留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维3D机织预制体弯曲性能

郭珍珍 谢军波 焦伟 朱琬清 邵梦洁 杨志 陈利

郭珍珍, 谢军波, 焦伟, 等. 碳纤维3D机织预制体弯曲性能[J]. 复合材料学报, 2023, 40(6): 3396-3404. doi: 10.13801/j.cnki.fhclxb.20220811.003
引用本文: 郭珍珍, 谢军波, 焦伟, 等. 碳纤维3D机织预制体弯曲性能[J]. 复合材料学报, 2023, 40(6): 3396-3404. doi: 10.13801/j.cnki.fhclxb.20220811.003
GUO Zhenzhen, XIE Junbo, JIAO Wei, et al. Bending properties of carbon fiber 3D woven preforms[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3396-3404. doi: 10.13801/j.cnki.fhclxb.20220811.003
Citation: GUO Zhenzhen, XIE Junbo, JIAO Wei, et al. Bending properties of carbon fiber 3D woven preforms[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3396-3404. doi: 10.13801/j.cnki.fhclxb.20220811.003

碳纤维3D机织预制体弯曲性能

doi: 10.13801/j.cnki.fhclxb.20220811.003
基金项目: 国家自然科学基金青年基金(11802204);天津市教委科研计划项目(2018KJ195)
详细信息
    通讯作者:

    谢军波,博士,副研究员,硕士生导师,研究方向为复合材料力学、织物力学 E-mail: xiejunbo@tiangong.edu.cn

  • 中图分类号: TB332

Bending properties of carbon fiber 3D woven preforms

Funds: National Natural Science Foundation of China (11802204); Science & Technology Development Fund of Tianjin Education Commission for Higher Education (2018KJ195)
  • 摘要: 异形结构复合材料构件成型过程中,其内部纤维预制体往往发生显著的宏观变形。预制体的弯曲性能对褶皱缺陷的形成和演化有着决定性影响。采用三点弯曲法对碳纤维3D机织预制体进行了测试,利用Micro-CT技术研究了预制体的微细观变形机制,分析了经纱密度和纬纱密度对预制体弯曲性能的影响规律。结果发现:3D机织预制体的临界弯曲能量随着组织点密度的增加大致呈线性增大的趋势。预制体弯曲变形主要由经纱屈曲度变化、局部压缩屈曲和经纬纱层间滑移等微细观变形构成。

     

  • 图  1  3D机织预制体示意图:(a) 3D机织结构;(b) 经纱路径

    Figure  1.  Schematic diagrams of 3D woven preform: (a) 3D woven structure; (b) Warp yarn path

    图  2  3D机织预制体Micro-CT扫描:((a)~(c)) 变形前;((d)~(f)) 变形后

    Figure  2.  Micro-CT test of the 3D woven preform: ((a)-(c)) Before deformation; ((d)-(f)) After deformation

    图  3  预制体三点弯曲测试:(a) 0 mm;(b) 2 mm;(c) 4 mm;(d) 6 mm;(e) 8 mm;(f) 10 mm

    Figure  3.  Three-point bending test of the preform: (a) 0 mm; (b) 2 mm; (c) 4 mm; (d) 6 mm; (e) 8 mm; (f) 10 mm

    图  4  3D机织预制体三点弯曲试样载荷-挠度曲线:((a)~(c)) 经纱密度5根/cm、8根/cm、10根/cm;((d)~(f)) 纬纱密度2.5根/cm、3.0根/cm、3.5根/cm

    Figure  4.  Load-deflection curves of three-point bending samples of 3D woven preform: ((a)-(c)) Warp densities of 5 ends/cm, 8 ends/cm and 10 ends/cm; ((d)-(f)) Weft densities of 2.5 picks/cm, 3.0 picks/cm and 3.5 picks/cm

    图  5  3D机织预制体三点弯曲试样临界弯曲能量

    Figure  5.  Critical bending energy of three-point bending sample of 3D woven preform

    Ei—Bending energy under a certain bending deflection; F—Bending load; Fc—Critical bending load value; Fi—Bending load value under a certain bending deflection; d—Bending deflection; dc—Critical bending deflection value; Δd—Unit bending deflection value

    图  6  组织点密度对3D机织预制体临界弯曲能量的影响

    Figure  6.  Effect of weaving point density on critical bending energy of 3D woven preform

    Ec—Critical bending energy

    图  7  3D机织预制体经纱屈曲度的定义:(a) 变形前;(b) 变形后

    Figure  7.  Definition of buckling degree of warp yarn of 3D woven preform: (a) Before deformation; (b) After deformation

    Lbase—Baseline length

    图  8  3D机织预制体:(a) 变形前经纱路径;(b) 变形后经纱路径;(c) 变形前后经纱屈曲度对比

    Figure  8.  3D woven preform: (a) Warp yarn path before deformation; (b) Warp yarn path after deformation; (c) Comparison between buckling degree of warp yarns before and after deformation

    L—Layer

    图  9  3D机织预制体表面经纱的局部屈曲

    Figure  9.  Local buckling of the surface warp yarn of 3D woven preform

    图  10  3D机织预制体纬纱列偏转角:(a) 基于Micro-CT图像的测量;(b) 统计结果

    Figure  10.  Weft row deflection angle of 3D woven preform: (a) Measurement based on Micro-CT image; (b) Statistical result

    C—Column

    表  1  3D机织预制体结构参数

    Table  1.   Structure parameters of 3D woven preforms

    SampleNumber of warp layerNumber of weft layerApparent thickness/mmWeaving point density/cm−2
    J5W2.5786.3121.88
    J5W3.0675.8922.50
    J5W3.5676.1926.25
    J8W2.5566.7825.00
    J8W3.0566.6030.00
    J8W3.5455.9728.00
    J10W2.5456.7125.00
    J10W3.0457.0030.00
    J10W3.5456.7335.00
    下载: 导出CSV
  • [1] 陈利, 赵世博, 王心淼. 三维纺织增强材料及其在航空航天领域的应用[J]. 纺织导报, 2018(S1):80-87. doi: 10.3969/j.issn.1003-3025.2018.z1.018

    CHEN L, ZHEN S B, WANG X M. Three-dimensional textile reinforcement and its application in aerospace[J]. Textile Herald,2018(S1):80-87(in Chinese). doi: 10.3969/j.issn.1003-3025.2018.z1.018
    [2] 陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8):62-72. doi: 10.11868/j.issn.1001-4381.2020.000210

    CHEN L, JIAO W, WANG X M, et al. Research progress on mechanical properties of 3D woven composites[J]. Jour-nal of Materials Engineering,2020,48(8):62-72(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000210
    [3] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [4] 杨志, 焦亚男, 谢军波, 等. 纺织复合材料纤维预制体力学性能测试方法的研究进展[J]. 复合材料学报, 2022, 39(4):1511-1533.

    YANG Z, JIAO Y N, XIE J B, et al. Research progress on testing methods for mechanical properties of textile compo-site fiber preforms[J]. Acta Materiae Compositae Sinica,2022,39(4):1511-1533(in Chinese).
    [5] JIAO W, CHEN L, XIE J B, et al. Effect of weaving structures on the geometry variations and mechanical properties of 3D LTL woven composites[J]. Composite Structures,2020,252:112756. doi: 10.1016/j.compstruct.2020.112756
    [6] LABANIEH A R, GARNIER C, OUAGNE P, et al. Intra-ply yarn sliding defect in hemisphere preforming of a woven preform[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 432-446.
    [7] TURK M A, VERMES B, THOMPSON A J, et al. Mitigating forming defects by local modification of dry preforms[J]. Composites Part A: Applied Science and Manufacturing,2020,128:105643.
    [8] BOISSE P, HAMILA N, VIDAL-SALLE E, et al. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science and Technology,2011,71(5):683-692. doi: 10.1016/j.compscitech.2011.01.011
    [9] SJOLANDER J, HALLANDER P, AKERMO M. Forming induced wrinkling of composite laminates: A numerical study on wrinkling mechanisms[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 41-51.
    [10] SULE G. Investigation of bending and drape properties of woven fabrics and the effects of fabric constructional parameters and warp tension on these properties[J]. Textile Research Journal,2012,82(8):810-819. doi: 10.1177/0040517511433152
    [11] SYERKO E, COMAS-CARDONA S, BINETRUY C. Models of mechanical properties/behavior of dry fibrous materials at various scales in bending and tension: A review[J]. Composites Part A: Applied Science and Manufacturing,2012,43(8):1365-1388. doi: 10.1016/j.compositesa.2012.03.012
    [12] BOISSE P, COLMARS J, HAMILA N, et al. Bending and wrinkling of composite fiber preforms and prepregs: A review and new developments in the draping simulations[J]. Composites Part B: Engineering,2018,141:234-249. doi: 10.1016/j.compositesb.2017.12.061
    [13] PEIRCE F T. 26—the “Handle” of cloth as a measurable quantity[J]. Journal of the Textile Institute Transactions,1930,21(9):T377-T416. doi: 10.1080/19447023008661529
    [14] DEBILBAO E, SOULAT D, HIVET G, et al. Experimental study of bending behaviour of reinforcements[J]. Experimental Mechanics,2009,50(3):333-351.
    [15] DANGORA L M, MITCHELL C J, SHERWOOD J A. Predic-tive model for the detection of out-of-plane defects formed during textile-composite manufacture[J]. Composites Part A: Applied Science and Manufacturing,2015,78:102-112. doi: 10.1016/j.compositesa.2015.07.011
    [16] LAMMENS N, KERSEMANS M, LUYCKX G, et al. Improved accuracy in the determination of flexural rigidity of textile fabrics by the Peirce cantilever test (ASTM D1388)[J]. Textile Research Journal,2014,84(12):1307-1314. doi: 10.1177/0040517514523182
    [17] KAWABATA S. The standardization and analysis of hand evaluation[M]. Osaka: The Textile Machinery Society of Japan, 1980.
    [18] ROPERS S, KARDOS M, OSSWALD T A. A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing,2016,90:22-32. doi: 10.1016/j.compositesa.2016.06.016
    [19] SACHS U, AKKERMAN R. Viscoelastic bending model for continuous fiber-reinforced thermoplastic composites in melt[J]. Composites Part A: Applied Science and Manufacturing,2017,100:333-341. doi: 10.1016/j.compositesa.2017.05.032
    [20] CALISKAN U, APALAK M K. Low velocity bending impact behavior of foam core sandwich beams: Experimental[J]. Composites Part B: Engineering,2017,112:158-175. doi: 10.1016/j.compositesb.2016.12.038
    [21] CHARMETANT A, ORLIAC J G, VIDAL-SALLÉ E, et al. Hyperelastic model for large deformation analyses of 3D interlock composite preforms[J]. Composites Science and Technology,2012,72(12):1352-1360. doi: 10.1016/j.compscitech.2012.05.006
    [22] LIANG B, COLMARS J, BOISSE P. A shell formulation for fibrous reinforcement forming simulations[J]. Compo-sites Part A: Applied Science and Manufacturing,2017,100:81-96. doi: 10.1016/j.compositesa.2017.04.024
    [23] BOISSE P, BAI R, COLMARS J, et al. The need to use generalized continuum mechanics to model 3D textile compo-site forming[J]. Applied Composite Materials,2018,25(4):761-771. doi: 10.1007/s10443-018-9719-8
    [24] MARGOSSIAN A, BEL S, HINTERHOELZL R. Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a dynamic mecha-nical analysis system[J]. Composites Part A: Applied Science and Manufacturing,2015,77:154-163. doi: 10.1016/j.compositesa.2015.06.015
    [25] 中国国家标准化管理委员会. 三维编织物及其树脂基复合材料弯曲性能试验方法: GB/T 33621—2017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of China. Test method for bending properties of 3D braided fabric and its polymer matrix composites: GB/T 33621—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  990
  • HTML全文浏览量:  642
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-10
  • 修回日期:  2022-07-11
  • 录用日期:  2022-07-28
  • 网络出版日期:  2022-08-12
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回