留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光增材制造WC-12Co硬质合金圆柱形内部结构及其微波后处理

季文彬 吴润禾 戴士杰 郭延昭 李明洋

季文彬, 吴润禾, 戴士杰, 等. 激光增材制造WC-12Co硬质合金圆柱形内部结构及其微波后处理[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 季文彬, 吴润禾, 戴士杰, 等. 激光增材制造WC-12Co硬质合金圆柱形内部结构及其微波后处理[J]. 复合材料学报, 2024, 42(0): 1-13.
JI Wenbin, WU Runhe, DAI Shijie, et al. Forming process and microwave post-treatment of WC-12 Co cemented carbide cylindrical-shaped inner structure structure by selective laser melting[J]. Acta Materiae Compositae Sinica.
Citation: JI Wenbin, WU Runhe, DAI Shijie, et al. Forming process and microwave post-treatment of WC-12 Co cemented carbide cylindrical-shaped inner structure structure by selective laser melting[J]. Acta Materiae Compositae Sinica.

激光增材制造WC-12Co硬质合金圆柱形内部结构及其微波后处理

基金项目: 国家自然科学基金(52005154);科技创新2030-“新一代人工智能”重大项目(2021ZD0113100)
详细信息
    通讯作者:

    季文彬,博士,副教授,硕士生导师,研究方向为硬质合金增材制造 E-mail: 2017082@hebut.edu.cn

  • 中图分类号: TB331

Forming process and microwave post-treatment of WC-12 Co cemented carbide cylindrical-shaped inner structure structure by selective laser melting

Funds: National Natural Science Foundation of China (52005154); Science and Technological Innovation 2030 - “New Generation Artificial Intelligence” Major Project of China (Grant No. 2021ZD0113100)
  • 摘要: 首先采用了SLM不同扫描策略制备了WC-12Co硬质合金试样,研究了扫描策略对成形试样的影响规律,优化出最佳成形工艺。使用优化后的参数成形了圆柱形内部结构试样并进行微波后处理,分析微波后处理工艺对试样相对密度、维氏硬度和形状精度的影响规律。结果表明,最适用于打印WC-12Co硬质合金是棋盘格扫描策略,在成形能力、相对密度、维氏硬度和组织均匀性方面均优于其他扫描策略,调整扫描间距为30 μm后,试样相对密度达到最高91.6%,维氏硬度则达到1324 HV,且棋盘格扫描策略成形圆柱形内部结构的精度也更佳;当微波热处理升温速率为40 ℃/min、温度为1300℃、保温时间为20 min时,试样微观缺陷数量与热处理前相比大幅减少,材料相对密度与维氏硬度显著提高,但热处理会导致部分WC晶粒尺寸增大,此时试样相对密度达到96.1%,维氏硬度达到1435 HV,且热处理后圆柱形内部结构试样的精度没有被破坏。

     

  • 图  1  WC-12 Co粉末:(a) 原始形貌;(b) 粒度分布

    Figure  1.  WC-12 Co powder: (a) original morphology; (b) particle size distribution

    图  2  扫描策略:(a) S形;(b) 回形;(c) 棋盘格

    Figure  2.  scanning strategies: (a) S-shape scanning; (b) spiral scanning;(c) checkerboard scanning.

    图  3  预实验成形结果

    Figure  3.  Pre-experimental molding results

    图  4  不同扫描策略WC-12 Co硬质合金试样相对密度对比

    Figure  4.  Comparison of relative density of WC-12 Co cemented carbide specimens under different scanning strategies

    图  5  不同扫描策略下WC-12 Co硬质合金试样表面微观组织和WC晶粒尺寸分布图:(a) 棋盘格;(b) S形;(c) 棋盘格晶粒尺寸分布图;(d) S形晶粒尺寸分布图

    Figure  5.  Microstructure and WC grain size distribution of the surface of the WC-12 Co cemented carbide specimens under different scanning strategies: (a) checkerboard scanning; (b) S-shape scanning; (c) grain size distribution of checkerboard; (d) grain size distribution of S-shape

    图  6  SLM成形过程中能量传递示意图

    Figure  6.  Schematic diagram of energy transfer in SLM molding process

    图  7  不同扫描间距下WC-12 Co硬质合金试样相对密度与维氏硬度

    Figure  7.  Relative density and Vickers hardness of WC-12 Co cemented carbide specimens at different scanning spacing

    图  8  圆柱形内部结构成形结果

    Figure  8.  Cylindrical-shaped inner structure molding results

    图  9  竖直圆孔圆度测量结果

    Figure  9.  Vertical hole roundness measurement results

    图  10  悬垂圆孔与竖直圆孔形貌对比:(a) 悬垂圆孔;(b) 竖直圆孔

    Figure  10.  Comparison of morphology of overhanging and vertical circular holes: (a) overhanging circular holes; (b) vertical circular holes

    图  11  阶梯效应示意图

    Figure  11.  Schematic diagram of the ladder effect

    图  12  不同扫描策略成形圆柱形内部结构对比:(a) 棋盘格扫描策略成形的Φ6悬垂圆孔;(b) S形扫描策略成形的Φ6悬垂圆孔;(c) 棋盘格扫描策略成形的Φ6竖直圆孔;(d) S形扫描策略成形的Φ6竖直圆孔

    Figure  12.  Comparison of the structure of holes formed by different scanning strategies: (a) Φ6 overhanging circular hole shaped by checkerboard scanning strategy; (b) Φ6 overhanging circular hole shaped by S scanning strategy;(c) Φ6 vertical hole shaped by the checkerboard scanning strategy; (d) Φ6 vertical hole shaped by the S-shape scanning strategy

    图  13  不同扫描策略成形悬垂圆孔最大塌陷量与圆度测量结果:(a) 最大塌陷量;(b) 圆度

    Figure  13.  Maximum collapse and roundness measurements of overhanging circular holes formed by different scanning strategies: (a) maximum collapse volume; (b) roundness

    图  14  热处理后WC-12 Co硬质合金试样的相对密度与维氏硬度:(a) 不同温度;(b) 不同保温时间

    Figure  14.  Relative density and Vickers hardness of WC-12 Co cemented carbide specimens after heat treatment: (a) different temperatures;(b) different holding time

    图  15  不同温度热处理后WC-12 Co硬质合金试样表面微观组织和WC晶粒尺寸分布图:(a) 1300℃热处理后微观组织;(b) 1400℃热处理后微观组织;(c) 1300℃热处理后晶粒分布;(d) 1400℃热处理后晶粒分布

    Figure  15.  Microstructure and WC grain size distribution on the surface of the WC-12 Co cemented carbide specimens after heat treatment at different temperatures: (a) microstructure after heat treatment at 1300°C; (b) microstructure after heat treatment at 1400°C; (c) grain size distribution after heat treatment at 1300°C; (d) grain size distribution after heat treatment at 1400°C

    图  16  热处理前后WC-12 Co硬质合金试样表面微观组织和Co元素分布:(a)热处理前微观组织;(b)热处理前Co元素分布;(c)热处理后微观组织;(d)热处理后Co元素分布

    Figure  16.  Microstructure and Co element distribution on the WC-12 Co cemented carbide specimens surface before and after heat treatment: (a) microstructure before heat treatment; (b) Co element distribution before heat treatment; (c) microstructure after heat treatment; (d) Co element distribution after heat treatment

    图  17  热处理前后圆柱形内部结构对比:(a) 热处理前Φ6悬垂圆孔;(b) 热处理后Φ6悬垂圆孔;(c) 热处理前Φ6竖直圆孔;(d) 热处理后Φ6竖直圆孔

    Figure  17.  Comparison of the structure of round holes before and after heat treatment:(a) Φ6 overhanging round hole before heat treatment; (b) Φ6 overhanging round hole after heat treatment; (c) Φ6 vertical round hole before heat treatment; (d) Φ6 vertical round hole after heat treatment

    表  1  WC-12 Co粉末化学成分

    Table  1.   WC-12 Co powder chemical composition

    ElementFeCoCtCfOW
    Mass fraction/%0.015%11.92%5.38%0.06%0.03%Bal.
    下载: 导出CSV

    表  2  WC-12 Co粉末物理性能

    Table  2.   WC-12 Co powder physical properties

    Testing Program Test results
    Particle size distribution/μm D10 23.68
    D50 35.39
    D90 49.42
    Bulk density/(g·cm-3) 4.64
    Flowability(s/50 g) 13.6
    下载: 导出CSV

    表  3  预实验工艺参数

    Table  3.   Pre-experimentation process parameters

    Laser power p/W Scanning speed v/(mm·s−1) Thickness h/mm Scanning spacing l/mm
    100 390 0.04 0.03~0.07
    下载: 导出CSV

    表  4  圆柱形内部结构成形参数

    Table  4.   Forming parameters for cylindrical-shaped inner structures

    Scanning StrategyScanning spacing
    l /mm
    Diameter of the
    round hole /mm
    Chessboard0.032、4、6、8
    S0.062、4、6、8
    下载: 导出CSV

    表  5  热处理实验参数表

    Table  5.   Heat treatment experiment parameter table

    Heating rate/
    (℃·min-1)
    Heat treatment
    temperature/℃
    Holding
    time/min
    40 1250 10
    40 1300 10
    40 1350 10
    40 1400 10
    40 1300 20
    40 1300 30
    40 1300 40
    下载: 导出CSV
  • [1] KATIYAR K P, MAURYA R, SINGH K P. Failure Behavior of Cemented Tungsten Carbide Materials: A Case Study of Mining Drill Bits[J]. Journal of Materials Engineering and Performance, 2021, 30(8): 1-17.
    [2] 刘云, 郭子傲, 王行, 等. 3D打印硬质合金研究进展[J]. 稀有金属, 2021, 45(4): 484-492.

    LIU Yun, GUO Ziao, WANG Xing, et al. Research progress of 3D printed cemented carbide[J]. Rare Metals, 2021, 45(4): 484-492(in Chinese).
    [3] 罗来马, 汤俊宇, 吴玉程. WC-Co硬质合金的成型工艺研究进展[J]. 机械工程学报, 2023, 59(8): 60-73. doi: 10.3901/JME.2023.08.060

    LUO Laima, TANG Junyu, WU Yucheng. Progress of molding process of WC-Co cemented carbide[J]. Journal of Mechanical Engineering, 2023, 59(8): 60-73(in Chinese). doi: 10.3901/JME.2023.08.060
    [4] 魏青松. 金属粉床激光增材制造技术[M]. 北京: 化学工业出版社, 2019: 1-20.

    WEI Qingsong. Metal powder bed laser additive manufacturing technology[M]. Beijing: Chemical Industry Press, 2019: 1-20(in Chinese).
    [5] KUMAR S, CZEKANSKI A. Optimization of parameters for SLS of WC-Co[J]. Rapid Prototyping Journal, 2017, 23(6): 1202-1211. doi: 10.1108/RPJ-10-2016-0168
    [6] KU N, PITTARI J J, KILCZEWSKI S, et al. Additive Manufacturing of Cemented Tungsten Carbide with a Cobalt-Free Alloy Binder by Selective Laser Melting for High-Hardness Applications[J]. JOM, 2019, 71(4): 1535-1542. doi: 10.1007/s11837-019-03366-2
    [7] KONYASHIN I, HINNERS H, RIES B, et al. Additive manufacturing of WC-13% Co by selective electron beam melting: Achievements and challenges[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105028. doi: 10.1016/j.ijrmhm.2019.105028
    [8] CRAMER C L, NANDWANA P, LOWDEN R A, et al. Infiltration studies of additive manufacture of WC with Co using binder jetting and pressureless melt method[J]. Additive Manufacturing, 2019, 28: 333-343. doi: 10.1016/j.addma.2019.04.009
    [9] 季文彬, 邓日清, 戴士杰, 等. 铣削对SLM增材TC4钛合金表面完整性和疲劳性能的影响[J]. 中国机械工程, 2023, 34(2): 208-217+225. doi: 10.3969/j.issn.1004-132X.2023.02.011

    JI Wenbin, DENG Riqing, DAI Shijie, et al. Effect of milling on surface integrity and fatigue properties of SLM-augmented TC4 titanium alloy[J]. China Mechanical Engineering, 2023, 34(2): 208-217+225(in Chinese). doi: 10.3969/j.issn.1004-132X.2023.02.011
    [10] 崔浩, 闫群, 王向明, 等. 激光选区熔化成形铝合金板与CFRP复合材料层合板螺栓连接结构失效分析方法评估[J]. 复合材料学报, 2017, 34(12): 2762-2769.

    CUI Hao, YAN Qun, WANG Xiangming, et al. Evaluation of structural failure analysis method for bolted joint structure of laser-selective melt-forming aluminum alloy plate and CFRP composite laminate[J]. Journal of Composite Materials, 2017, 34(12): 2762-2769(in Chinese).
    [11] 周玥丞, 赵阳. 选择性激光熔融增材制造不锈钢力学性能研究进展及统计分析[J]. 建筑结构学报, 2021, 42(6): 15-25.

    ZHOU Yuecheng, ZHAO Yang. Progress and statistical analysis of mechanical properties of selective laser melting additively fabricated stainless steel[J]. Journal of Building Structures, 2021, 42(6): 15-25(in Chinese).
    [12] CHEN C, HUANG B, LIU Z, et al. Additive manufacturing of WC-Co cemented carbides: Process, microstructure, and mechanical properties[J]. Additive Manufacturing, 2023, 63: 103410. doi: 10.1016/j.addma.2023.103410
    [13] PAPY K, JEAN-MARC S, ALEXEY S, et al. Additive manufacturing feasibility of WC-17Co cermet parts by laser powder bed fusion[J]. procedia CIRP, 2022, 111: 153-157. doi: 10.1016/j.procir.2022.08.049
    [14] UHLMANN E, BERGMANN A, BOLZ R. Manufacturing of carbide tools by Selective Laser Melting[J]. Procedia Manufacturing, 2018, 21: 765-773. doi: 10.1016/j.promfg.2018.02.182
    [15] FRIES S, VOGELPOTH A, KALETSCH A, et al. Influence of post heat treatment on microstructure and fracture strength of cemented carbides manufactured using laser-based additive manufacturing[J]. International Journal of Refractory Metals and Hard Materials, 2023, 111: 106085. doi: 10.1016/j.ijrmhm.2022.106085
    [16] BRICIN D, ACKERMANN M, JANSA Z, et al. Development of the structure of cemented carbides during their processing by SLM and HIP[J]. Metals, 2020, 10(11): 1477-1493. doi: 10.3390/met10111477
    [17] JIA H, SUN H, WANG H, et al. Scanning strategy in selective laser melting (SLM): a review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(9-10): 1-23.
    [18] OGHBAEI M, MIRZAEE O. Microwave versus conventional sintering: A review of fundamentals[J]. advantages and applications. Journal of Alloys and Compounds, Lausanne, 2010, 494(1-2): 175-189.
    [19] SINGH R, SHARMA V, PANDEY P M. Microstructural characteristics and mechanical behaviour of microwave-assisted sintered novel WC-Co ceramic based internally cooled turning tool[J]. Materials Characterization, 2023, 200: 112855. doi: 10.1016/j.matchar.2023.112855
    [20] LIU C, CAI Z, DAI Y, et al. Experimental comparison of the flow rate and cooling performance of internal cooling channels fabricated via selective laser melting and conventional drilling process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 2757-2767. doi: 10.1007/s00170-018-1799-y
    [21] LIM B, PROVOSTY R, DONG G. Investigation of the cooling performance of chemically etched millimeter-scale channels made by selective laser melting[J]. The International Journal of Advanced Manufacturing Technology, 2024: 1-11.
    [22] KEMPEN K, WELKENHUYZEN F, QIAN J, et al. Dimensional accuracy of internal channels in SLM produced parts[C]//2014 ASPE Spring Topical Meeting: Dimensional Accuracy and Surface Finish in Additive Manufacturing. San rancisco, 2014: 13-16.
    [23] 辛艳喜. 铝合金悬垂圆孔结构选区激光熔化成形质量研究及工艺优化[D]. 杭州: 浙江理工大学, 2023.

    XIN Yanxi. Quality study and process optimization of selected zone laser melting and forming of aluminum alloy overhanging circular hole structure[D]. Hangzhou: Zhejiang Sci-Tech University, 2023.
    [24] PAKKANEN J, CALIGNANO F, TREVISAN F, et al. Study of internal channel surface roughnesses manufactured by selective laser melting in aluminum and titanium alloys[J]. Metallurgical and Materials Transactions A, 2016, 47: 3837-3844. doi: 10.1007/s11661-016-3478-7
    [25] MAO Y, LV X, SHEN X. A study on the surface quality of selective laser melted cylindrical-and parallelepipedic-shaped inner structure[J]. Materials, 2023, 16(13): 4649. doi: 10.3390/ma16134649
  • 加载中
计量
  • 文章访问数:  26
  • HTML全文浏览量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-30
  • 修回日期:  2024-08-30
  • 录用日期:  2024-09-03
  • 网络出版日期:  2024-09-16

目录

    /

    返回文章
    返回