Pyrolysis model construction and fire response prediction method of polycarbonate materials based on thermochemical reaction
-
摘要: 为研究火灾环境下的聚合物火灾响应,考虑瞬态热能传递和热解气体传输过程,根据热化学反应机制,从能量和质量两个方面描述聚合物热解和燃烧过程,建立聚合物热解模型,提出了火灾响应预报方法。以聚碳酸酯为研究对象,预测其质量损失和热释放速率,并探究了50 kW/m2单侧热流作用下材料在不同深度位置的热解和炭化规律。结果表明:该模型能够有效预测聚碳酸酯的质量损失和热释放特性;不同温升速率和热流密度条件下,模型计算得到的质量损失率峰值和平均热释放速率数值与实验结果吻合较好,误差分别低于6.0%和5.0%;三种热流密度下预测的点火时间与实验的误差分别为1.2%、8.6%和16%;相较于50 kW/m2热流密度下的平均热释放速率,在75 kW/m2和92 kW/m2条件下所预测的平均热释放速率分别提高14.6%和27.4%。Abstract: In order to study and predict the fire behavior of polymers under unilateral heating conditions, the transient heat transfer and pyrolysis gas transport processes were considered, and the pyrolysis and combustion processes of polymers were described from two aspects of energy and mass according to the thermochemical reaction mechanism, the polymer pyrolysis model was established, and the fire response prediction method was proposed. The mass loss and heat release rate of polycarbonate were predicted, and the pyrolysis and carbonization of the material at different depths under the unilateral heat flow of 50 kW/m2 were investigated. The results show that the model can effectively predict the mass loss and heat release characteristics of polycarbonate. Under different temperature rise rate and heat flux, the values of peak mass loss rate and soaking heat release rate calculated by the model agree well with the experimental results, and the errors are lower than 6.0% and 5.0%, respectively. Compared with the average heat release rate at 50kW/m2, the predicted average heat release rate at 75 kW/m2 and 92 kW/m2 is increased by 14.6% and 27.4%, respectively.
-
Key words:
- polymer material /
- fire response /
- numerical simulation /
- heat release rate /
- heat transfer
-
Parameter Value Pre-exponential factor/s−1 (1.9±1.1)×1018
[4.5×1024]*Activation energy/(J·mol−1) (2.95±0.06)×105
[4.01×105]*Heat of reaction/(J·kg−1) -(8.3±1.4)×105 Stoichiometric coefficients 0.21±0.01 Heat of combustion/(J·kg−1) (2.56±0.13)×107 Notes: * is the kinetic parameter obtained by fitting 30 K min−1 experiment Property PC value PCchar value PCgas value Density/(kg·m−3) 1180 ±60- - Specific heat/((J·(kg·K)−1) 1900 ±3001720 ±1701000 Thermal conductivity(W·(m·K)−1) 0.22±0.03 - - Reflectivity 0.10±0.05 0.15±0.05 - Radiation absorption coefficients/(m2·kg−1) 1.5±0.5 100 1.5 Notes:PC —Undecomposed polycarbonate;PCchar—Char produced by pyrolysis of polycarbonate;PCgas—Gaseous product of polycarbonate pyrolysis. -
[1] 王东辉, 刘全义, 李泽锟, 等. 不同热辐射强度下聚碳酸酯的燃烧性能研究[J]. 塑料科技, 2020, 48(10): 13-16.WANG Donghui, LIU Quanyi, LI Z ekun, et al. Research on the Combustion Performance of Polycarbonate Under Different Heat Radiation Intensity[J]. Plastics Science and Technology 2020, 48(10): 13-16(in Chinese). [2] 史国力, 李复生, 田红兵. 聚碳酸酯在汽车和航空透明材料领域应用的研究进展[J]. 材料导报, 2006, (S1): 404-407.SHI Guoli, LI Fusheng, TIAN Hongbing. Advances and Application of Polycarbonate in Auto mobil Windows and Aero Glass. [J] Materials Reports , 2006, (S1): 404-407(in Chinese). [3] 刘全义, 朱倩, 史彦龙. 典型航空旅客行李聚碳酸酯板材的燃烧特性[J]. 塑料工业, 2022, 50(11): 112-117+130.LIU Quanyi , ZHU Qian, SHI Yanlong. Combustion Characteristics of Polycarbonate for typical Air Passenger Luggage. [J] China Plastics Industry, 2022, 50(11): 112-117+130(in Chinese). [4] 单佳丽, 宋荣君, 李斌. 一种新型含硅阻燃剂的制备及在聚碳酸酯中的应用研究[J]. 塑料科技, 2016, 44(04): 90-94.SHAN Jiali, SONG Rongjun , LI Bin. Study on Preparation of A Novel Silicon-containing Flame Retardant and Its Application in Polycarbonate.[J]. Plastics Science and Technology, 2016, 44(04): 90-94(in Chinese). [5] Sell T, Vyazovkin S, Wight C A. Thermal decomposition kinetics of PBAN-binder and composite solid rocket propellants[J]. Combustion and flame, 1999, 119(1-2): 174-181. doi: 10.1016/S0010-2180(99)00036-X [6] Di Blasi C. Modeling and simulation of combustion processes of charring and non-charring solid fuels[J]. Progress in energy and combustion science, 1993, 19(1): 71-104. doi: 10.1016/0360-1285(93)90022-7 [7] Henderson J B, Wiebelt J A, Tant M R. A model for the thermal response of polymer composite materials with experimental verification[J]. Journal of composite materials, 1985, 19(6): 579-595. doi: 10.1177/002199838501900608 [8] Mcmanus H L N, Springer G S. High temperature thermomechanical behavior of carbon-phenolic and carbon-carbon composites, I. analysis[J]. Journal of Composite Materials, 1992, 26(2): 206-229. doi: 10.1177/002199839202600204 [9] Mcmanus H L N, Springer G S. High temperature thermomechanical behavior of carbon-phenolic and carbon-carbon composites, II. analysis[J]. Journal of Composite Materials, 1992, 26(2): 230-255. doi: 10.1177/002199839202600205 [10] Gibson A G, Wu Y S, Chandler H W, et al. Model for the thermal performance of thick composite laminates in hydrocarbon fires[J]. Revue de l'Institute Francais du Petrole, 1995, 50(1): 69-74. [11] Mouritz A P, Feih S, Kandare E, et al. Review of fire structural modelling of polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(12): 1800-1814. doi: 10.1016/j.compositesa.2009.09.001 [12] McDermott R, McGrattan K, Hostikka S. Fire dynamics simulator (version 5) technical reference guide[J]. NIST Special Publication, 2008, 1018(5): 3-4. [13] Lautenberger C, Fernandez-Pello C. Generalized pyrolysis model for combustible solids[J]. Fire Safety Journal, 2009, 44(6): 819-839. doi: 10.1016/j.firesaf.2009.03.011 [14] Stoliarov S I, Lyon R E. Thermo-kinetic model of burning for pyrolyzing materials[J]. Fire Safety Science, 2008, 9: 1141-1152. doi: 10.3801/IAFSS.FSS.9-1141 [15] Gong J, Zhang M. Pyrolysis and autoignition behaviors of oriented strand board under power-law radiation[J]. Renewable Energy, 2022, 182: 946-957. doi: 10.1016/j.renene.2021.11.032 [16] Zhang Z, Wang C, Huang G, et al. Thermal degradation behaviors and reaction mechanism of carbon fibre-epoxy composite from hydrogen tank by TG-FTIR[J]. Journal of hazardous materials, 2018, 357: 73-80. doi: 10.1016/j.jhazmat.2018.05.057 [17] Gong J, Chen Y, Jiang J, et al. A numerical study of thermal degradation of polymers: Surface and in-depth absorption[J]. Applied Thermal Engineering, 2016, 106: 1366-1379. doi: 10.1016/j.applthermaleng.2016.06.114 [18] 李翰, 樊茂华, 冯振宇, 等. 玻璃纤维/酚醛树脂复合材料热响应预报方法[J]. 复合材料学报, 2019, 36(6): 1457-1463.LI Han, FAN Maohua, FENG Zhenyu, et al. Forecasting method for thermal response of glass fiber/phenolic resin composites[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1457-1463(in Chinese). [19] Tranchard P, Samyn F, Duquesne S, et al. Modelling behaviour of a carbon epoxy composite exposed to fire: part II —comparison with experimental results[J]. Materials, 2017, 10(5): 470. doi: 10.3390/ma10050470 [20] Whiting P, Dowden J M, Kapadia P D, et al. A one-dimensional mathematical model of laser induced thermal ablation of biological tissue[J]. Lasers in medical science, 1992, 7: 357-368. doi: 10.1007/BF02594073 [21] Quintiere J, Iqbal N. An approximate integral model for the burning rate of a thermoplastic-like material[J]. Fire and Materials, 1994, 18(2): 89-98. doi: 10.1002/fam.810180205 [22] Li J, Stoliarov S I. Measurement of kinetics and thermodynamics of the thermal degradation for non-charring polymers[J]. Combustion and Flame, 2013, 160(7): 1287-1297. doi: 10.1016/j.combustflame.2013.02.012 [23] 丁彦铭, 张雪婷, 杜文州, 等. 基于多组分热解气体的炭化可燃物燃烧模拟[J]. 中国安全科学学报, 2020, 30(9): 155-163.DING Yanming, ZHANG Xueting, DU Wenzhou, et al. Simulation of charring solid combustion based on multiple pyrolysis gases[J]. China Safety Science Journal, 2020, 30(9): 155-163(in Chinese). [24] 时圣波, 张云天, 胡励, 等. 硅橡胶基防热涂层烧蚀机理及热解/传导耦合模型[J]. 航空动力报, 2023, 38(9): 2049-2061.SHI Shengbo, ZHANG Yuntian, HU Li, et al. Ablation mechanism and coupling pyrolysis/conduction model of a silicone rubber matrix thermal protection coating[J]. Journal of Aerospace Power, 2023, 38(9): 2049-2061(in Chinese). [25] Ji W, Richter F, Gollner M J, et al. Autonomous kinetic modeling of biomass pyrolysis using chemical reaction neural networks[J]. Combustion and Flame, 2022, 240: 111992. doi: 10.1016/j.combustflame.2022.111992 [26] Guo J, Huang J, Huang H, et al. Pyrolysis layer model of polymer matrix composites with heating rate and pressure[J]. Thermal Science and Engineering Progress, 2022, 28: 101068. doi: 10.1016/j.tsep.2021.101068 [27] Babrauskas V, Peacock R D. Heat release rate: the single most important variable in fire hazard[J]. Fire safety journal, 1992, 18(3): 255-272. doi: 10.1016/0379-7112(92)90019-9 [28] Stoliarov S I, Lyon R E. Thermo-kinetic model of burning for pyrolyzing materials[J]. Fire Safety Science, 2008, 9: 1141-1152. doi: 10.3801/IAFSS.FSS.9-1141 [29] Stoliarov S I, Crowley S, Walters R N, et al. Prediction of the burning rates of charring polymers[J]. Combustion and Flame, 2010, 157(11): 2024-2034. doi: 10.1016/j.combustflame.2010.03.011 [30] Lyon R E, Quintiere J G. Criteria for piloted ignition of combustible solids[J]. Combustion and Flame, 2007, 151(4): 551-559. doi: 10.1016/j.combustflame.2007.07.020 [31] Lundström F V, Sunderland P B, Quintiere J G, et al. Study of ignition and extinction of small-scale fires in experiments with an emulating gas burner[J]. Fire safety journal, 2017, 87: 18-24. doi: 10.1016/j.firesaf.2016.11.003 [32] Snegirev A Y, Talalov V A, Stepanov V V, et al. A new model to predict pyrolysis, ignition and burning of flammable materials in fire tests[J]. Fire safety journal, 2013, 59: 132-150. doi: 10.1016/j.firesaf.2013.03.012 [33] Mouritz A P, Gibson A G. Fire properties of polymer composite materials[M]. Springer Science & Business Media, 2007. [34] 闵新民, 安继明, 饶宝林, 等. 聚合物基纳米复合材料热导率计算[J]. 武汉理工大学学报, 2007, (7): 26-29. doi: 10.3321/j.issn:1671-4431.2007.07.007YAN Xinmin, AN Jiming, RAO Baolin, et al. Calculation on heat conduction of polymer matrix nano-composites[J]. Journal of wuhan university of technology, 2007, (7): 26-29(in Chinese). doi: 10.3321/j.issn:1671-4431.2007.07.007 [35] 杨德军, 李旭东. 碳化烧蚀材料内部热响应的数值分析[J]. 化工新型材料, 2014, 42(2): 139-141.YANG Dejun, LI Xudong. Numerical analysis of internal thermal response for carbonized ablation materials[J]. New Chemical Materials, 2014, 42(2): 139-141(in Chinese). [36] 高家一, 杜涛, 沈颖哲, 等. 低密度烧蚀材料在中高热流环境应用的试验研究和理论预测[J]. 实验流体力学, 2016, 30(6): 37-42. doi: 10.11729/syltlx20160015GAO Jiayi, DU Tao, SHEN Yingzhe, et al. Predication and wind tunnel experimental verification of thermal protection performance for low density ablative material in medium thermal environment[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 37-42(in Chinese). doi: 10.11729/syltlx20160015 [37] 王颖泽, 张小兵, 宋新南. 超急速传热过程中热弹性响应的解析分析[J]. 工程力学, 2012, 29(11): 313-318. doi: 10.6052/j.issn.1000-4750.2011.04.0221WANG Yingze, ZHANG Xiaobing, SONG Xinnan. Analytical solution of thermoelastic response in rapid transient heat conduction[J]. Engineering Mechanics, 2012, 29(11): 313-318(in Chinese). doi: 10.6052/j.issn.1000-4750.2011.04.0221 [38] Patel P, Hull T R, Lyon R E, et al. Investigation of the thermal decomposition and flammability of PEEK and its carbon and glass-fibre composites[J]. Polymer degradation and stability, 2011, 96(1): 12-22. doi: 10.1016/j.polymdegradstab.2010.11.009 [39] 阮文斌, 吕震宙, 安军, 等. 不确定条件下复合材料结构的全局灵敏度分析[J]. 复合材料学报, 2014, 31(3): 699-706.RUAN Wenbin, LYU Zhenzhou, AN Jun, et al. Global sensitivity analysis for composite structures with uncertainties[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 699-706(in Chinese). [40] Ramroth W T, Krysl P, Asaro R J. Sensitivity and uncertainty analyses for FE thermal model of FRP panel exposed to fire[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(7): 1082-1091. doi: 10.1016/j.compositesa.2005.01.031 [41] Stoliarov S I, Safronava N, Lyon R E. The effect of variation in polymer properties on the rate of burning[J]. Fire and Materials: An International Journal, 2009, 33(6): 257-271. doi: 10.1002/fam.1003
点击查看大图
计量
- 文章访问数: 43
- HTML全文浏览量: 16
- 被引次数: 0