留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲面结构经编多轴向玻璃纤维复合材料制备及弯曲性能

徐海南 刘策 杨金伟 高晓平

徐海南, 刘策, 杨金伟, 等. 曲面结构经编多轴向玻璃纤维复合材料制备及弯曲性能[J]. 复合材料学报, 2023, 40(8): 4506-4516. doi: 10.13801/j.cnki.fhclxb.20221104.001
引用本文: 徐海南, 刘策, 杨金伟, 等. 曲面结构经编多轴向玻璃纤维复合材料制备及弯曲性能[J]. 复合材料学报, 2023, 40(8): 4506-4516. doi: 10.13801/j.cnki.fhclxb.20221104.001
XU Hainan, LIU Ce, YANG Jinwei, et al. Preparation and bending properties of curved structure composite reinforced with multi-axial warp-knitted glass fabric[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4506-4516. doi: 10.13801/j.cnki.fhclxb.20221104.001
Citation: XU Hainan, LIU Ce, YANG Jinwei, et al. Preparation and bending properties of curved structure composite reinforced with multi-axial warp-knitted glass fabric[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4506-4516. doi: 10.13801/j.cnki.fhclxb.20221104.001

曲面结构经编多轴向玻璃纤维复合材料制备及弯曲性能

doi: 10.13801/j.cnki.fhclxb.20221104.001
基金项目: 国家自然科学基金(51765051);内蒙古自然科学基金(2021 MS01010)
详细信息
    通讯作者:

    高晓平,博士,教授,博士生导师,研究方向为复合材料改性及力学性能研究、复合材料工程应用 E-mail: gaoxp@imut.edu.cn

  • 中图分类号: TB332

Preparation and bending properties of curved structure composite reinforced with multi-axial warp-knitted glass fabric

Funds: National Natural Science Foundation of China (51765051); Natural Science Foundation of Inner Mongolia (2021 MS01010)
  • 摘要: 分别以双轴向和四轴向经编玻璃纤维织物为增强体,基于真空辅助树脂传递模塑成型工艺制备平板和曲面结构复合材料试样。实验测试复合材料弯曲性能和准静态压痕特性,实验测试不同铺层结构试样沿不同方向(0°和 90°)的弯曲性能。在此基础上,分析增强体铺层结构、曲率半径对曲面结构复合材料准静态压痕特性的影响。结果表明:双轴向经编玻璃纤维复合材料试样沿0°和90°方向当量弯曲强度分别比四轴向编玻璃纤维复合材料增加94.74%、98.37%,四轴向经编玻璃纤维复合材料试样沿0°和90°方向的最大断裂应变分别是双轴向经编玻璃纤维复合材料试样的1.9倍和2.4倍。当双轴向复合材料曲率半径为260 mm、四轴向复合材料曲率半径为150 mm时,承载能力最优;当双轴向复合材料曲率半径为150 mm、四轴向复合材料曲率半径为80 mm时,应变特性最优。实验结果为曲面结构玻璃纤维复合材料在各类室外建筑穹顶构件的应用提供借鉴。

     

  • 图  1  多轴向经编玻璃纤维织物

    Figure  1.  Multi-axial warp-knitted fabric

    图  2  曲面模具示意图

    Figure  2.  Schematic diagram of curved-surface mould

    图  3  准静态压痕测试试样

    Figure  3.  Quasi-static indentation test specimen

    图  4  三点弯曲示意图及试验

    L—Length; h—Thickness; I—Span

    Figure  4.  Three point bending diagram and test

    图  5  准静态压痕测试设备及试样

    Figure  5.  Quasi-static indentation test equipment and specimens

    图  6  经编多轴向玻璃纤维复合材料沿不同方向弯曲应力-应变曲线

    Figure  6.  Bending stress-strain curves of composite reinforced with multi-axial warp-knitted glass fabric in different direction

    图  7  经编多轴向玻璃纤维复合材料弯曲失效示意图

    Figure  7.  Bending failure diagram of composite reinforced with multi-axial warp-knitted glass fabric

    图  8  不同曲率经编多轴向玻璃纤维复合材料载荷-位移曲线

    Figure  8.  Load-displacement curves of composite reinforced with multi-axial warp-knitted glass fabric with different curvature

    图  9  曲面结构经编多轴向玻璃纤维复合材料失效实物图

    r—Radius

    Figure  9.  Physical failure diagram of curved structure composite reinforced with multi-axial warp-knitted glass fabric

    图  10  曲面结构经编多轴向玻璃纤维复合材料压痕损伤示意图

    Figure  10.  Indentation damage of curved structure composite reinforced with multi-axial warp-knitted glass fabric

    表  1  多轴向玻璃纤维经编织物基本参数

    Table  1.   Basic parameters of multi-axial warp-knitted fabric

    Fabric structureAxial/(°)Linear density/texLayer numberWeaving density/(yarn·10 cm−1)Surface density/(g·m−2)Thickness/mm
    Biaxial 2400 2 27 1200 1.0
    90° 1500 22
    Quadriaxial 600 3 39 800 0.7
    45° 300 55
    90° 300 55
    −45° 300 40
    下载: 导出CSV

    表  2  复合材料试样及性能测试

    Table  2.   Composite material specimens and performance tests

    Specimen structureFabric
    structure
    Test directionType of
    test
    FlatBiaxial0°/90°Bending properity
    Quadriaxial0°/90°
    CurvedBiaxialQuasi-static indentation
    Quadriaxial
    下载: 导出CSV

    表  3  弯曲试样实际尺寸

    Table  3.   Actual size of bending sample

    SpecimenTest directionAverage width/mmAverage thickness/mmAverage span/mm
    Biaxial12.793.2051.20
    90°12.633.1750.72
    Quadriaxial12.852.9847.68
    90°12.713.0648.96
    下载: 导出CSV

    表  4  准静态压痕测试试件参数

    Table  4.   Quasi-static indentation test specimen parameters

    DesignationValue/mm
    Length a75±1
    Width b75±1
    Half length c40±0.5
    Diameter d50±1
    Thickness e15±1
    下载: 导出CSV

    表  5  经编多轴向玻璃纤维复合材料试样灼烧前后的质量、体积和纤维体积分数

    Table  5.   Mass, volume before and after burning and fiber volume fractions of composite reinforced with multi-axial warp-knitted glass fabric

    SpecimenSpecimen volume/cm3Specimen mass/gMass after burning/gMatrix mass
    /g
    Fiber volume fraction/%
    Biaxial1.4823.2172.4020.81556.68
    Quadriaxial1.4683.1962.2350.96150.80
    下载: 导出CSV

    表  6  经编多轴向玻璃纤维复合材料弯曲性能参数

    Table  6.   Parameters of bending performance of composite reinforced with multi-axial warp-knitted glass fabric

    SpecimenDirection/(°)Maximum load/NMaximum strain/%Bending strength/MPaBending modulus/GPaEquivalent strength/MPaEquivalent modulus/GPa
    Biaxial 0 1255.59 2.78 741.49 32.89 588.69 26.11
    90 729.58 2.10 430.85 29.98 342.07 23.80
    Quadriaxial 0 541.75 5.27 341.26 9.42 302.30 8.34
    90 329.64 4.99 194.67 5.54 172.44 4.91
    下载: 导出CSV

    表  7  曲面结构经编多轴向玻璃纤维复合材料准静态压痕实验结果

    Table  7.   Results of quasi-static indentation experiment of curved structure composite reinforced with multi-axial warp-knitted glass fabric

    SpecimenCurvature
    radius/mm
    Maximum
    displacement/mm
    Maximum
    load/N
    Biaxial 80 5.75 2431.3
    150 7.61 8462.5
    260 6.59 10587.5
    Quadriaxial 80 9.81 3337.5
    150 7.73 5250.0
    260 4.70 5150.0
    下载: 导出CSV
  • [1] BLONDER A, GROBMAN Y J. Design and fabrication with fibre-reinforced polymers in architecture: A case for complex geometry[J]. Architectural Science Review,2016,59(4):257-268. doi: 10.1080/00038628.2015.1020479
    [2] 摩西·萨夫迪, 相南. 准则、秩序与复杂性[J]. 世界建筑, 2011(8):19-31.

    MOSHE Safdie, XIANG Nan. On ethics, order and comple-xity[J]. World Architecture,2011(8):19-31(in Chinese).
    [3] 徐进, 张伟. 多轴向经编复合材料在风电叶片制造中的应用[J]. 玻璃钢/复合材料, 2010(5):78-80. doi: 10.3969/j.issn.1003-0999.2010.05.018

    XU Jin, ZHANG Wei. Application of multi-axial warp-kitted technology in wind turbing blade design[J]. Compo-sites Science and Engineering,2010(5):78-80(in Chinese). doi: 10.3969/j.issn.1003-0999.2010.05.018
    [4] 姜永恺. 高性能纤维的现状及应用[J]. 棉纺织技术, 2000(6):6-9. doi: 10.3969/j.issn.1001-7415.2000.06.001

    JIANG Yongkai. The status-quo and application of high-performance fibers[J]. Cotton Textile Technology,2000(6):6-9(in Chinese). doi: 10.3969/j.issn.1001-7415.2000.06.001
    [5] GURUNATHAN T, MOHANTY S, NAYAK S K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives[J]. Composites Part A: Applied Science and Manufacturing,2015,77:1-25.
    [6] 钟文鑫, 马丕波. 风电叶片用多轴向经编织物发展现状[J]. 玻璃纤维, 2015(6):35-39. doi: 10.3969/j.issn.1005-6262.2015.06.008

    ZHONG Wenxin, MA Pibo. Development of multi-axial warp-knitted fabrics for wind turbine blades[J]. Fiber Glass,2015(6):35-39(in Chinese). doi: 10.3969/j.issn.1005-6262.2015.06.008
    [7] 沈军, 谢怀勤. 航空用复合材料的研究与应用进展[J]. 玻璃钢/复合材料, 2006(5):48-54. doi: 10.3969/j.issn.1003-0999.2006.05.013

    SHEN Jun, XIE Huaiqin. Recent progress in study and application of composite materials for aeronautical engineering[J]. Composites Science and Engineering,2006(5):48-54(in Chinese). doi: 10.3969/j.issn.1003-0999.2006.05.013
    [8] 党乐, 张梦雨, 成艳娜, 等. 3D打印技术在复合材料中的应用与发展[J]. 科技创新与应用, 2022, 12(24):166-169.

    DANG Le, ZHANG Mengyu, CHENG Yanna, et al. Application and development of 3D printing technology in composite materials[J]. Technology Innovation and Application,2022,12(24):166-169(in Chinese).
    [9] 陈晓明, 陆承麟, 龚明, 等. 超大尺度高分子复合材料3D打印技术研发与应用[J]. 施工技术, 2021, 50(21):41-45.

    CHEN Xiaoming, LU Chenglin, GONG Ming, et al. Research and application of 3D printing technology for super large-scale polymer composite material[J]. Construction Technology,2021,50(21):41-45(in Chinese).
    [10] JEON K W, SHIN K B, KIMC J S. A study on fatigue life and strength of a GFRP composite bogie frame for urban subway trains[J]. Procedia Engineering,2011,10:2405-2410. doi: 10.1016/j.proeng.2011.04.396
    [11] 张霓, 郑晨阳, 羡丽娜, 等. 玻璃纤维增强树脂复合材料管-钢筋/混凝土空心构件抗弯性能[J]. 复合材料学报, 2020, 37(12):3052-3063. doi: 10.13801/j.cnki.fhclxb.20200417.001

    ZHANG Ni, ZHENG Chenyang, XIAN Lina, et al. Flexural behavior of glass fiber reinforced polymer tube filled with steel bars/concrete hollow members[J]. Acta Materiae Compositae Sinica,2020,37(12):3052-3063(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200417.001
    [12] KASSEGNE S K, CHUN K. Erratum to: Buckling characteris-tic of multi-laminated composite elliptical cylindrical shells[J]. International Journal of Advanced Structural Engineering,2015,7(4):1-10. doi: 10.1007/s40091-015-0105-6
    [13] 孟鑫淼. 复合材料曲面夹芯板受力性能及应用技术研究[D]. 北京: 清华大学, 2017.

    MENG Xinmiao. Mechanical behavior and application technology of FRP curved sandwich panels[D]. Beijing: Tsinghua University, 2017(in Chinese).
    [14] 李晓英. 三维横编间隔结构曲面复合材料制备及低速冲击性能[D]. 无锡: 江南大学, 2019.

    LI Xiaoying. Preparation of three-dimensional curved flat-knitted spacer fabric composites and its low-velocity impact property[D]. Wuxi: Jiangnan University, 2019(in Chinese).
    [15] 汪浩, 徐珍珍, 阮芳涛, 等. 增强体织物组织结构对曲面复合材料力学性能的影[J]. 中国塑料, 2019, 33(3):22-27. doi: 10.19491/j.issn.1001-9278.2019.03.005

    WANG Hao, XU Zhenzhen, RUAN Fangtao, et al. Effect of reinforced fabrics structure on mechanical properties of curved composites[J]. China Plastics,2019,33(3):22-27(in Chinese). doi: 10.19491/j.issn.1001-9278.2019.03.005
    [16] 郭绍华, 张东致, 冉安国, 等. VARI工艺在大型曲面复合材料制件上的工程化应用研究[J]. 粘接, 2017, 38(8):64-67. doi: 10.3969/j.issn.1001-5922.2017.08.012

    GUO Shaohua, ZHANG Dongzhi, RAN Anguo, et al. Engi-neering application of VARI process in manufacturing of large curve-surface composite parts[J]. Adhesion,2017,38(8):64-67(in Chinese). doi: 10.3969/j.issn.1001-5922.2017.08.012
    [17] 李帅, 姚盛杰, 何文涛, 等. GFRP约束微珠泡沫柱准静态受压性能[J]. 材料科学与工程学报, 2022, 40(1):129-134.

    LI Shuai, YAO Shengjie, HE Wentao, et al. Compressive behavior of GFRP confined syntactic foam columns under quasi-static loads[J]. Journal of Materials Science & Engi-neering,2022,40(1):129-134(in Chinese).
    [18] 高哲. 多轴向经编曲面复合材料低速冲击性能研究[D]. 无锡: 江南大学, 2017.

    GAO Zhe. Research on low-velocity impact mechanism of curved multi-axial warp-knitted composites[D]. Wuxi: Jiangnan University, 2017(in Chinese).
    [19] MUSCAT-FENECH C D M, CORTIS J, CASSAR C. Characterizing QSLVII damage of composite sandwich hulls[J]. Procedia Engineering,2014,88:141-148. doi: 10.1016/j.proeng.2014.11.137
    [20] 李鹤, 张超, 季宏丽, 等. 基于导波检测的带曲率复合材料板损伤识别技术研究[J]. 国外电子测量技术, 2019, 38(5):75-80. doi: 10.19652/j.cnki.femt.1801318

    LI He, ZHANG Chao, JI Hongli, et al. Damage identification technology of composite plate with curvature based on guided wave detection[J]. Foreign Electronic Measurement Technology,2019,38(5):75-80(in Chinese). doi: 10.19652/j.cnki.femt.1801318
    [21] SEIFOORI S, MAHDIAN P A, MIRZARAHMANI S. Impact damage detection in CFRP and GFRP curved composite laminates subjected to low-velocity impacts[J]. Compo-site Structures,2021,261:113278. doi: 10.1016/j.compstruct.2020.113278
    [22] 董云龙, 梅志远, 张二, 等. 大曲率复合材料壳板弯曲试验及仿真[J]. 舰船科学技术, 2020, 42(13):40-44. doi: 10.3404/j.issn.1672-7649.2020.07.008

    DONG Yunlong, MEI Zhiyuan, ZHANG Er, et al. Research on bending test and simulation study of large curature composite shell plate[J]. Ship Science and Technology,2020,42(13):40-44(in Chinese). doi: 10.3404/j.issn.1672-7649.2020.07.008
    [23] 高哲, 蒋高明. 多轴向经编曲面复合材料汽车门低速碰撞数值模拟[J]. 纺织学报, 2018, 39(2):43-48. doi: 10.13475/j.fzxb.20171006206

    GAO Zhe, JIANG Gaoming. Finite element analysis of curved multi-axial warp-knitted composite car door under low-velocity impact[J]. Journal of Textile Research,2018,39(2):43-48(in Chinese). doi: 10.13475/j.fzxb.20171006206
    [24] 郑晓霞, 郑锡涛, 沈真, 等. 低速冲击与准静态压痕力下复合材料层合板的损伤等效性[J]. 航空学报, 2010, 31(5):928-933.

    ZHENG Xiaoxia, ZHENG Xitao, SHEN Zhen, et al. Damage equivalent of composite laminates subjected to drop-weight impact and quasi-static indentation force[J]. Acta Aeronautica et Astronautica Sinica,2010,31(5):928-933(in Chinese).
    [25] 沈真, 杨胜春, 陈普会. 复合材料抗冲击性能和结构压缩: 设计许用值[J]. 航空学报, 2007, 28(3):561-566. doi: 10.3321/j.issn:1000-6893.2007.03.010

    SHEN Zhen, YANG Shengchun, CHEN Puhui. Behaviors of composite materials to withstand impact and structural compressive design allowablene[J]. Acta Aeronautica et Astronautica Sinica,2007,28(3):561-566(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.03.010
    [26] XU S, CHEN P H. Prediction of low velocity impact damage in carbon/epoxy laminates[J]. Procedia Engineering,2013,67:489-496. doi: 10.1016/j.proeng.2013.12.049
    [27] ASTM. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790—2015[S]. West Conshohocken: ASTM, 2015.
    [28] ASTM. Standard test method for measuring the damage resistance of a fiber-reinforced polymer-matrix composite to a concentrated quasi-static indentation force: ASTM D6264/D6264 M-17[S]. West Conshohocken: ASTM, 2017.
    [29] ASTM. Standard test methods for constituent content of composite materials: ASTM D3171—2015[S]. West Conshohocken: ASTM, 2015.
    [30] CARLSSON L A, ADAMS D F, PIPES R B. Experimental characterization of advanced composite materials[M]. Boca Raton: CRC Press, 2014.
    [31] 杨晓日. 多轴向玻璃纤维复合材料力学性能的温度效应研究[D]. 呼和浩特: 内蒙古工业大学, 2019.

    YANG Xiaori. Research of temperature effect on mechani-cal properties of multi-axial glass fiber composites[D]. Hohhot: Inner Mongolia University of Technology, 2019(in Chinese).
    [32] 黄光启, 程鹏飞, 杨胜春, 等. 准静态压痕力作用下复合材料层压板损伤分析方法[J]. 纤维复合材料, 2018, 35(3):48-52. doi: 10.3969/j.issn.1003-6423.2018.03.011

    HUANG Guangqi, CHENG Pengfei, YANG Shengchun, et al. The analysis method of quasi-static indentation force damage of composite laminate[J]. Fiber Composites,2018,35(3):48-52(in Chinese). doi: 10.3969/j.issn.1003-6423.2018.03.011
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  553
  • HTML全文浏览量:  277
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-25
  • 修回日期:  2022-10-17
  • 录用日期:  2022-10-28
  • 网络出版日期:  2022-11-07
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回