Bending properties of carbon fiber 3D woven preforms
-
摘要: 异形结构复合材料构件成型过程中,其内部纤维预制体往往发生显著的宏观变形。预制体的弯曲性能对褶皱缺陷的形成和演化有着决定性影响。采用三点弯曲法对碳纤维3D机织预制体进行了测试,利用Micro-CT技术研究了预制体的微细观变形机制,分析了经纱密度和纬纱密度对预制体弯曲性能的影响规律。结果发现:3D机织预制体的临界弯曲能量随着组织点密度的增加大致呈线性增大的趋势。预制体弯曲变形主要由经纱屈曲度变化、局部压缩屈曲和经纬纱层间滑移等微细观变形构成。
-
关键词:
- 3D机织预制体 /
- 弯曲变形 /
- Micro-CT技术 /
- 微细观结构
Abstract: During the forming process of composite components with complex-shaped geometries, the fiber preform would deform significantly in macro-scale. The bending performance of the preform has a decisive impact on the formation and evolution of wrinkle defects. The three-point bending method was employed to test the carbon fiber 3D woven preforms. Micro-scale deformation mechanisms of the preform were researched using the Micro-CT technology. Effects of structural parameters such as warp density and weft density on the bending property of the preforms were analyzed. It is shown that the critical bending energy of the preforms increases linearly with the increase of weaving point density. The macro-scale bending deformation of the preform is mainly composed of micro-scale deformations such as changing of warp yarn buckling degree, local compression buckling of warp yarns and slippage between warp and weft yarn layers.-
Key words:
- 3D woven preform /
- bending deformation /
- micro-CT technology /
- mesostructure
-
图 4 3D机织预制体三点弯曲试样载荷-挠度曲线:((a)~(c)) 经纱密度5根/cm、8根/cm、10根/cm;((d)~(f)) 纬纱密度2.5根/cm、3.0根/cm、3.5根/cm
Figure 4. Load-deflection curves of three-point bending samples of 3D woven preform: ((a)-(c)) Warp densities of 5 ends/cm, 8 ends/cm
and 10 ends/cm; ((d)-(f)) Weft densities of 2.5 picks/cm, 3.0 picks/cm and 3.5 picks/cm 图 5 3D机织预制体三点弯曲试样临界弯曲能量
Figure 5. Critical bending energy of three-point bending sample of 3D woven preform
Ei—Bending energy under a certain bending deflection; F—Bending load; Fc—Critical bending load value; Fi—Bending load value under a certain bending deflection; d—Bending deflection; dc—Critical bending deflection value; Δd—Unit bending deflection value
表 1 3D机织预制体结构参数
Table 1. Structure parameters of 3D woven preforms
Sample Number of warp layer Number of weft layer Apparent thickness/mm Weaving point density/cm−2 J5W2.5 7 8 6.31 21.88 J5W3.0 6 7 5.89 22.50 J5W3.5 6 7 6.19 26.25 J8W2.5 5 6 6.78 25.00 J8W3.0 5 6 6.60 30.00 J8W3.5 4 5 5.97 28.00 J10W2.5 4 5 6.71 25.00 J10W3.0 4 5 7.00 30.00 J10W3.5 4 5 6.73 35.00 -
[1] 陈利, 赵世博, 王心淼. 三维纺织增强材料及其在航空航天领域的应用[J]. 纺织导报, 2018(S1):80-87. doi: 10.3969/j.issn.1003-3025.2018.z1.018CHEN L, ZHEN S B, WANG X M. Three-dimensional textile reinforcement and its application in aerospace[J]. Textile Herald,2018(S1):80-87(in Chinese). doi: 10.3969/j.issn.1003-3025.2018.z1.018 [2] 陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8):62-72. doi: 10.11868/j.issn.1001-4381.2020.000210CHEN L, JIAO W, WANG X M, et al. Research progress on mechanical properties of 3D woven composites[J]. Jour-nal of Materials Engineering,2020,48(8):62-72(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000210 [3] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001 [4] 杨志, 焦亚男, 谢军波, 等. 纺织复合材料纤维预制体力学性能测试方法的研究进展[J]. 复合材料学报, 2022, 39(4):1511-1533.YANG Z, JIAO Y N, XIE J B, et al. Research progress on testing methods for mechanical properties of textile compo-site fiber preforms[J]. Acta Materiae Compositae Sinica,2022,39(4):1511-1533(in Chinese). [5] JIAO W, CHEN L, XIE J B, et al. Effect of weaving structures on the geometry variations and mechanical properties of 3D LTL woven composites[J]. Composite Structures,2020,252:112756. doi: 10.1016/j.compstruct.2020.112756 [6] LABANIEH A R, GARNIER C, OUAGNE P, et al. Intra-ply yarn sliding defect in hemisphere preforming of a woven preform[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 432-446. [7] TURK M A, VERMES B, THOMPSON A J, et al. Mitigating forming defects by local modification of dry preforms[J]. Composites Part A: Applied Science and Manufacturing,2020,128:105643. [8] BOISSE P, HAMILA N, VIDAL-SALLE E, et al. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science and Technology,2011,71(5):683-692. doi: 10.1016/j.compscitech.2011.01.011 [9] SJOLANDER J, HALLANDER P, AKERMO M. Forming induced wrinkling of composite laminates: A numerical study on wrinkling mechanisms[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 41-51. [10] SULE G. Investigation of bending and drape properties of woven fabrics and the effects of fabric constructional parameters and warp tension on these properties[J]. Textile Research Journal,2012,82(8):810-819. doi: 10.1177/0040517511433152 [11] SYERKO E, COMAS-CARDONA S, BINETRUY C. Models of mechanical properties/behavior of dry fibrous materials at various scales in bending and tension: A review[J]. Composites Part A: Applied Science and Manufacturing,2012,43(8):1365-1388. doi: 10.1016/j.compositesa.2012.03.012 [12] BOISSE P, COLMARS J, HAMILA N, et al. Bending and wrinkling of composite fiber preforms and prepregs: A review and new developments in the draping simulations[J]. Composites Part B: Engineering,2018,141:234-249. doi: 10.1016/j.compositesb.2017.12.061 [13] PEIRCE F T. 26—the “Handle” of cloth as a measurable quantity[J]. Journal of the Textile Institute Transactions,1930,21(9):T377-T416. doi: 10.1080/19447023008661529 [14] DEBILBAO E, SOULAT D, HIVET G, et al. Experimental study of bending behaviour of reinforcements[J]. Experimental Mechanics,2009,50(3):333-351. [15] DANGORA L M, MITCHELL C J, SHERWOOD J A. Predic-tive model for the detection of out-of-plane defects formed during textile-composite manufacture[J]. Composites Part A: Applied Science and Manufacturing,2015,78:102-112. doi: 10.1016/j.compositesa.2015.07.011 [16] LAMMENS N, KERSEMANS M, LUYCKX G, et al. Improved accuracy in the determination of flexural rigidity of textile fabrics by the Peirce cantilever test (ASTM D1388)[J]. Textile Research Journal,2014,84(12):1307-1314. doi: 10.1177/0040517514523182 [17] KAWABATA S. The standardization and analysis of hand evaluation[M]. Osaka: The Textile Machinery Society of Japan, 1980. [18] ROPERS S, KARDOS M, OSSWALD T A. A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing,2016,90:22-32. doi: 10.1016/j.compositesa.2016.06.016 [19] SACHS U, AKKERMAN R. Viscoelastic bending model for continuous fiber-reinforced thermoplastic composites in melt[J]. Composites Part A: Applied Science and Manufacturing,2017,100:333-341. doi: 10.1016/j.compositesa.2017.05.032 [20] CALISKAN U, APALAK M K. Low velocity bending impact behavior of foam core sandwich beams: Experimental[J]. Composites Part B: Engineering,2017,112:158-175. doi: 10.1016/j.compositesb.2016.12.038 [21] CHARMETANT A, ORLIAC J G, VIDAL-SALLÉ E, et al. Hyperelastic model for large deformation analyses of 3D interlock composite preforms[J]. Composites Science and Technology,2012,72(12):1352-1360. doi: 10.1016/j.compscitech.2012.05.006 [22] LIANG B, COLMARS J, BOISSE P. A shell formulation for fibrous reinforcement forming simulations[J]. Compo-sites Part A: Applied Science and Manufacturing,2017,100:81-96. doi: 10.1016/j.compositesa.2017.04.024 [23] BOISSE P, BAI R, COLMARS J, et al. The need to use generalized continuum mechanics to model 3D textile compo-site forming[J]. Applied Composite Materials,2018,25(4):761-771. doi: 10.1007/s10443-018-9719-8 [24] MARGOSSIAN A, BEL S, HINTERHOELZL R. Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a dynamic mecha-nical analysis system[J]. Composites Part A: Applied Science and Manufacturing,2015,77:154-163. doi: 10.1016/j.compositesa.2015.06.015 [25] 中国国家标准化管理委员会. 三维编织物及其树脂基复合材料弯曲性能试验方法: GB/T 33621—2017[S]. 北京: 中国标准出版社, 2017.Standardization Administration of China. Test method for bending properties of 3D braided fabric and its polymer matrix composites: GB/T 33621—2017[S]. Beijing: Standards Press of China, 2017(in Chinese). -