留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波形钢板-橡胶界面黏结滑移性能

王威 柳国良 李昱 周强 陈杰

王威, 柳国良, 李昱, 等. 波形钢板-橡胶界面黏结滑移性能[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 王威, 柳国良, 李昱, 等. 波形钢板-橡胶界面黏结滑移性能[J]. 复合材料学报, 2024, 42(0): 1-13.
WANG Wei, LIU Guoliang, LI Yu, et al. Bond-slip properties of corrugated steel plate-rubber interface[J]. Acta Materiae Compositae Sinica.
Citation: WANG Wei, LIU Guoliang, LI Yu, et al. Bond-slip properties of corrugated steel plate-rubber interface[J]. Acta Materiae Compositae Sinica.

波形钢板-橡胶界面黏结滑移性能

基金项目: 国家自然科学基金资助项目(52278214, 52378314);陕西省自然科学基础研究计划重点项目(2022JZ-21);土木工程防灾减灾全国重点实验室开放基金(SLDRCE23-06)
详细信息
    通讯作者:

    王威,博士,教授,博士生导师,研究方向为组合结构与混合结构 E-mail: wangwgh1972@163.com

  • 中图分类号: TU398.9;TU317.1

Bond-slip properties of corrugated steel plate-rubber interface

Funds: National Natural Science Foundation of China (52278214, 52378314); The Key Project of Nature Science Foundation Program of Shaanxi Province (2022JZ-21); Open Subject Fund of State Key Laboratory of Disaster Reduction in Civil Engineering (SLDRCE23-06)
  • 摘要: 波形钢板-橡胶构件因波形钢板的几何形状优势,表现出良好的抗震性能,对其界面黏结滑移性能有待研究。考虑波形钢板与橡胶界面的粘结长度、粗糙度和试件的加载方式对两者界面性能的影响,设计了6个波形钢板-橡胶试件进行往复加载试验,根据黏结破坏过程、界面耗能、应变分布和影响因素分析试件的黏结性能。结果表明:波形钢板-橡胶界面受往复荷载作用时,黏结破坏依次经历微滑移、滑移、破坏、曲线下降和残余阶段;从能量角度分析发现:粘结长度的长短显著影响界面耗能;合理控制粗糙度,可改善试件界面耗能,提高界面黏结性能;波形钢板-橡胶构件在荷载较大时,应变发生突变且波脊处影响最大;与单调加载相比,往复加载下试件的残余黏结滑移降低29%;波形钢板-橡胶试件的极限特征黏结强度随粘结长度和粗糙度的增大呈现出先增加后逐步减弱;最后确定了波形钢板与橡胶构件的特征黏结强度计算公式,并进行了计算值与试验值的比较,其吻合度较好。

     

  • 图  1  波形钢板-橡胶试件示意图(单位:mm)

    Figure  1.  Diagram of corrugated steel plate-rubber specimens (Unit: mm)

    图  2  波形钢板-橡胶试件加载装置与测点分布(单位:mm)

    Figure  2.  Loading device and measuring point distribution of corrugated steel plate-rubber specimens (Unit: mm)

    图  3  波形钢板-橡胶试件加载制度示意图

    Figure  3.  Loading regime diagram of corrugated steel plate-rubber specimens

    图  4  波形钢板-橡胶试件典型破坏形态

    Figure  4.  Typical failure modes of corrugated steel plate-rubber specimens

    图  5  波形钢板-橡胶试件界面破坏示意图

    Figure  5.  Interface damage diagram of corrugated steel plate-rubber specimens

    图  6  波形钢板-橡胶试件的荷载-滑移曲线

    Figure  6.  Load-slip curve of corrugated steel plate-rubber specimens

    图  7  波形钢板-橡胶试件的特征荷载-滑移曲线

    Figure  7.  Characteristic load-slip curve of corrugated steel plate-rubber specimens

    PsPs+—Microslip load; SsSs+—Displacement corresponding to microslip load; PuPu+—Peak load; SuSu+—Displacement corresponding to peak load; PDPD+—Destructive load; SDSD+—Displacement corresponding to destructive load; PrPr+—Residual load; SrSr+—Displacement corresponding to residual load

    图  8  波形钢板-橡胶试件的界面黏结耗能计算简图

    Figure  8.  Calculation diagram of interface bonding energy consumption of corrugated steel plate-rubber specimens

    图  9  波形钢板-橡胶试件的等效阻尼比-加载位移曲线

    Figure  9.  Equivalent damping ratio-loading displacement curve of corrugated steel plate-rubber specimens

    图  10  波形钢板-橡胶试件的不同滑移水平下应变分布

    Figure  10.  Distribution of strain at various levels of slip of corrugated steel plate-rubber specimens

    图  11  波形钢板-橡胶试件的加载方式对界面黏结性能的影响

    Figure  11.  Effect of loading mode on interface bonding performance of corrugated steel plate-rubber specimens

    图  12  波形钢板-橡胶试件的粘结长度对界面黏结性能的影响

    Figure  12.  Effects of Bond lengths on interface bonding performance of corrugated steel plate-rubber specimens

    图  13  波形钢板-橡胶试件表面粗糙度对界面黏结性能的影响

    Figure  13.  Effects of surface roughness on interface bonding performance of corrugated steel plate-rubber specimens

    表  1  波形钢板-橡胶试件的基本参数

    Table  1.   Parameters of corrugated steel plate-rubber specimens

    Specimen Bonding
    length /mm
    Roughness/
    mm
    Loading mode
    S-1 300 0.7 Push-out
    S-2 200 0.7 Cycle
    S-3 250 0.7 Cycle
    S-4 300 0.7 Cycle
    S-5 250 1.18 Cycle
    S-6 250 0.416 Cycle
    下载: 导出CSV

    表  2  钢板力学性能

    Table  2.   Mechanical properties of steel plate

    Plate Thickness/mm Yield strength/MPa Peak Strength/MPa
    Q235 8 304 446
    下载: 导出CSV

    表  3  橡胶力学性能

    Table  3.   Mechanical properties of rubber

    Shore A hardness/degree σa/(kN·m−1) E/MPa δ/%
    70 19 2.68 330
    Notes: σa—tear strength; E—modulus of elasticity; δ—Elongation at break.
    下载: 导出CSV

    表  4  波形钢板-橡胶试件的各特征荷载值

    Table  4.   Each characteristic load of corrugated steel plate-rubber specimens

    Specimen Ps/kN Ps+/kN Pu/kN Pu+/kN PD/kN PD+/kN Pr/kN Pr+/kN
    S-1 2.27 33.20 26.68 2.38
    S-2 −1.72 1.35 −13.71 12.94 −3.79 7.35 −1.36 1.82
    S-3 −2.92 2.79 −26.14 29.83 −17.53 26.43 −1.45 1.75
    S-4 −1.70 2.21 −25.71 30.46 −9.43 24.93 −1.21 1.45
    S-5 −2.48 3.28 −23.30 27.00 −15.20 26.89 −1.91 1.94
    S-6 −3.38 3.12 −25.80 28.36 −12.70 22.34 −2.23 1.93
    Notes: PsPs+—Microslip load; PuPu+—Peak load; PDPD+—Destructive load; PrPr+—Residual load.
    下载: 导出CSV

    表  5  波形钢板-橡胶试件的平均黏结应力

    Table  5.   Average bond stress of corrugated steel plate-rubber specimens

    Specimen τs/kPa τs+/kPa τu/kPa τu+/kPa τD/kPa τD+/kPa τr/kPa τr+/kPa
    S-1 15.76 230.56 185.28 16.53
    S-2 −17.92 14.06 −142.81 134.79 −39.48 76.56 −14.17 18.96
    S-3 −24.33 23.25 −217.83 248.58 −146.08 220.25 −12.08 14.58
    S-4 −11.81 15.35 −178.54 211.53 −65.49 173.13 −8.40 10.07
    S-5 −20.67 27.33 −194.17 225.00 −126.67 224.08 −15.92 16.17
    S-6 −28.17 26.00 −215.00 236.33 −105.83 186.17 −18.58 16.08
    Notes: τsτs+—Microslip stress; τuτu+—Peak stress; τDτD+—Destructive stress; τrτr+—Residual stress.
    下载: 导出CSV

    表  6  波形钢板-橡胶试件的各特征黏结强度计算结果

    Table  6.   Calculation results of each characteristic bond strength of corrugated steel plate-rubber specimens

    Specimen (τs)′/kPa (τs+)′/kPa (τu)′/kPa (τu+)′/kPa (τD)′/kPa (τD+)′/kPa (τr)′/kPa (τr+)′/kPa
    S-2 −19.26 13.61 −136.43 140.34 −42.74 82.23 −14.50 20.12
    S-3 −26.76 24.36 −194.43 244.34 −131.24 218.73 −11.36 15.24
    S-4 −10.26 13.61 −157.43 223.34 −72.74 185.23 −8.80 11.26
    S-5 −22.15 25.53 −187.64 241.30 −141.66 237.70 −15.91 17.18
    S-6 −29.48 23.66 −205.85 249.43 −120.85 199.82 −18.59 17.08
    Notes: (τs)′、(τs+)′—Calculated value of microslip strength; (τu)′、(τu+)′—Calculated value of peak strength; (τD)′、(τD+)′—Calculated value of destructive strength; (τr)′、(τr+)′—Calculated value of residual strength.
    下载: 导出CSV

    表  7  波形钢板-橡胶试件的各特征黏结强度计算结果与试验结果对比

    Table  7.   Comparison of calculated and test results of each characteristic bond strength of corrugated steel plate-rubber specimens

    Specimen (τs)′/τs (τs+)′/τs+ (τu)′/τu (τu+)′/τu+ (τD)′/τD (τD+)′/τD+ (τr)′/τr (τr+)′/τr+
    S-2 1.07 0.97 0.96 1.04 1.08 1.07 1.02 1.06
    S-3 1.10 1.05 0.89 0.98 0.90 0.99 0.94 1.05
    S-4 0.87 0.89 0.88 1.06 1.11 1.07 1.05 1.12
    S-5 1.07 0.93 0.97 1.07 1.12 1.06 1.00 1.06
    S-6 1.05 0.91 0.96 1.06 1.14 1.07 1.00 1.06
    Average value 1.032 0.950 0.932 1.042 1.070 1.052 1.002 1.070
    下载: 导出CSV
  • [1] Lewandowski R, Slowik M, Przychodzki M. Parameters identification of fractional models of viscoelastic dampers and fluids[J]. Structural Engineering and Mechanics, 2017, 63(2): 181-193.
    [2] Al-Anany Y M, Moustafa M A, Tait M J. Modeling and evaluation of a seismically isolated bridge using unbonded fiber-reinforced elastomeric isolators[J]. Earthquake Spectra, 2018, 34(1): 145-168. doi: 10.1193/072416EQS118M
    [3] Sierra I E M, Losanno D, Strano S, et al. Development and experimental behavior of HDR seismic isolators for low-rise residential buildings[J]. Engineering Structures, 2019, 183: 894-906. doi: 10.1016/j.engstruct.2019.01.037
    [4] 王威, 李元刚, 苏三庆, 等. 波形钢板混凝土黏结滑移性能试验研究与数值模拟分析[J]. 土木工程学报, 2019, 52(11): 13-24,44.

    WANG Wei, LI Yuangang, SU Sanqing, et al. Experimental study and numerical simulation on bond-slip behavior between corrugated steel plate and concrete[J]. China Civil Engineering Journal, 2019, 52(11): 13-24,44 (in Chinese).
    [5] 王威, 李鹏洛, 林忠良, 等. 波纹钢板-混凝土界面能耗及其本构关系[J]. 复合材料学报, 2024, 41(3): 1588-1600.

    WANG Wei, LI Pengluo, LIN Zhongliang, et al. Energy consumption and constitutive relationship of interface between corrugated steel plate and concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1588-1600(in Chinese).
    [6] Li Y, Wang W, Su S, et al. Seismic performance assessment of eccentrically braced steel frame using demountable-metallic-corrugated-shear-panel dampers[J]. Journal of Constructional Steel Research, 2023, 207: 107972. doi: 10.1016/j.jcsr.2023.107972
    [7] Kuteneva S V, Gladkovsky S V, Vichuzhanin D I, et al. Microstructure and properties of layered metal/rubber composites subjected to cyclic and impact loading[J]. Composite Structures, 2022, 285: 115078. doi: 10.1016/j.compstruct.2021.115078
    [8] 邓雪松, 李家乐, 周云, 等. 双曲型钢管叠层黏弹性阻尼器性能分析研究[J]. 土木工程学报, 2020, 53(S2): 129-136.

    DENG Xuesong, LI Jiale, ZHOU Yun, et al. Performance analysis of laminated viscoelastic body filed hyperbolic type steel tube damper[J]. China Civil Engineering Journal, 2020, 53(S2): 129-136(in Chinese).
    [9] Zhou Y, Li J, Shi F, et al. Theoretical, experimental and numerical studies on a novel laminated viscoelastomer-filled steel tube damper[J]. Structures 2022, 45: 1434-1451.
    [10] 周云, 吴胜, 李家乐. 钢管叠层黏弹性阻尼器设计方法[J]. 建筑结构学报, 2023, 44(3): 79-86.

    ZHOU Yun, WU Sheng, LI Jiale. Design method of laminated viscoelastic body filled steel tube damper[J]. Journal of Building Structures, 2023, 44(3): 79-86(in Chinese).
    [11] 周云, 李家乐, 钟根全, 等. 钢管叠层黏弹性阻尼器性能研究[J]. 土木工程学报, 2023, 56(10): 1-10.

    ZHOU Yun, LI Jiale, ZHONG Genquan, et al. Research on properties of laminated viscoelastic body filled steel tube damper[J]. China Civil Engineering Journal, 2023, 56(10): 1-10(in Chinese).
    [12] He Z, Shi F, Lin Z, et al. Experimental characterization on cyclic stability behavior of a high-damping viscoelastic damper[J]. Construction and Building Materials, 2023, 371: 130749. doi: 10.1016/j.conbuildmat.2023.130749
    [13] Zhou Y, Li D, Shi F, et al. Experimental study on mechanical properties of the hybrid lead viscoelastic damper[J]. Engineering Structures, 2021, 246: 113073. doi: 10.1016/j.engstruct.2021.113073
    [14] Zhou Y, Shi F, Ozbulut O E, et al. Experimental characterization and analytical modeling of a large capacity high-damping rubber damper[J]. Structural Control and Health Monitoring, 2018, 25(6): e2183. doi: 10.1002/stc.2183
    [15] 陈鹏, 周颖, 刘璐, 等. 橡胶隔震支座抗拉装置受力性能试验研究[J]. 建筑结构学报, 2017, 38(7): 113-119.

    CHEN Peng, ZHOU Yin, LIU Lu, et al. Experimental research on mechanical performance of tension-resistant device for rubber bearings[J]. Journal of Building Structures, 2017, 38(7): 113-119(in Chinese).
    [16] Wang S, Yuan Y, Tan P, et al. Experimental study and numerical model of a new passive adaptive isolation bearing[J]. Engineering Structures, 2024, 308: 118044. doi: 10.1016/j.engstruct.2024.118044
    [17] 张增德, 周颖. 叠层厚橡胶支座竖向压缩与拉伸力学性能研究[J/OL]. 工程力学, 2024, 1-10.

    ZHANG Zengde, ZHOU Yin. Study on compressive and tensile behaviors of thick rubber bearings[J/OL]. Engineering Mechanics, 2024, 1-10(in Chinese).
    [18] 张增德, 温玉君, 周颖, 等. 叠层厚橡胶支座力学性能及其震振双控性能分析[J]. 结构工程师, 2024, 40(1): 81-88.

    ZHANG Zengde, WEN Yujun, ZHOU Yin, et al. Mechanical Properties of Thick Rubber Bearing and Its Earthquake and Subway-Induced Vibration Control Analysis[J]. Structural Engineers, 2024, 40(1): 81-88(in Chinese).
    [19] 钢与钢产品 力学性能试验取样位置及试样制备: GB/T 2975-2018[S]. 北京: 中国标准出版社, 2018.

    Steel and steel products-Location and preparation of samples and test pieces for mechanical testing: GB/T 2975-2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
    [20] 金属材料 拉伸试验: 第1部分: 室温试验方法: GB/T 228.1-2021[S]. 北京: 中国标准出版社, 2021.

    Metallic materials: tensile testing: part 1: method of test at room temperature: GB/T 228.1-2021[S]. Beijing: Standards Press of China, 2021(in Chinese).
    [21] 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528-2009[S]. 北京: 中国标准出版社, 2009.

    Rubber, vulcanized or thermoplastic-Determination of tensile stress-strain properties: GB/T 528-2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [22] 建筑抗震试验规程: JGJ/T 101-2015[S]. 北京: 中国建筑工业出版社, 2015.

    Specification for seismic test of buildings: JGJ/T 101-2015[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).
    [23] 胶粘剂 主要破坏类型的表示法: GB/T 16997-1997[S]. 北京: 中国标准出版社, 1997.

    Adhesives-Designation of main failture patterns: GB/T 16997-1997[S]. Beijing: Standards Press of China, 1997 in Chinese).
    [24] 方庆红, 宋博, 高雨, 等. 纳米石墨/天然橡胶复合材料的应力软化与动态性能[J]. 复合材料学报, 2014, 31(6): 1446-1451.

    FANG Qinghong, SONG Bo, GAO Yu, et al. Stress softening and dynamic properties of nano-graphite / natural rubber composites[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1446-1451(in Chinese).
    [25] 伍凯, 陈峰, 徐方媛, 等. 型钢与钢纤维混凝土界面黏结性能及损伤耗能试验研究[J]. 土木工程学报, 2019, 52(3): 1-11,19.

    WU Kai, CHEN Feng, XU Fangyuan, et al. Experimental study on interfacial bonding property and energy dissipation capacity between shape steel and steel fiber reinforced conerete[J]. China Civil Engineering Journal, 2019, 52(3): 1-11,19(in Chinese).
    [26] 王威, 续鉴, 李昱, 等. 带栓钉波形腹板PEC柱界面黏结滑移性能与抗剪承载力试验研究[J/OL]. 工程力学, 2024, 1-13.

    WANG Wei, XU Jian, LI Yu. Experimental study on interface bond-slip properties and shear bearing capacity of corrugated webs PEC columns with stud[J/OL]. Engineering Mechanics, 2024, 1-13(in Chinese).
    [27] Sharma S K, Ali M S M, Goldar D, et al. Plate-concrete interfacial bond strength of FRP and metallic plated concrete specimens[J]. Composites Part B: Engineering, 2006, 37(1): 54-63. doi: 10.1016/j.compositesb.2005.05.011
  • 加载中
计量
  • 文章访问数:  31
  • HTML全文浏览量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-16
  • 修回日期:  2024-07-23
  • 录用日期:  2024-08-02
  • 网络出版日期:  2024-08-30

目录

    /

    返回文章
    返回