留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲面结构经编多轴向玻璃纤维复合材料制备及弯曲性能

徐海南 刘策 杨金伟 高晓平

徐海南, 刘策, 杨金伟, 等. 曲面结构经编多轴向玻璃纤维复合材料制备及弯曲性能[J]. 复合材料学报, 2023, 40(8): 4511-4521
引用本文: 徐海南, 刘策, 杨金伟, 等. 曲面结构经编多轴向玻璃纤维复合材料制备及弯曲性能[J]. 复合材料学报, 2023, 40(8): 4511-4521
XU Hainan, LIU Ce, YANG Jinwei, GAO Xiaoping. Preparation and bending properties of curved structure composite reinforced with multi-axial warp-knitted glass fabric[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4511-4521.
Citation: XU Hainan, LIU Ce, YANG Jinwei, GAO Xiaoping. Preparation and bending properties of curved structure composite reinforced with multi-axial warp-knitted glass fabric[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4511-4521.

曲面结构经编多轴向玻璃纤维复合材料制备及弯曲性能

基金项目: 国家自然科学基金(51765051);内蒙古自然科学基金(2021 MS01010)
详细信息
    通讯作者:

    高晓平,博士,教授,博士生导师,研究方向为复合材料改性及力学性能研究,复合材料工程应用 E-mail: gaoxp@imut.edu.cn

  • 中图分类号: TB332

Preparation and bending properties of curved structure composite reinforced with multi-axial warp-knitted glass fabric

Funds: National Natural Science Foundation of China(51765051);Natural Science Foundation of Inner Mongolia(2021 MS01010)
  • 摘要: 曲面结构复合材料以其轻质高强、造型与功能的多样化、快速施工建造等特点,在各类大型建筑上得到广泛应用。由于室外建筑物需常年承受较大的风雨雪等荷载和结构自重,对其弯曲性能提出严格要求。多轴向经编玻璃纤维织物具有良好的贴服性、渗透性及弯曲特性,适合制备曲面异形结构件。本文采用3D打印技术制备曲面结构模具,分别以双轴向和四轴向经编玻璃纤维织物为增强体,以环氧树脂与固化剂的混合胶液为基体,基于真空辅助成型(VARTM)工艺分别制备平板结构和曲面结构复合材料试样。实验分析了2种增强体结构(双轴向和四轴向织物)、沿不同方向(0°和 90°)复合材料试样弯曲性能。在此基础上,依托实际工程背景,根据曲面结构建筑穹顶的受力,分析受力机理,曲率半径对曲面复合材料破坏机理与损伤形貌的影响。基于准静态压痕试验试验,分析2种增强体铺层结构、3种曲率半径(80mm、150mm、260mm)对曲面结构复合材料准静态压痕特性的影响,应用高倍显微镜观察试样断裂形貌特征和分析损伤演化。实验结果为多轴向复合材料在曲面结构建筑穹顶应用提供一定借鉴。

     

  • 图  1  多轴向经编玻璃纤维织物

    Figure  1.  Multi-axial warp-knitted fabric

    图  2  曲面模具示意图

    Figure  2.  Schematic diagram of curved-surface mould

    图  3  准静态压痕测试试样

    Figure  3.  Quasi-static indentation test specimen

    图  4  三点弯曲示意图及试验

    Figure  4.  Three point bending diagram and test

    图  5  准静态压痕测试设备及试样

    Figure  5.  Quasi-static indentation test equipment and specimens

    图  6  经编多轴向玻璃纤维复合材料沿不同方向弯曲应力-应变曲线

    Figure  6.  Bending stress-strain curves of composite reinforced with multi-axial warp-knitted glass fabric in different direction

    图  7  经编多轴向玻璃纤维复合材料弯曲失效示意图

    Figure  7.  Bending failure diagram of composite reinforced with multi-axial warp-knitted glass fabric

    图  8  不同曲率经编多轴向玻璃纤维复合材料载荷-位移曲线

    Figure  8.  Load-displacement curves of composite reinforced with multi-axial warp-knitted glass fabric with different curvature

    图  9  曲面结构经编多轴向玻璃纤维复合材料失效实物图

    Figure  9.  Physical failure diagram of curved structure composite reinforced with multi-axial warp-knitted glass fabric

    图  10  曲面结构经编多轴向玻璃纤维复合材料压痕损伤示意图

    Figure  10.  Indentation damage of curved structure composite reinforced with multi-axial warp-knitted glass fabric

    表  1  多轴向玻璃纤维经编织物基本参数

    Table  1.   Basic parameters of multi-axial warp-knitted fabric

    Fabric structureAxial/(°)Linear density/texLayer numberWeaving density/(yarn·10 cm−1)Surface density /(g·m−2)Thickness/mm
    Biaxial2400227 1200 1
    90°150022
    Quadriaxial6003398000.7
    45°30055
    90°30055
    −45°30040
    下载: 导出CSV

    表  2  复合材料试样及性能测试

    Table  2.   Composite material specimens and performance tests

    Specimen structureFabric
    structure
    Test directionType of
    test
    FlatBiaxial0°/90°Bending properity
    Quadriaxial0°/90°
    CurvedBiaxial-Quasi-static indentation
    Quadriaxial-
    下载: 导出CSV

    表  3  弯曲试样实际尺寸

    Table  3.   Actual size of bending sample

    SpecimenTest directionAverage width/mmAverage thickness/mmAverage span/mm
    Biaxial12.793.2051.20
    90°12.633.1750.72
    Quadriaxial12.852.9847.68
    90°12.713.0648.96
    下载: 导出CSV

    表  4  准静态压痕测试试件参数

    Table  4.   Quasi-static indentation test specimen parameters

    SymbolDesignationValue/mm
    aLength75±1
    bWidth75±1
    cHalf Length40±0.5
    dDiameter50±1
    eThickness15±1
    下载: 导出CSV

    表  5  经编多轴向玻璃纤维复合材料试样灼烧前后的质量、体积和纤维体积分数

    Table  5.   Volume, weight before and after burning and fiber volume fractions of composite reinforced with multi-axial warp-knitted glass fabric

    SpecimenSpecimen volume/cm3Specimen weight/gWeight after burning/gMatrix weight
    /g
    Fiber volume fraction/%
    Biaxial1.4823.2172.4020.81556.68
    Quadriaxial1.4683.1962.2350.96150.80
    下载: 导出CSV

    表  6  经编多轴向玻璃纤维复合材料弯曲性能参数

    Table  6.   Parameters of bending performance of composite reinforced with multi-axial warp-knitted glass fabric

    SpecimenDirection/ (°)Maximum load/NMaximum strain/%Bending strength/MPaBending modulus/GPaEquivalent strength/MPaEquivalent modulus/GPa
    Biaxial01255.592.78741.4932.89588.6926.11
    90729.582.10430.8529.98342.0723.80
    Quadriaxial0541.755.27341.269.42302.308.34
    90329.644.99194.675.54172.444.91
    下载: 导出CSV

    表  7  曲面结构经编多轴向玻璃纤维复合材料准静态压痕实验结果

    Table  7.   Results of quasi-static indentation experiment of curved structure composite reinforced with multi-axial warp-knitted glass fabric

    SpecimenCurvature
    radius/mm
    Maximum
    displacement/mm
    Maximum
    load/N
    Biaxial805.752431.3
    1507.618462.5
    2606.5910587.5
    Quadriaxial809.813337.5
    1507.735250.0
    2604.705150.0
    下载: 导出CSV
  • [1] BLONDER A, GROBMAN Y J. Design and fabrication with fibre-reinforced polymers in architecture: a case for complex geometry[J]. Architectural Science Review,2016,59(4):257-268. doi: 10.1080/00038628.2015.1020479
    [2] 摩西·萨夫迪, 相南. 准则, 秩序与复杂性[J]. 世界建筑, 2011(8):19-31.

    MOSHE Safdie, XIANG Nan. On ethics, order and complexity[J]. World Architecture,2011(8):19-31(in Chinese).
    [3] 徐进, 张伟. 多轴向经编复合材料在风电叶片制造中的应用[J]. 玻璃钢/复合材料, 2010(5):78-80. doi: 10.3969/j.issn.1003-0999.2010.05.018

    XU Jin, ZHANG Wei. Application of multi-axial warp-kitted technology in wind turbing blade design[J]. Composites Science and Engineering,2010(5):78-80(in Chinese). doi: 10.3969/j.issn.1003-0999.2010.05.018
    [4] 姜永恺. 高性能纤维的现状及应用[J]. 棉纺织技术, 2000(6):6-9. doi: 10.3969/j.issn.1001-7415.2000.06.001

    JIANG Yongkai. The status-quo and Application of High-performance Fibers[J]. Cotton Textile Technology,2000(6):6-9(in Chinese). doi: 10.3969/j.issn.1001-7415.2000.06.001
    [5] GURUNATHAN T, MOHANTY S, NAYAK S K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives[J]. Composites Part A,2015:77.
    [6] 钟文鑫, 马丕波. 风电叶片用多轴向经编织物发展现状[J]. 玻璃纤维, 2015(6):35-39. doi: 10.3969/j.issn.1005-6262.2015.06.008

    ZHONG Wenxin, MA Pibo. Development of Multi-Axial Warp-Knitted Fabrics for Wind Turbine Blades[J]. Fiber Glass,2015(6):35-39(in Chinese). doi: 10.3969/j.issn.1005-6262.2015.06.008
    [7] 沈军, 谢怀勤. 航空用复合材料的研究与应用进展[J]. 玻璃钢/复合材料, 2006(5):48-54. doi: 10.3969/j.issn.1003-0999.2006.05.013

    SHEN Jun, XIE Huaiqin. Recent progress in study and application of composite materials for aeronautical engineering[J]. Composites Science and Engineering,2006(5):48-54(in Chinese). doi: 10.3969/j.issn.1003-0999.2006.05.013
    [8] 党乐, 张梦雨, 成艳娜, 等. 3 D打印技术在复合材料中的应用与发展[J]. 科技创新与应用, 2022, 12(24):166-169.

    DANG Le, ZHANG Mengyu, CHENG Yanna, et al. Application and development of 3 D printing technology in composite materials[J]. Technology Innovation and Application,2022,12(24):166-169(in Chinese).
    [9] 陈晓明, 陆承麟, 龚明, 等. 超大尺度高分子复合材料3 D打印技术研发与应用[J]. 施工技术, 2021, 50(21):41-45.

    CHEN Xiaoming, LU Chenglin, GONG Ming, et al. Research and Application of 3 D Printing Technology for Super Large-scale Polymer Composite Material[J]. Construction Technology,2021,50(21):41-45(in Chinese).
    [10] Jeon K W, Shin K B, Kimc J S. A study on fatigue life and strength of a GFRP composite bogie frame for urban subway trains[J]. Procedia Engineering,2011,10:2405-2410. doi: 10.1016/j.proeng.2011.04.396
    [11] 张霓, 郑晨阳, 羡丽娜, 等. 玻璃纤维增强树脂复合材料管-钢筋/混凝土空心构件抗弯性能[J]. 复合材料学报, 2020, 37(12):3052-3063. doi: 10.13801/j.cnki.fhclxb.20200417.001

    ZHANG Ni, ZHENG Chenyang, XIAN Lina, et al. Flexural behavior of glass fiber reinforced polymer tube filled with steel bars/concrete hollow members[J]. Acta Materiae Compositae Sinica,2020,37(12):3052-3063(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200417.001
    [12] Kassegne S K, Chun K. Erratum to: Buckling characteristic of multi-laminated composite elliptical cylindrical shells[J]. International journal of advanced structural engineering,2015,7(4):405. doi: 10.1007/s40091-015-0105-6
    [13] 孟鑫淼. 复合材料曲面夹芯板受力性能及应用技术研究[D]. 清华大学, 2017.

    MENG Xinmiao. Mechanical Behavior and Application Technology of FRP Curved Sandwich Panels [D]. Tsinghua University , 2017(in Chinese).
    [14] 李晓英. 三维横编间隔结构曲面复合材料制备及低速冲击性能[D]. 江南大学, 2019.

    LI Xiaoying. Preparation of three-dimensional curved flat-knitted spacer fabric composites and its low-velocity impact property [D]. Jiangnan University, 2019(in Chinese).
    [15] 汪浩, 徐珍珍, 阮芳涛, 等. 增强体织物组织结构对曲面复合材料力学性能的影[J]. 中国塑料, 2019, 33(3):22-27. doi: 10.19491/j.issn.1001-9278.2019.03.005

    WANG Hao, XU Zhenzhen, RUAN Fangtao, et al. Effect of Reinforced Fabrics Structure on Mechanical Properties of Curved Composites[J]. China Plastics,2019,33(3):22-27(in Chinese). doi: 10.19491/j.issn.1001-9278.2019.03.005
    [16] 郭绍华, 张东致, 冉安国, 等. VARI工艺在大型曲面复合材料制件上的工程化应用研究[J]. 粘接, 2017, 38(8):64-67. doi: 10.3969/j.issn.1001-5922.2017.08.012

    GUO Shaohua, ZHANG Dongzhi, RAN Anguo, et al. Engineering application of VARI process in manufacturing of large curve-surface composite parts[J]. Adhesion,2017,38(8):64-67(in Chinese). doi: 10.3969/j.issn.1001-5922.2017.08.012
    [17] 李帅, 姚盛杰, 何文涛, 等. GFRP约束微珠泡沫柱准静态受压性能[J]. 材料科学与工程学报, 2022, 40(1):129-134.

    LI Shuai, YAO Shengjie, HE Wentao, et al. Compressive Behavior of GFRP Confined Syntactic Foam Columns Under Quasi-static Loads[J]. Journal of Materials Science &Engineering,2022,40(1):129-134(in Chinese).
    [18] 高哲. 多轴向经编曲面复合材料低速冲击性能研究[D]. 江南大学, 2017.

    GAO Zhe. Research on low-velocity impact mechanism of curved multi-axial warp-knitted composites[D]. Jiangnan University, 2017(in Chinese).
    [19] Muscat-Fenech C D M, Cortis J, Cassar C. Characterizing QSLVII Damage of Composite Sandwich Hulls[J]. Procedia Engineering,2014,88:141-148. doi: 10.1016/j.proeng.2014.11.137
    [20] 李鹤, 张超, 季宏丽, 等. 基于导波检测的带曲率复合材料板损伤识别技术研究[J]. 国外电子测量技术, 2019, 38(5):75-80. doi: 10.19652/j.cnki.femt.1801318

    LI He, ZHANG Chao, JI Hongli, et al. Damage identification technology of composite plate with curvature based on guided wave detection[J]. Foreign Electronic Measurement Technology,2019,38(5):75-80(in Chinese). doi: 10.19652/j.cnki.femt.1801318
    [21] Seifoori S, Mahdian Parrany A, Mirzarahmani S. Impact damage detection in CFRP and GFRP curved composite laminates subjected to low-velocity impacts[J]. Composite structures,2021,261:113278. doi: 10.1016/j.compstruct.2020.113278
    [22] 董云龙, 梅志远, 张二, 等. 大曲率复合材料壳板弯曲试验及仿真[J]. 舰船科学技术, 2020, 42(13):40-44. doi: 10.3404/j.issn.1672-7649.2020.07.008

    DONG Yunlong, MEI Zhiyuan, ZHANG Er, et al. Research on bending test and simulation study of large curature composite shell plate[J]. Ship Science and Technology,2020,42(13):40-44(in Chinese). doi: 10.3404/j.issn.1672-7649.2020.07.008
    [23] 高哲, 蒋高明. 多轴向经编曲面复合材料汽车门低速碰撞数值模拟[J]. 纺织学报, 2018, 39(2):43-48. doi: 10.13475/j.fzxb.20171006206

    GAO Zhe, JIANG Gaoming. Finite element analysis of curved multi-axial warp-knitted composite car door under low-velocity impact[J]. Journal of Textile Research,2018,39(2):43-48(in Chinese). doi: 10.13475/j.fzxb.20171006206
    [24] 郑晓霞, 郑锡涛, 沈真, 等. 低速冲击与准静态压痕力下复合材料层合板的损伤等效性[J]. 航空学报, 2010, 31(5):928-933.

    ZHENG Xiaoxia, ZHENG Xitao, SHENG Zhen, et al. Damage Equivalent of Composite Laminates Subjected to Drop-weight Impact and Quasi-static Indentation Force[J]. Acta Aeronautica et Astronautica Sinica,2010,31(5):928-933(in Chinese).
    [25] 沈真, 杨胜春, 陈普会. 复合材料抗冲击性能和结构压缩. 设计许用值[J]. 航空学报, 2007, 28(3):561-566. doi: 10.3321/j.issn:1000-6893.2007.03.010

    Shen Zhen, Yang Shengchun, Chen Puhui. Behaviors of composite materials to withstand impact and structural compressive design allowablene[J]. Acta Aeronautica et Astronautica Sinica,2007,28(3):561-566(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.03.010
    [26] Xu S, Chen P H. Prediction of Low Velocity Impact Damage in carbon/epoxy Laminates[J]. Procedia Engineering,2013,67:489-496. doi: 10.1016/j.proeng.2013.12.049
    [27] Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials: ASTM D790-2015 [S]. 2015.
    [28] Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer-Matrix Composite to a Concentrated Quasi-Static Indentation Force: ASTM D6264/D6264 M-17[S]. 2017.
    [29] 复合材料成分含量的试验方法: ASTM D3171-2015[S].

    Standard Test Methods for Constituent Content of Composite Materials: ASTM D3171-2015[S]. 2015.
    [30] Carlsson L A, Adams D F, Pipes R B. Experimental Characterization of Advanced Composite Materials[M]. Taylor & Francis Group, 2014.
    [31] 杨晓日. 多轴向玻璃纤维复合材料力学性能的温度效应研究[D]. 内蒙古工业大学, 2019.

    YANG Xiaori. Research of temperature effect on mechanical properties of multi-axial glass fiber composites [D]. Inner Mongolia University of Technology, 2019(in Chinese).
    [32] 黄光启, 程鹏飞, 杨胜春, 等. 准静态压痕力作用下复合材料层压板损伤分析方法[J]. 纤维复合材料, 2018, 35(3):48-52. doi: 10.3969/j.issn.1003-6423.2018.03.011

    HUANG Guangqi, CEHNG Pengfei, YANG Shengchun, et al. The analysis method of quasi-static indentation force damage of composite laminate[J]. Fiber Composites,2018,35(3):48-52(in Chinese). doi: 10.3969/j.issn.1003-6423.2018.03.011
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  112
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-25
  • 修回日期:  2022-10-17
  • 录用日期:  2022-10-28
  • 网络出版日期:  2022-11-09
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回