留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MoS2/生物质碳复合材料的制备与吸波性能

谢文瀚 耿浩然 柳扬 赵婷婷 张璇 董丽杰

谢文瀚, 耿浩然, 柳扬, 等. MoS2/生物质碳复合材料的制备与吸波性能[J]. 复合材料学报, 2022, 39(5): 2238-2248. doi: 10.13801/j.cnki.fhclxb.20210715.001
引用本文: 谢文瀚, 耿浩然, 柳扬, 等. MoS2/生物质碳复合材料的制备与吸波性能[J]. 复合材料学报, 2022, 39(5): 2238-2248. doi: 10.13801/j.cnki.fhclxb.20210715.001
XIE Wenhan, GENG Haoran, LIU Yang, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2238-2248. doi: 10.13801/j.cnki.fhclxb.20210715.001
Citation: XIE Wenhan, GENG Haoran, LIU Yang, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2238-2248. doi: 10.13801/j.cnki.fhclxb.20210715.001

MoS2/生物质碳复合材料的制备与吸波性能

doi: 10.13801/j.cnki.fhclxb.20210715.001
基金项目: 武汉理工大学三亚科教创新园开放基金(2020KF0025)
详细信息
    通讯作者:

    董丽杰,博士,教授,博士生导师,研究方向为先进复合材料 E-mail:dong@whut.edu.cn

  • 中图分类号: TB332

Preparation and microwave absorbing properties of MoS2/biomass carbon composite

  • 摘要: 为了解决MoS2吸波材料电导率低的问题,以柚子皮(SP)为原料,采用一锅水热及高温煅烧法制备了MoS2/生物质碳(BC)复合材料。通过调节初始Mo源、S源的含量来调控该复合材料中MoS2的含量。微观形貌、结构和电磁参数结果表明,随着复合材料中MoS2含量的增加,MoS2在BC表面由片状零散分布转变为花状包覆,MoS2/BC复合材料的电导率和复介电常数逐渐降低。通过调节MoS2与BC的比例,实现对MoS2/BC复合材料电磁参数的有效调控,进而优化其阻抗匹配特性。MoS2的花状结构有利于促进电磁波的多重反射/散射。同时,MoS2与BC之间存在丰富界面,有利于促进界面极化,增强MoS2/BC复合材料对电磁波的衰减能力。所制备的MoS2/BC-0.8最小反射率损失(RL)值为−40.1 dB,有效吸收带宽为5.9 GHz(11.1~17.0 GHz)。

     

  • 图  1  BC和MoS2/BC复合材料制备的实验流程图

    Figure  1.  Experimental flow chart of preparation of BC and MoS2/BC composites

    图  2  SP (a) 和BC (b) 的SEM图像

    Figure  2.  SEM images of SP (a) and BC (b)

    图  3  MoS2/BC复合材料的SEM图像 ((a)~(c)) 和TEM图像 ((d)~(f))

    Figure  3.  SEM ((a)-(c)) and TEM images ((d)-(f)) of MoS2/BC composites

    图  4  MoS2/BC-0.4的TEM图像(a)及EDS图像 ((b)~(d))

    Figure  4.  TEM (a) and EDS images ((b)-(d)) of MoS2/BC-0.4

    图  5  SP、MoS2/水 热 碳-0.8 (MoS2/HTC-0.8) 和MoS2/BC-0.8的FT-IR图谱

    Figure  5.  FT-IR images of SP, MoS2/hydrothermal carbon-0.8 (MoS2/HTC-0.8) and MoS2/BC-0.8

    图  6  BC和MoS2/BC复合材料的XRD图谱

    Figure  6.  XRD patterns of BC and MoS2/BC composites

    图  7  BC和MoS2/BC复合材料的XPS图谱:(a) 全谱; (b) Mo3d图谱和S2s图谱;(c) S2p图谱

    Figure  7.  XPS images of BC and MoS2/BC composites: (a) Full spectrum; (b) Mo3d spectrum and S2s spectrum; (c) S2p spectrum

    图  8  BC和MoS2/BC复合材料的复介电常数实部(a)、复介电常数虚部(b)和介电损耗正切值(c)

    Figure  8.  Real part of complex permittivity (a), imaginary part of complex permittivity (b) and dielectric loss tangent (c) of BC and MoS2/BC composites

    图  9  BC和MoS2/BC复合材料的Cole-Cole曲线

    Figure  9.  Cole-Cole curves of BC and MoS2/BC composites

    图  10  BC和MoS2/BC复合材料的反射率损失曲线

    Figure  10.  Reflection loss curves of BC and MoS2/BC composites

    图  11  BC和MoS2/BC复合材料的阻抗匹配图 (a) 和衰减常数图 (b)

    Figure  11.  Impedance matching (a) and attenuation constant diagram (b) of BC and MoS2/BC composites

    表  1  不同钼酸钠、L-半胱氨酸和柚子皮 (SP) 添加量下制备的生物质碳 (BC)、MoS2/BC复合材料的参数

    Table  1.   Parameters of biomass carbon (BC) and MoS2/BC composites prepared with different additions of sodium molybdate, L-cysteine and shaddock peel (SP)

    SamplesSP/gNa2MoO4·2H2O/gL-cysteine/g
    BC 0.25 0 0
    Mo2S/BC-0.4 0.25 0.10 0.22
    Mo2S/BC-0.6 0.25 0.15 0.33
    Mo2S/BC-0.8 0.25 0.20 0.44
    下载: 导出CSV

    表  2  BC和MoS2/BC复合材料的电导率

    Table  2.   Conductivity of BC and MoS2/BC composites

    SampleBCMoS2/BC-0.4MoS2/BC-0.6MoS2/BC-0.8
    Electrical conductivity/(S·cm−1)2.53×10−24.95×10−32.11×10−31.13×10−4
    下载: 导出CSV

    表  3  MoS2/BC复合材料与文献报道其他吸波材料性能比较

    Table  3.   Performance comparison between MoS2/BC composite and other wave absorbing agents reported in the literature

    AbsorberMinimum RL (dB)/
    Thickness (mm)
    Bandwidth (GHz)/
    Thickness (mm)
    Ref.
    3D MoS2 −10.3/4.0 0.08/4.0 [11]
    3D MoS2/RGO −49.5/2.4 5.7/2.3 [11]
    MoS2/GN −55.3/1.6 5.6/2.2 [12]
    CNTs@MoS2 −55.0/1.5 4.0/1.3 [13]
    MoS2/RGO −50.9/2.3 5.7/2.0 [36]
    MoS2/BC-0.8 −40.1/3.0 5.9/2.0 This work
    Notes: RGO—Reduced graphene oxide; GN—Graphene; CNTs—Carbon nanotubes; RL—Reflectivity loss.
    下载: 导出CSV
  • [1] 杨亚楠, 夏龙, 张昕宇, 等. Fe3O4@锂铝硅微晶玻璃/还原氧化石墨烯复合材料的制备和吸波性能[J]. 复合材料学报, 2019, 36(11):2651-2664.

    YANG Yanan, XIA Long, ZHANG Xiyu, et al. Preparation and microwave absorbing properties of Fe3O4@lithium aluminum silicate glass ceramic/reduced graphene oxide composite[J]. Acta Materiae Compositae Sinica,2019,36(11):2651-2664(in Chinese).
    [2] 马志军, 莽昌烨, 翁兴媛, 等. Zn还原氧化石墨烯(RGO)和ZnO/RGO自组装复合材料的电磁响应行为[J]. 复合材料学报, 2019, 36(7):1776-1786.

    MA Zhijun, MANG Changyue, WENG Xingyuan, et al. Electromagnetic response behavior of Zn reduced graphene oxide (RGO) and ZnO/RGO self-assembled composites[J]. Acta Materiae Compositae Sinica,2019,36(7):1776-1786(in Chinese).
    [3] LV H, YANG Z, WANG P L, et al. A voltage-boosting strategy enabling a low-frequency, flexible electro-magnetic wave absorption device[J]. Advanced Materials,2018,30(15):1706343. doi: 10.1002/adma.201706343
    [4] CAO M S, WANG X X, ZHANG M, et al. Variable-tempera-ture electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy[J]. Advanced Materials,2020,32(10):1907156. doi: 10.1002/adma.201907156
    [5] WANG P, WANG G W, ZHANG J M, et al. Excellent microwave absorbing performance of the sandwich structure absorber Fe@B2O3/MoS2/Fe@B2O3 in the Ku-band and X-band[J]. Chemical Engineering Journal,2020,382:122804. doi: 10.1016/j.cej.2019.122804
    [6] FENG Z, YANG P P, WEN G S, et al. One-step synthesis of MoS2 nanoparticles with different morphologies for electromagnetic wave absorption[J]. Applied Surface Science,2020,502:144129. doi: 10.1016/j.apsusc.2019.144129
    [7] NING M Q, JIANG P H, DING W, et al. Phase manipulating toward molybdenum disulfide for optimizing electro-magnetic wave absorbing in gigahertz[J]. Advanced Functional Materials,2021,31(19):2011229. doi: 10.1002/adfm.202011229
    [8] KUMAR P. Ultrathin 2D nanomaterials for electro-magnetic interference shielding[J]. Advanced Materials Interfaces,2019,6(24):1901454. doi: 10.1002/admi.201901454
    [9] CAO M S, SHU J C, WANG X X, et al. Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency[J]. Annalen Der Physik,2019,531(4):1800390. doi: 10.1002/andp.201800390
    [10] NING M Q, MAN Q K, TAN G G, et al. Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: A case of a dielectric absorber with optimized impedance for efficient microwave absorption[J]. ACS Applied Materials & Interfaces,2020,12(18):20785-20796.
    [11] DING X, HUANG Y, LI S P, et al. 3D Architecture reduced graphene oxide-MoS2 composite: Preparation and excellent electromagnetic wave absorption performance[J]. Composites Part A: Applied Science and Manufacturing,2016,90:424-432. doi: 10.1016/j.compositesa.2016.08.006
    [12] ZHANG D Q, JIA Y X, CHENG J Y, et al. High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures[J]. Journal of Alloys and Compounds,2018,758:62-71. doi: 10.1016/j.jallcom.2018.05.130
    [13] WANG R, YANG E Q, QI X S, et al. Constructing and opti-mizing core@shell structure CNTs@MoS2 nanocomposites as outstanding microwave absorbers[J]. Applied Surface Science,2020,516:146159. doi: 10.1016/j.apsusc.2020.146159
    [14] ZHANG Y, HUANG Y, ZHANG T F, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Advanced Materials,2015,27(12):2049-2053. doi: 10.1002/adma.201405788
    [15] LIU Y, CHEN Z, ZHANG Y, et al. Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites[J]. ACS Applied Materials & Interfaces,2018,10(16):13860-13868.
    [16] ZHAO J, ZHANG J L, WANG L, et al. Fabrication and investi-gation on ternary heterogeneous MWCNT@TiO2-C fillers and their silicone rubber wave-absorbing composites[J]. Composites Part A: Applied Science and Manufacturing,2020,129:105714. doi: 10.1016/j.compositesa.2019.105714
    [17] LIU Y, CHEN Z, XIE W H, et al. In-situ growth and graphiti-zation synthesis of porous Fe3O4/carbon fiber composites derived from biomass as lightweight microwave absorber[J]. ACS Sustainable Chemistry & Engineering,2019,7(5):5318-5328.
    [18] ZHOU X F, JIA Z R, FENG A L, et al. Construction of multiple electromagnetic loss mechanism for enhanced electromagnetic absorption performance of fish scale-derived biomass absorber[J]. Composites Part B: Engi-neering,2020,192:107980. doi: 10.1016/j.compositesb.2020.107980
    [19] TOCMO R, PENA-FRONTERAS J, CALUMBA K F, et al. Valorization of pomelo peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(4):1969-2012. doi: 10.1111/1541-4337.12561
    [20] LIU J Y, LI H P, ZHANG H S, et al. Three-dimensional hierarchical and interconnected honeycomb-like porous carbon derived from pomelo peel for high performance supercapacitors[J]. Journal of Solid State Chemistry,2018,257:64-71. doi: 10.1016/j.jssc.2017.07.033
    [21] HU B, WANG K, WU L H, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Advanced Materials,2010,22(7):813-828. doi: 10.1002/adma.200902812
    [22] WANG Q, LI H, CHEN L Q, et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon,2001,39(14):2211-2214. doi: 10.1016/S0008-6223(01)00040-9
    [23] SEVILLA M, LOTA G, FUERTES A B. Saccharide-based graphitic carbon nanocoils as supports for PtRu nanoparticles for methanol electrooxidation[J]. Journal of Power Sources,2007,171(2):546-551. doi: 10.1016/j.jpowsour.2007.05.096
    [24] ZHANG Z, TAN J W, GU W H, et al. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application[J]. Chemical Engineering Journal, 2020, 395: 125190.
    [25] YANG E Q, QI X S, XIE R, et al. Novel "203" type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: Synthesis, and enhanced microwave absorption properties[J]. Applied Surface Science,2018,442:622-629. doi: 10.1016/j.apsusc.2018.02.175
    [26] SUN X, LI Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie International Edition,2004,43(5):597-601. doi: 10.1002/anie.200352386
    [27] DONG N, HE F Z, XIN J L, et al. A novel one-step hydrothermal method to prepare CoFe2O4/graphene-like carbons magnetic separable adsorbent[J]. Materials Research Bulletin,2016,80:186-190. doi: 10.1016/j.materresbull.2016.04.003
    [28] SEVILLA M, FUERTES A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chemistry-A European Journal,2009,15(16):4195-4203. doi: 10.1002/chem.200802097
    [29] SEMERCIOZ A S, GOGUS F, ÇELEKLI A, et al. Development of carbonaceous material from grapefruit peel with microwave implemented-low temperature hydrothermal carbonization technique for the adsorption of Cu (II)[J]. Journal of Cleaner Production,2017,165:599-610. doi: 10.1016/j.jclepro.2017.07.159
    [30] VOLPE M, MESSINEO A, MAKELA M, et al. Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass[J]. Fuel Processing Technology,2020,206:106456. doi: 10.1016/j.fuproc.2020.106456
    [31] ZHAO H Q, CHENG Y, LIU W, et al. Biomass-derived porous carbon-based nanostructures for microwave absorption[J]. Nano-Micro Letters,2019,11(1):81-97. doi: 10.1007/s40820-019-0312-y
    [32] ZHANG W L, JIANG D G, WANG X X, et al. Growth of polyaniline nanoneedles on MoS2 nanosheets, tunable electroresponse, and electromagnetic wave attenuation analysis[J]. Journal of Physical Chemistry C,2017,121(9):4989-4998. doi: 10.1021/acs.jpcc.6b11656
    [33] WANG Y L, YANG S H, WANG H Y, et al. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber[J]. Carbon,2020,167:485-494. doi: 10.1016/j.carbon.2020.06.014
    [34] ZHAO H Q, CHENG Y, ZHANG Z, et al. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties[J]. Carbon,2021,173:501-511. doi: 10.1016/j.carbon.2020.11.035
    [35] WU Z C, TIAN K, HUANG T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance[J]. ACS Applied Materials & Interfaces,2018,10(13):11108-11115.
    [36] WANG Y, DI X C, WU X M, et al. MOF-derived nanoporous carbon/Co/Co3O4/CNTs/RGO composite with hierarchi-cal structure as a high-efficiency electromagnetic wave absorber[J]. Journal of Alloys and Compounds,2020,846:156215. doi: 10.1016/j.jallcom.2020.156215
    [37] SHU R W, ZHANG G Y, ZHANG C, et al. Nitrogen-doping-regulated electromagnetic wave absorption properties of ultralight three-dimensional porous reduced graphene oxide aerogels[J]. Advanced Electronic Materials,2020,7(2):2001001.
    [38] WANG Y F, CHEN D L, YIN X, et al. Hybrid of MoS2 and reduced graphene oxide: A lightweight and broadband electromagnetic wave absorber[J]. ACS Applied Materials & Interfaces,2015,7(47):26226-26234.
    [39] MO Z C, YANG R L, LU D W, et al. Lightweight, three-dimensional carbon nanotube@TiO2 sponge with enhanced microwave absorption performance[J]. Carbon,2019,144:433-439. doi: 10.1016/j.carbon.2018.12.064
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1477
  • HTML全文浏览量:  441
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-06-14
  • 录用日期:  2021-06-30
  • 网络出版日期:  2021-07-15
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回