[J]. 复合材料学报, 2023, 40(1): 472-484. doi: 10.13801/j.cnki.fhclxb.20220117.002
引用本文: 高勇, 王金金, 查柏林, 等. 烧蚀时间对C/C-SiC复合材料高超声速富氧环境烧蚀机制的影响[J]. 复合材料学报, 2023, 40(1): 472-484. doi: 10.13801/j.cnki.fhclxb.20220117.002
GAO Yong, WANG Jinjin, ZHA Bailin, et al. Effect of ablation time on ablation mechanism of C/C-SiC composites in hypersonic and oxygen-enriched environment[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 472-484. doi: 10.13801/j.cnki.fhclxb.20220117.002
Citation: GAO Yong, WANG Jinjin, ZHA Bailin, et al. Effect of ablation time on ablation mechanism of C/C-SiC composites in hypersonic and oxygen-enriched environment[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 472-484. doi: 10.13801/j.cnki.fhclxb.20220117.002

烧蚀时间对C/C-SiC复合材料高超声速富氧环境烧蚀机制的影响

doi: 10.13801/j.cnki.fhclxb.20220117.002
基金项目: 陕西省自然科学基金(2021JM-250)
详细信息
    通讯作者:

    王金金,博士,副教授,研究方向为飞行器推进系统材料及应用 E-mail:hdwangjinjin@163.com

  • 中图分类号: TB332

Effect of ablation time on ablation mechanism of C/C-SiC composites in hypersonic and oxygen-enriched environment

Funds: Natural Science Funding of Shaanxi (2021JM-250)
  • 摘要: 为了研究烧蚀时间对C/C-SiC复合材料在高超声速富氧环境下烧蚀机制的影响规律,采用富氧环境下的高超声速烧蚀试验技术,对“化学气相渗透+先驱体浸渍裂解”混合工艺制备的针刺C/C-SiC复合材料动态烧蚀机制进行研究,并采用电子扫描显微镜观察烧蚀表面形貌。研究表明:在极端苛刻的高超声速富氧烧蚀环境下,C/C-SiC复合材料能够短时抵抗高温、高压、高超声速燃气射流的氧化工作环境。材料经高超声速富氧烧蚀10 s、20 s、30 s、40 s及50 s后的质量烧蚀率分别为0.021 g/s、0.025 g/s、0.027 g/s、0.026 g/s与0.034 g/s。C/C-SiC复合材料在高超声速富氧环境下的动态烧蚀行为主要受热化学烧蚀与机械剥蚀两种烧蚀机制共同作用。在初始阶段,SiO2保护膜的存在有效阻止了氧化性组分向基体内部的扩散,仅材料中心区域存在轻微热化学烧蚀;烧蚀试验中期,材料的烧蚀主要表现为热化学烧蚀与机械剥蚀联合作用,并由热化学烧蚀向机械剥蚀呈渐变性转变;烧蚀试验后期,基体的深度反应使得材料的烧蚀主要表现为纤维与基体的大面积片状剥落。

     

  • 图  1  C/C-SiC复合材料微观形貌

    Figure  1.  Micro-morphology of the C/C-SiC composites

    图  2  高超声速富氧环境烧蚀试验系统

    Figure  2.  Ablation test system of hypersonic oxygen-enriched environment

    图  3  高压燃气发生器流场结构几何模型

    Figure  3.  Geometric model of flow field structure of high pressure gas generator

    图  4  高压燃气发生器燃气射流温度分布

    Figure  4.  Temperature distribution of gas jet in high pressure gas generator

    图  5  高压燃气发生器燃气射流速度分布

    Figure  5.  Velocity distribution of gas jet in high pressure gas generator

    图  6  C/C-SiC复合材料在高超声速富氧烧蚀环境下不同时刻的动态烧蚀形貌

    Figure  6.  Dynamic ablation morphologies of C/C-SiC composites at different moments in hypersonic oxygen-enriched ablation environment

    图  7  C/C-SiC复合材料在不同烧蚀时刻的微观形貌:((a)、(b)) 烧蚀10 s后的微观形貌;((c)、(d)) 烧蚀20 s后的微观形貌;((e)、(f)) 烧蚀30 s后的微观形貌;((g)、(h)) 烧蚀40 s后的微观形貌;((i)、(j)) 烧蚀50 s后的微观形貌

    Figure  7.  Micro-morphologies of C/C-SiC composites at different ablation moments: ((a), (b)) Micro-morphologies after 10 s ablation; ((c), (d)) Micro-morphology after 20 s ablation; ((e), (f)) Micro-morphologies after 30 s ablation; ((g), (h)) Micro-morphologies after 40 s ablation; ((i), (j)) Micro-morphologies after 50 s ablation

    图  8  C/C-SiC复合材料轴向与径向纤维在不同烧蚀时刻的微观形貌:((a)、(b)) 烧蚀10 s后的轴向与径向纤维;((c)、(d)) 烧蚀20 s后的轴向与径向纤维;((e)、(f)) 烧蚀30 s后的轴向与径向纤维;((g)、(h)) 烧蚀40 s后的轴向与径向纤维;((i)、(j)) 烧蚀50 s后的轴向与径向纤维

    Figure  8.  Microscopic morphology for axial and radial fibers of C/C-SiC composites at different ablation time: ((a), (b)) Axial and radial fibers after 10 s ablation; ((c), (d)) Axial and radial fibers after 20 s ablation; ((e), (f)) Axial and radial fibers after 30 s ablation; ((g), (h)) Axial and radial fibers after 40 s ablation; ((i), (j)) Axial and radial fibers after 50s ablation

    图  9  C/C-SiC复合材料烧蚀后材料内部的氧化活性点

    Figure  9.  Oxidation active sites inside the C/C-SiC composites after ablation

    表  1  C/C-SiC复合材料在极端苛刻高超声速富氧环境下的烧蚀试验参数

    Table  1.   Ablation test parameters of C/C-SiC composites in extremely harsh hypersonic oxygen-enriched environment

    SampleFlow of kerosene/
    (kg·min−1)
    Flow of
    oxygen/SLM
    Oxygen enrichment
    degree/vol%
    Combustion chamber
    pressure/MPa
    Distance/mmTime/s
    1#0.25005.01.008010
    2#0.25005.01.008020
    3#0.25005.01.008030
    4#0.25005.01.008040
    5#0.25005.01.008050
    Note: SLM—Standard liters per minute.
    下载: 导出CSV

    表  2  针刺C/C-SiC复合材料性能

    Table  2.   Properties of needle punched C/C-SiC composites

    Density/
    (g·cm−3)
    Thermal
    conductivity/
    (W·m−1·K−1)
    Compressive
    strength/
    MPa
    In-plane shear
    strength/
    MPa
    Bending
    strength/
    MPa
    Time/sMass ablation
    rate/(g·s−1)
    Rate of change
    in mass ablation
    rate/%
    1.8510.2120518.7180100.021(~10 s)
    200.025(10-20 s)20.24
    300.027(20-30 s)10.83
    400.026(30-40 s)5.32
    500.034(40-50 s)30.00
    下载: 导出CSV
  • [1] GLASS D E. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, Ohio, 2008: 2682.
    [2] 李崇俊. X-43A高超声速飞行器C/C热防护涂层结构分析[J]. 高科技纤维与应用, 2015, 40(4):26-40. doi: 10.3969/j.issn.1007-9815.2015.04.004

    LI Chongjun. Thermal protection coatings of C/C composites in X-43A hypersonic vehicles[J]. Hi-Tech Fiber & Application,2015,40(4):26-40(in Chinese). doi: 10.3969/j.issn.1007-9815.2015.04.004
    [3] 王璐, 王友利. 高超声速飞行器热防护技术研究进展和趋势分析[J]. 宇航材料工艺, 2016, 46(1):1-6. doi: 10.3969/j.issn.1007-2330.2016.01.001

    WANG Lu, WANG Youli. Research progress and trend analysis of hypersonic vehicle thermal protection technology[J]. Aerospace Materials & Technology,2016,46(1):1-6(in Chinese). doi: 10.3969/j.issn.1007-2330.2016.01.001
    [4] JOHNSON S M, GASCH M J, LEISER D, et al. Development of new TPS at NASA ames research center[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, Ohio, 2008: 2560.
    [5] GLASS D E. Physical challenges and limitations confronting the use of UHTSs on hypersonic vehicles[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. San Francisco, California, 2011: 2304.
    [6] WALKER S P, SULLWAN B J. Sharp refractory composite leading edges on hypersonic vehicles[C]. 12th AIAA International Space Planes and Hypersonic Systems and Technologies. Norfolk, VA, 2003: 6915.
    [7] BOUQUET C, FISCHER R, LARRIEU J M, et al. Composite technologies development status for scramjet applications[C]. 12th AIAA International Space Planes and Hypersonic Systems and Technologies. Norfolk, VA, 2003: 6917.
    [8] BOUQUET C, FISCHER R, THEBAULT J, et al. Composite technologies development status for scramjet[C]. 13th AIAA/CIRA International Space Planes and Hypersonics Systems and Technologies. Capua, Italy, 2005: 3431.
    [9] ZHANG L, FU Q G, TAN B Y, et al. Ablation behaviour of C/C and C/C-ZrC-SiC composites with cone-shaped holes under an oxyacetylene flame[J]. Corrosion Science,2016,102:84-92. doi: 10.1016/j.corsci.2015.09.022
    [10] LIU L P, YANG L W, ZHAO C H, et al. Oxide-scale evolution and dynamic oxidation mechanism of ZrB2-SiC in high-enthalpy plasma wind tunnel[J]. Journal of the European Ceramic Society,2021,41(7):3911-3921. doi: 10.1016/j.jeurceramsoc.2021.02.006
    [11] JIA J H, XIAO J, XIONG D G, et al. Ablation properties of Cf/SiCp-Al self-transpiration cooling composites[J]. Materials Letters,2021,285:129022. doi: 10.1016/j.matlet.2020.129022
    [12] SILVA R J, MACIEL H S, ESSIPTCHOUK A M. Comparison of the ablation mechanism of C/C-SiC composite under atmospheric and low pressure[C]. 13th International Ceramics Congress. Montecatini Terme, Italy: Trans Tech Publishers, 2014: 134-139.
    [13] SHI Y A, ZHA B L, SU Q D, et al. Thermal performance and ablation characteristics of C/C-SiC for thermal protection of hypersonic vehicle[J]. Journal of the European Ceramic Society,2021,41(11):5427-5436. doi: 10.1016/j.jeurceramsoc.2021.03.015
    [14] 王玲玲, 嵇阿琳, 黄寒星, 等. 三维针刺C/C-SiC复合材料的烧蚀性能[J]. 固体火箭技术, 2012, 35(4):532-535.

    WANG Lingling, JI Alin, HUANG Hanxing, et al. Ablation properties of three dimensional needled C/C-SiC composites[J]. Journal of Solid Rocket Technology,2012,35(4):532-535(in Chinese).
    [15] 王玲玲, 吴玉燕, 嵇阿琳, 等. 固体冲压发动机环境下C/C-SiC喷管的烧蚀行为及重复性使用分析[J]. 复合材料学报, 2017, 34(7):1569-1574.

    WANG Lingling, WU Yuyan, JI Alin, et al. Ablation behavior and repetitive-use analysis of the C/C-SiC composites nozzle for solid propellant ramjet[J]. Acta Materiae Compositae Sinica,2017,34(7):1569-1574(in Chinese).
    [16] GLASS D E, CAPRIOTTI D, REIMER T, et al. Testing of DLR C/C-SiC and C/C for HIFiRE 8 scramjet combustor[C]. 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Atlanta, GA, 2014: 3089.
    [17] SHI Y A, ZHA B L, SU Q D, et al. Effects of oxygen content on the ablation behavior of silicone rubber-based insulation material[J]. International Journal of Aerospace Engineering, 2019, 2019: 6592972.
    [18] WU X J, YANG J, ZHEN R, et al. Effect of ablation profile structure on plasma ablation performance of needle punched C/C throat lining prepared by CVI+HPIC process[J]. Journal of Inorganic Materials,2020,35(6):654-660.
    [19] 高勇, 查柏林, 王金金, 等. 固体火箭发动机C/C复合材料烧蚀试验技术研究[J]. 高科技纤维与应用, 2020, 45(4):1-7. doi: 10.3969/j.issn.1007-9815.2020.04.001

    GAO Yong, ZHA Bailin, WANG Jinjin, et al. Research on ablation test technology of C/C composites in solid rocket motor[J]. Hi-Tech Fiber and Application,2020,45(4):1-7(in Chinese). doi: 10.3969/j.issn.1007-9815.2020.04.001
    [20] 喻成璋, 刘卫华. 高超声速飞行器气动热预测技术研究进展[J]. 航空科学技术, 2021, 32(2):14-21.

    YU Chengzhang, LIU Weihua. Research status of aero- heating prediction technology for hypersonic aircraft[J]. Aeronautical Science & Technology,2021,32(2):14-21(in Chinese).
    [21] 王亮, 周玲. 基于改进的k-ω-γ转捩模式预测高超声速飞行器气动特性[J]. 空气动力学学报, 2021, 39(3):51-61. doi: 10.7638/kqdlxxb-2019.0146

    WANG Liang, ZHOU Ling. Prediction of characteristics of hypersonic vehicle by improved k-ω-γ transition model[J]. Acta Aerodynamica Sinica,2021,39(3):51-61(in Chinese). doi: 10.7638/kqdlxxb-2019.0146
    [22] 党文伟, 李晓升. 高超声速飞行器烧蚀型防热涂层研究进展[J]. 涂料技术与文摘, 2020, 41(3):33-36.

    DANG Wenwei, LI Xiaosheng. Research progress in ablative thermal protection coatings for hypersonic vehicle[J]. Coating and Protection,2020,41(3):33-36(in Chinese).
    [23] 黄礼铿, 胡广军, 胡豹, 等. 固体火箭超燃冲压发动机燃烧试验研究[J]. 固体火箭技术, 2020, 43(5):549-553.

    HUANG Likeng, HU Guangjun, HU Bao, et al. Experiment on combustion of solid rocket scramjet[J]. Journal of Solid Rocket Technology,2020,43(5):549-553(in Chinese).
    [24] 王金金. 多相流环境下硅橡胶复合材料烧蚀机理研究[D]. 西安: 火箭军工程大学, 2019.

    WANG Jinjin. Research on ablation mechanism of silicone rubber composites in multiphase flow environment[D]. Xi'an: Rocket Force University of Engineering, 2019(in Chinese).
    [25] 尹健, 熊翔, 张红波, 等. 3D C/C复合材料的电弧驻点烧蚀及机理分析[J]. 中南大学学报(自然科学版), 2007, 38(1):14-18. doi: 10.3969/j.issn.1672-7207.2007.01.003

    YIN Jian, XIONG Xiang, ZHANG Hongbo, et al. Ablation performance and mechanism of 3D C/C composites[J]. Journal of Central South University (Science and Technology),2007,38(1):14-18(in Chinese). doi: 10.3969/j.issn.1672-7207.2007.01.003
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1148
  • HTML全文浏览量:  489
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 修回日期:  2021-12-23
  • 录用日期:  2022-01-06
  • 网络出版日期:  2022-01-18
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回