Bond-slip properties of corrugated steel plate-rubber interface
-
摘要: 波形钢板-橡胶构件因波形钢板的几何形状优势,表现出良好的抗震性能,对其界面黏结滑移性能有待研究。考虑波形钢板与橡胶界面的粘结长度、粗糙度和试件的加载方式对两者界面性能的影响,设计了6个波形钢板-橡胶试件进行往复加载试验,根据黏结破坏过程、界面耗能、应变分布和影响因素分析试件的黏结性能。结果表明:波形钢板-橡胶界面受往复荷载作用时,黏结破坏依次经历微滑移、滑移、破坏、曲线下降和残余阶段;从能量角度分析发现:粘结长度的长短显著影响界面耗能;合理控制粗糙度,可改善试件界面耗能,提高界面黏结性能;波形钢板-橡胶构件在荷载较大时,应变发生突变且波脊处影响最大;与单调加载相比,往复加载下试件的残余黏结滑移降低29%;波形钢板-橡胶试件的极限特征黏结强度随粘结长度和粗糙度的增大呈现出先增加后逐步减弱;最后确定了波形钢板与橡胶构件的特征黏结强度计算公式,并进行了计算值与试验值的比较,其吻合度较好。
-
关键词:
- 波形钢板-橡胶 /
- 往复加载试验 /
- 黏结滑移性能 /
- 应变分布分析 /
- 特征黏结强度计算公式
Abstract: Due to the geometric advantages of corrugated steel plates, corrugated steel plates-rubber members exhibit good seismic performance. The bond-slip property of their interface requires investigation. To study the interface properties of corrugated steel plate and rubber, 6 specimens were designed for reciprocal loading tests, considering bonding length, roughness, and loading mode effects. Analysis of the specimens' bonding properties involve examining bonding failure processes, interfacial energy dissipation, strain distribution and influencing factors. Results indicate that under reciprocal loads, bonding failure progresses through micro-slip, slip, failure, curve decline and residual stages. Energy analysis reveals that the bond length's magnitude significantly affects the interfacial energy dissipation. Reasonable control of roughness can improve the specimen interfacial energy dissipation and improve the interfacial bonding performance. High loads on corrugated steel plates and rubber members cause abrupt strain changes, with the wave ridge experiencing the most significant impact. Residual bond slip under reciprocal loading is 29% lower than under monotone loading. The ultimate characteristic bond strength of the corrugated steel plate-rubber specimens shows an increase and then a gradual decrease with the increase of bond length and roughness; Formulas for calculating characteristic bond strength for these members are established, with calculated values compared to experimental results showing a good coincidence. -
图 7 波形钢板-橡胶试件的特征荷载-滑移曲线
Figure 7. Characteristic load-slip curve of corrugated steel plate-rubber specimens
Ps−、Ps+—Microslip load; Ss−、Ss+—Displacement corresponding to microslip load; Pu−、Pu+—Peak load; Su−、Su+—Displacement corresponding to peak load; PD−、PD+—Destructive load; SD−、SD+—Displacement corresponding to destructive load; Pr−、Pr+—Residual load; Sr−、Sr+—Displacement corresponding to residual load
表 1 波形钢板-橡胶试件的基本参数
Table 1. Parameters of corrugated steel plate-rubber specimens
Specimen Bonding
length /mmRoughness/
mmLoading mode S-1 300 0.7 Push-out S-2 200 0.7 Cycle S-3 250 0.7 Cycle S-4 300 0.7 Cycle S-5 250 1.18 Cycle S-6 250 0.416 Cycle 表 2 钢板力学性能
Table 2. Mechanical properties of steel plate
Plate Thickness/mm Yield strength/MPa Peak Strength/MPa Q235 8 304 446 表 3 橡胶力学性能
Table 3. Mechanical properties of rubber
Shore A hardness/degree σa/(kN·m−1) E/MPa δ/% 70 19 2.68 330 Notes: σa—tear strength; E—modulus of elasticity; δ—Elongation at break. 表 4 波形钢板-橡胶试件的各特征荷载值
Table 4. Each characteristic load of corrugated steel plate-rubber specimens
Specimen Ps−/kN Ps+/kN Pu−/kN Pu+/kN PD−/kN PD+/kN Pr−/kN Pr+/kN S-1 — 2.27 — 33.20 — 26.68 — 2.38 S-2 −1.72 1.35 −13.71 12.94 −3.79 7.35 −1.36 1.82 S-3 −2.92 2.79 −26.14 29.83 −17.53 26.43 −1.45 1.75 S-4 −1.70 2.21 −25.71 30.46 −9.43 24.93 −1.21 1.45 S-5 −2.48 3.28 −23.30 27.00 −15.20 26.89 −1.91 1.94 S-6 −3.38 3.12 −25.80 28.36 −12.70 22.34 −2.23 1.93 Notes: Ps−、Ps+—Microslip load; Pu−、Pu+—Peak load; PD−、PD+—Destructive load; Pr−、Pr+—Residual load. 表 5 波形钢板-橡胶试件的平均黏结应力
Table 5. Average bond stress of corrugated steel plate-rubber specimens
Specimen τs−/kPa τs+/kPa τu−/kPa τu+/kPa τD−/kPa τD+/kPa τr−/kPa τr+/kPa S-1 − 15.76 − 230.56 − 185.28 − 16.53 S-2 −17.92 14.06 −142.81 134.79 −39.48 76.56 −14.17 18.96 S-3 −24.33 23.25 −217.83 248.58 −146.08 220.25 −12.08 14.58 S-4 −11.81 15.35 −178.54 211.53 −65.49 173.13 −8.40 10.07 S-5 −20.67 27.33 −194.17 225.00 −126.67 224.08 −15.92 16.17 S-6 −28.17 26.00 −215.00 236.33 −105.83 186.17 −18.58 16.08 Notes: τs−、τs+—Microslip stress; τu−、τu+—Peak stress; τD−、τD+—Destructive stress; τr−、τr+—Residual stress. 表 6 波形钢板-橡胶试件的各特征黏结强度计算结果
Table 6. Calculation results of each characteristic bond strength of corrugated steel plate-rubber specimens
Specimen (τs−)′/kPa (τs+)′/kPa (τu−)′/kPa (τu+)′/kPa (τD−)′/kPa (τD+)′/kPa (τr−)′/kPa (τr+)′/kPa S-2 −19.26 13.61 −136.43 140.34 −42.74 82.23 −14.50 20.12 S-3 −26.76 24.36 −194.43 244.34 −131.24 218.73 −11.36 15.24 S-4 −10.26 13.61 −157.43 223.34 −72.74 185.23 −8.80 11.26 S-5 −22.15 25.53 −187.64 241.30 −141.66 237.70 −15.91 17.18 S-6 −29.48 23.66 −205.85 249.43 −120.85 199.82 −18.59 17.08 Notes: (τs−)′、(τs+)′—Calculated value of microslip strength; (τu−)′、(τu+)′—Calculated value of peak strength; (τD−)′、(τD+)′—Calculated value of destructive strength; (τr−)′、(τr+)′—Calculated value of residual strength. 表 7 波形钢板-橡胶试件的各特征黏结强度计算结果与试验结果对比
Table 7. Comparison of calculated and test results of each characteristic bond strength of corrugated steel plate-rubber specimens
Specimen (τs−)′/τs− (τs+)′/τs+ (τu−)′/τu− (τu+)′/τu+ (τD−)′/τD− (τD+)′/τD+ (τr−)′/τr− (τr+)′/τr+ S-2 1.07 0.97 0.96 1.04 1.08 1.07 1.02 1.06 S-3 1.10 1.05 0.89 0.98 0.90 0.99 0.94 1.05 S-4 0.87 0.89 0.88 1.06 1.11 1.07 1.05 1.12 S-5 1.07 0.93 0.97 1.07 1.12 1.06 1.00 1.06 S-6 1.05 0.91 0.96 1.06 1.14 1.07 1.00 1.06 Average value 1.032 0.950 0.932 1.042 1.070 1.052 1.002 1.070 -
[1] Lewandowski R, Slowik M, Przychodzki M. Parameters identification of fractional models of viscoelastic dampers and fluids[J]. Structural Engineering and Mechanics, 2017, 63(2): 181-193. [2] Al-Anany Y M, Moustafa M A, Tait M J. Modeling and evaluation of a seismically isolated bridge using unbonded fiber-reinforced elastomeric isolators[J]. Earthquake Spectra, 2018, 34(1): 145-168. doi: 10.1193/072416EQS118M [3] Sierra I E M, Losanno D, Strano S, et al. Development and experimental behavior of HDR seismic isolators for low-rise residential buildings[J]. Engineering Structures, 2019, 183: 894-906. doi: 10.1016/j.engstruct.2019.01.037 [4] 王威, 李元刚, 苏三庆, 等. 波形钢板混凝土黏结滑移性能试验研究与数值模拟分析[J]. 土木工程学报, 2019, 52(11): 13-24,44.WANG Wei, LI Yuangang, SU Sanqing, et al. Experimental study and numerical simulation on bond-slip behavior between corrugated steel plate and concrete[J]. China Civil Engineering Journal, 2019, 52(11): 13-24,44 (in Chinese). [5] 王威, 李鹏洛, 林忠良, 等. 波纹钢板-混凝土界面能耗及其本构关系[J]. 复合材料学报, 2024, 41(3): 1588-1600.WANG Wei, LI Pengluo, LIN Zhongliang, et al. Energy consumption and constitutive relationship of interface between corrugated steel plate and concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1588-1600(in Chinese). [6] Li Y, Wang W, Su S, et al. Seismic performance assessment of eccentrically braced steel frame using demountable-metallic-corrugated-shear-panel dampers[J]. Journal of Constructional Steel Research, 2023, 207: 107972. doi: 10.1016/j.jcsr.2023.107972 [7] Kuteneva S V, Gladkovsky S V, Vichuzhanin D I, et al. Microstructure and properties of layered metal/rubber composites subjected to cyclic and impact loading[J]. Composite Structures, 2022, 285: 115078. doi: 10.1016/j.compstruct.2021.115078 [8] 邓雪松, 李家乐, 周云, 等. 双曲型钢管叠层黏弹性阻尼器性能分析研究[J]. 土木工程学报, 2020, 53(S2): 129-136.DENG Xuesong, LI Jiale, ZHOU Yun, et al. Performance analysis of laminated viscoelastic body filed hyperbolic type steel tube damper[J]. China Civil Engineering Journal, 2020, 53(S2): 129-136(in Chinese). [9] Zhou Y, Li J, Shi F, et al. Theoretical, experimental and numerical studies on a novel laminated viscoelastomer-filled steel tube damper[J]. Structures 2022, 45: 1434-1451. [10] 周云, 吴胜, 李家乐. 钢管叠层黏弹性阻尼器设计方法[J]. 建筑结构学报, 2023, 44(3): 79-86.ZHOU Yun, WU Sheng, LI Jiale. Design method of laminated viscoelastic body filled steel tube damper[J]. Journal of Building Structures, 2023, 44(3): 79-86(in Chinese). [11] 周云, 李家乐, 钟根全, 等. 钢管叠层黏弹性阻尼器性能研究[J]. 土木工程学报, 2023, 56(10): 1-10.ZHOU Yun, LI Jiale, ZHONG Genquan, et al. Research on properties of laminated viscoelastic body filled steel tube damper[J]. China Civil Engineering Journal, 2023, 56(10): 1-10(in Chinese). [12] He Z, Shi F, Lin Z, et al. Experimental characterization on cyclic stability behavior of a high-damping viscoelastic damper[J]. Construction and Building Materials, 2023, 371: 130749. doi: 10.1016/j.conbuildmat.2023.130749 [13] Zhou Y, Li D, Shi F, et al. Experimental study on mechanical properties of the hybrid lead viscoelastic damper[J]. Engineering Structures, 2021, 246: 113073. doi: 10.1016/j.engstruct.2021.113073 [14] Zhou Y, Shi F, Ozbulut O E, et al. Experimental characterization and analytical modeling of a large capacity high-damping rubber damper[J]. Structural Control and Health Monitoring, 2018, 25(6): e2183. doi: 10.1002/stc.2183 [15] 陈鹏, 周颖, 刘璐, 等. 橡胶隔震支座抗拉装置受力性能试验研究[J]. 建筑结构学报, 2017, 38(7): 113-119.CHEN Peng, ZHOU Yin, LIU Lu, et al. Experimental research on mechanical performance of tension-resistant device for rubber bearings[J]. Journal of Building Structures, 2017, 38(7): 113-119(in Chinese). [16] Wang S, Yuan Y, Tan P, et al. Experimental study and numerical model of a new passive adaptive isolation bearing[J]. Engineering Structures, 2024, 308: 118044. doi: 10.1016/j.engstruct.2024.118044 [17] 张增德, 周颖. 叠层厚橡胶支座竖向压缩与拉伸力学性能研究[J/OL]. 工程力学, 2024, 1-10.ZHANG Zengde, ZHOU Yin. Study on compressive and tensile behaviors of thick rubber bearings[J/OL]. Engineering Mechanics, 2024, 1-10(in Chinese). [18] 张增德, 温玉君, 周颖, 等. 叠层厚橡胶支座力学性能及其震振双控性能分析[J]. 结构工程师, 2024, 40(1): 81-88.ZHANG Zengde, WEN Yujun, ZHOU Yin, et al. Mechanical Properties of Thick Rubber Bearing and Its Earthquake and Subway-Induced Vibration Control Analysis[J]. Structural Engineers, 2024, 40(1): 81-88(in Chinese). [19] 钢与钢产品 力学性能试验取样位置及试样制备: GB/T 2975-2018[S]. 北京: 中国标准出版社, 2018.Steel and steel products-Location and preparation of samples and test pieces for mechanical testing: GB/T 2975-2018[S]. Beijing: Standards Press of China, 2018(in Chinese). [20] 金属材料 拉伸试验: 第1部分: 室温试验方法: GB/T 228.1-2021[S]. 北京: 中国标准出版社, 2021.Metallic materials: tensile testing: part 1: method of test at room temperature: GB/T 228.1-2021[S]. Beijing: Standards Press of China, 2021(in Chinese). [21] 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528-2009[S]. 北京: 中国标准出版社, 2009.Rubber, vulcanized or thermoplastic-Determination of tensile stress-strain properties: GB/T 528-2009[S]. Beijing: Standards Press of China, 2009(in Chinese). [22] 建筑抗震试验规程: JGJ/T 101-2015[S]. 北京: 中国建筑工业出版社, 2015.Specification for seismic test of buildings: JGJ/T 101-2015[S]. Beijing: China Architecture & Building Press, 2015(in Chinese). [23] 胶粘剂 主要破坏类型的表示法: GB/T 16997-1997[S]. 北京: 中国标准出版社, 1997.Adhesives-Designation of main failture patterns: GB/T 16997-1997[S]. Beijing: Standards Press of China, 1997 in Chinese). [24] 方庆红, 宋博, 高雨, 等. 纳米石墨/天然橡胶复合材料的应力软化与动态性能[J]. 复合材料学报, 2014, 31(6): 1446-1451.FANG Qinghong, SONG Bo, GAO Yu, et al. Stress softening and dynamic properties of nano-graphite / natural rubber composites[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1446-1451(in Chinese). [25] 伍凯, 陈峰, 徐方媛, 等. 型钢与钢纤维混凝土界面黏结性能及损伤耗能试验研究[J]. 土木工程学报, 2019, 52(3): 1-11,19.WU Kai, CHEN Feng, XU Fangyuan, et al. Experimental study on interfacial bonding property and energy dissipation capacity between shape steel and steel fiber reinforced conerete[J]. China Civil Engineering Journal, 2019, 52(3): 1-11,19(in Chinese). [26] 王威, 续鉴, 李昱, 等. 带栓钉波形腹板PEC柱界面黏结滑移性能与抗剪承载力试验研究[J/OL]. 工程力学, 2024, 1-13.WANG Wei, XU Jian, LI Yu. Experimental study on interface bond-slip properties and shear bearing capacity of corrugated webs PEC columns with stud[J/OL]. Engineering Mechanics, 2024, 1-13(in Chinese). [27] Sharma S K, Ali M S M, Goldar D, et al. Plate-concrete interfacial bond strength of FRP and metallic plated concrete specimens[J]. Composites Part B: Engineering, 2006, 37(1): 54-63. doi: 10.1016/j.compositesb.2005.05.011
计量
- 文章访问数: 18
- HTML全文浏览量: 18
- 被引次数: 0