留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维织物增强高延性混凝土加固受损RC梁受剪性能试验

张敏 邓明科 智奥龙 马向琨

张敏, 邓明科, 智奥龙, 等. 纤维织物增强高延性混凝土加固受损RC梁受剪性能试验[J]. 复合材料学报, 2023, 40(待排刊): 1-13
引用本文: 张敏, 邓明科, 智奥龙, 等. 纤维织物增强高延性混凝土加固受损RC梁受剪性能试验[J]. 复合材料学报, 2023, 40(待排刊): 1-13
Min ZHANG, Mingke DENG, Aolong ZHI, Xiangkun MA. Experimental on the shear behavior of pre-damaged RC beams strengthened by textile reinforced highly ductile concrete[J]. Acta Materiae Compositae Sinica.
Citation: Min ZHANG, Mingke DENG, Aolong ZHI, Xiangkun MA. Experimental on the shear behavior of pre-damaged RC beams strengthened by textile reinforced highly ductile concrete[J]. Acta Materiae Compositae Sinica.

纤维织物增强高延性混凝土加固受损RC梁受剪性能试验

基金项目: 国家自然科学基金 (51878545);西安市科技创新计划项目(20191522415 KYPT015 JC017)
详细信息
    通讯作者:

    邓明科,博士,教授,博士生导师,研究方向为高性能土木工程材料与新型结构 E-mail:dengmingke@126.com

  • 中图分类号: TU375

Experimental on the shear behavior of pre-damaged RC beams strengthened by textile reinforced highly ductile concrete

  • 摘要: 为研究二次受力对纤维织物增强高延性混凝土(TRHDC)加固钢筋混凝土(RC)梁受剪性能的影响,对8根TRHDC加固梁和1根对比梁进行了静载试验,分析了纤维织物层数、损伤程度及持载水平对梁破坏形态、荷载-挠度曲线、荷载-箍筋应变曲线及荷载-织物应变曲线的影响。试验结果表明:所有梁均发生了剪压破坏,仅一根梁出现剥离现象;TRHDC可有效限制斜裂缝的发展,延缓箍筋屈服和刚度退化;TRHDC加固显著地提高了梁的受剪承载力和变形能力,最高分别达67%和54%;加固效果未完全随纤维织物层数的增大而提高,与TRHDC面层利用率有关;原梁箍筋屈服之前,损伤程度对加固梁受剪性能的影响不明显,原梁箍筋屈服之后,加固梁受剪承载力随损伤程度的增大而降低;加固效果随持载水平的提高而降低;两层纤维织物的TRHDC可有效修复完全受损RC梁的受剪性能;建立了考虑二次受力的TRHDC加固RC梁受剪承载力的计算公式,且计算值与试验结果吻合较好。

     

  • 图  1  RC梁试件截面尺寸及配筋(单位:mm)

    Figure  1.  Dimensions and rebar of RC beam specimens (Unit: mm)

    图  2  织物形式

    Figure  2.  Form of textile

    图  3  狗骨形试件尺寸(单位:mm)

    Figure  3.  Dimensions of dog bone specimens (Unit: mm)

    图  4  纤维织物增强高延性混凝土(TRHDC)的应力-应变曲线和开裂模式

    Figure  4.  Stress-strain curves and crack pattern of (textile reinforced high ductile concrete (TRHDC)

    图  5  试验装置

    Figure  5.  Test setup

    图  6  测点布置

    Figure  6.  Measuring points

    图  7  各RC梁试件的破坏形态

    Figure  7.  Failure modes of RC beam specimens

    图  8  各RC梁荷载-跨中挠度曲线

    Figure  8.  Load-midspan deflection curves of RC beams

    图  9  各RC梁荷载-箍筋应变曲线

    Figure  9.  Load-strain curves of stirrups of RC beams

    图  10  试件CL-3的荷载-织物应变曲线

    Figure  10.  Load- textile strain curves of specimen CL-3

    图  11  RC梁拉-压杆模型

    Figure  11.  Strut-and-tie model of RC beams

    $ {f_1} $ and $ {f_2} $—Principal tensile and compressive stresses at the node B zone, respectively; $ {\theta _{\text{s}}} $—Angle between the longitudinal tension reinforcement and the diagonal strut; h—Depth of RC beams; $ {d_{\text{c}}} $—Distance from the centroid of the nodal A zone to the centroid of the nodal B zone; $ {l_{\text{d}}} $ and $ {l_{\text{c}}} $—Depths of the nodal A and B zones, respectively; a—Distance from loading point to support; $ {l_{\text{b}}} $—Width of the nodal B zone; $ {V_{{\text{RC}}}} $—Shear strength of RC beams; $ {C_{\text{C}}} $ —Compressive force of the concrete in the shear compression zone; $ {T_{\text{s}}} $—Tensile force of longitudinal reinforcements; $ {F_{\text{c}}} $ —Compressive force of the concrete diagonal struts.

    表  1  钢筋混凝土(RC)梁试件加固参数

    Table  1.   Strengthening parameters of reinforced concrete (RC) beam specimens

    SpecimenDamage
    degree
    Unloading
    level
    Number of the
    textile layer in
    TRHDC
    L-0
    CL-11
    CL-22
    CL-33
    SCL-1Shear cracks occurred
    (47%Pu,0)
    Unloading completely2
    SCL-2Stirrups yielded (56%Pu,0)Unloading completely2
    SCL-3Failure (the load drops to 85%Pu,0)Unloading completely2
    XCL-1Shear cracks occurred
    (47%Pu,0)
    Unloading 23.5%Pu,02
    XCL-2Shear cracks occurred
    (47%Pu,0)
    Not unloading2
    Notes: Pu,0—Peak load of the control beam; L—Control beam; CL—Strengthened beams without initial stress; SCL—Strengthened beams with different damage degrees; XCL—Strengthened beams under sustained loads.
    下载: 导出CSV

    表  2  钢筋力学性能

    Table  2.   Mechanical properties of reinforcement

    TypeDiameter/mmYielding strength/MPaUltimate strength/MPa
    HPB3006343508
    HRB40018438610
    HRB40025450620
    下载: 导出CSV

    表  3  织物力学性能

    Table  3.   Mechanical properties of textile

    Type of textileft/MPaEf/GPa$ {\varepsilon _{\text{t}}} $/%$ {\rho _{\text{f}}} $/(g·cm−3)A/(mm2·bundle−1)
    Carbon36002301.51.740.88
    Notes: ft is the tensile strength; Ef is the elastic modulus; $ {\varepsilon _{\text{t}}} $ is the tensile elongation; $ {\rho _{\text{f}}} $ is the density; A is the cross-sectional area of each bundle of yarns.
    下载: 导出CSV

    表  4  高延性混凝土(HDC)的基体配合比(kg/m3)

    Table  4.   Mixed proportions of matrices in high ductile concrete (HDC) (kg/m3)

    CementFlyashMineral powderRiver sandWaterWater reducer
    2357641774243768
    下载: 导出CSV

    表  5  聚乙烯醇(PVA)纤维的力学性能指标

    Table  5.   Mechanical properties of polyvinyl alcohol (PVA) fibers

    Fiber typeL/mmD/μmE/GPaf/MPa$ \varepsilon $/%$ \rho $/(g·cm−3)
    PVA123940160071.3
    Notes: L is the length; D is the diameter; E is the elastic modulus; f is the tensile strength; $ \varepsilon $ is the tensile elongation; $ \rho $ is the density.
    下载: 导出CSV

    表  6  各RC梁试验结果

    Table  6.   Test results of RC beams

    Specimen
    number
    $ {P_{{\text{cr}}}} $/kN$\dfrac{ { {P_{ {\text{cr} } } } } }{ { {P_{ {\text{cr,0} } } } } }$$ {P_{\text{r}}} $/kN$\dfrac{ { {P_{\text{r} } } }}{ { {P_{ {\text{r,0} } } } } }$$ {P_{\text{u}}} $/kN$\dfrac{ { {P_{\text{u} } } }}{ { {P_{ {\text{u,0} } } } } }$$ {\Delta _{\text{u}}} $/mm$\dfrac{ { {\Delta _{\text{u} } } }}{ { {\Delta _{ {\text{u,0} } } } } }$Failure
    mode
    L-042172367.565.88S
    CL-12505.953351.95585.541.599.051.54S
    CL-21904.523301.92563.901.536.961.18S
    CL-33007.144102.38615.491.677.971.36S+PD
    SCL-11804.293001.74528.381.446.71(0.63)1.14S
    SCL-21653.932801.63565.221.546.60(0.61)1.12S
    SCL-31603.812231.30434.911.186.71(2.59)1.14S
    XCL-12105.003201.86498.761.365.62(1.29)0.96S
    XCL-22004.762801.63485.031.325.24(1.86)0.89S
    Notes: $ {P_{{\text{cr}}}} $ and $ {P_{{\text{cr,0}}}} $ are the cracking load of the strengthened beam and control beam, respectively. $ {P_{\text{r}}} $ and $ {P_{{\text{r,0}}}} $ are the loads corresponding to the yielding of stirrups of the strengthened beam and control beam, respectively. $ {P_{\text{u}}} $ and $ {P_{{\text{u,0}}}} $ are the peak load of the strengthened beam and control beam, respectively. $ {\Delta _{\text{u}}} $ and $ {\Delta _{{\text{u,0}}}} $ are the ultimate deflection corresponding to the load dropping to 85% of the peak load of the strengthened beam and control beam, respectively. The $ {\Delta _{\text{u}}} $ of specimens SCL-1, SCL-2, SCL-3, XCL-1, and XCL-2 is the midspan deflection under secondary loading, while the values in parentheses are the residual midspan deflection before secondary loading. S denotes the shear-compression failure, and PD denotes the debonding failure between the concrete and the TRHDC layer.
    下载: 导出CSV

    表  7  各RC梁受剪承载力计算值与试验值比较

    Table  7.   Comparison for the calculation values and test results of shear strength of RC beams

    ResourceStrengthening methodSpecimen number$ {P_{{\text{u,t}}}} $/kN$ {P_{{\text{u,cal}}}} $/kN$\dfrac{ { {P_{ {\text{u,cal} } } } } }{ { {P_{ {\text{u,t} } } } } }$
    This studyL-0183.78218.021.19
    Non-damaged strengthened beamsCL-1292.77259.430.89
    CL-2281.95281.501.00
    CL-3307.74301.640.98
    Pre-damaged strengthened beamsSCL-1264.19281.501.06
    SCL-2282.61281.501.00
    SCL-3217.45217.401.00
    Pre-damaged strengthened beams under sustained loadXCL-1249.38242.530.97
    XCL-2242.52242.531.00
    Literature [32]Pre-damaged strengthened beamsJ3 B212200.890.95
    J3 C200189.780.95
    J3 D178178.861.00
    Pre-damaged strengthened beams under sustained loadJ6 C166175.641.06
    J6 D160171.201.07
    Literature [33]Pre-damaged strengthened beams under sustained loadL1Rd2P2A212-70342.00288.200.84
    L1Rd2P2A211-70410.50332.950.81
    L2Rd2P2A212-70344.50275.0330.80
    L2Rd2P2A211-70440.50323.6080.74
    Notes: $ {P_{{\text{u,t}}}} $ is the experimental value of the specimen; $ {P_{{\text{u,cal}}}} $ is the calculated value of the specimen.
    下载: 导出CSV
  • [1] AWANI O, EL-MAADDAWY T, ISMAIL M. Fabric-reinforced matrix: A promising strengthening technique for concrete structures[J]. Construction and Building Materials,2017,132:94-111. doi: 10.1016/j.conbuildmat.2016.11.125
    [2] BOURNAS, D A. Concurrent seismic and energy retrofitting of RC and masonry building envelopes using inorganic textile-based composites with insulation materials: A new concept[J]. Composite Part B:Engineering,2018,148:166-179. doi: 10.1016/j.compositesb.2018.04.002
    [3] 李赫, 徐世烺. 纤维编织网增强混凝土薄板力学性能的研究[J]. 建筑结构学报, 2007, 28(4):117-122. doi: 10.3321/j.issn:1000-6869.2007.04.016

    LI He, XU Shilang. A study on thin concrete plate reinforced with textile[J]. Journal of Building Structures,2007,28(4):117-122(in Chinese). doi: 10.3321/j.issn:1000-6869.2007.04.016
    [4] 徐世烺, 阎轶群. 低配网率纤维编织网增强混凝土轴拉力学性能[J]. 复合材料学报, 2011, 28(5):206-213.

    XU Shilang, YAN Yiqun. Mechanical properties of textile reinforced concrete plate at low textile ratios[J]. Acta Materiae Compositae Sinica,2011,28(5):206-213(in Chinese).
    [5] D’ANTINO, T, PAPANICOLAOU C. Mechanical characterization of textile reinforced inorganic-matrix composites[J]. Composite Part B:Engineering,2017,127(15):78-91.
    [6] KOUTAS LN, TETTA Z, BOURNAS DA, et al. Strengthening of Concrete Structures with Textile Reinforced Mortars: State-of-the-Art Review[J]. Journal of Composites for Construction,2019,23(1):03118001. doi: 10.1061/(ASCE)CC.1943-5614.0000882
    [7] TRIANTAFILLOU TC. Innovative Textile-based Composites for Strengthening and Seismic Retrofitting of Concrete and Masonry Structures[C]. In: 5 th International Conference on FRP Composites in Civil Engineering, Beijing, China, 2010.
    [8] ELSANADEDY H, ABBAS H, ALMUSALLAM T, et al. Organic versus inorganic matrix composites for bond-critical strengthening applications of RC structures–State-of-the-art review[J]. Composite Part B:Engineering,2019,174:106947. doi: 10.1016/j.compositesb.2019.106947
    [9] RAOOF SM, BOURNAS DA. TRM versus FRP in flexural strengthening of RC beams: behaviour at high temperatures[J]. Construction and Building Materials,2017,154:424-37. doi: 10.1016/j.conbuildmat.2017.07.195
    [10] 沈玲华, 王激扬, 徐世烺. 掺入短切纤维的纤维编织网增强混凝土薄板弯曲力学性能试验研究[J]. 建筑结构学报, 2016, 37(10):98-107.

    SHEN LH, WANG JY, XU SL. Experimental study on bending mechanical behavior of textile reinforced concrete thin-plates with short dispersed fibers[J]. Journal of Building Structures,2016,37(10):98-107(in Chinese).
    [11] BARHUM R, MECHTCHERINE V. Effect of short, dispersed glass and carbon fibres on the behaviour of textile-reinforced concrete under tensile loading[J]. Engineering Fracture Mechanics,2012,92:56-71. doi: 10.1016/j.engfracmech.2012.06.001
    [12] 董志芳, 邓明科, 张聪. 纤维织物增强高延性混凝土单轴拉伸性能试验研究[J]. 土木工程学报, 2020, 53(10):13-25.

    DONG ZF, DENG MK, ZHANG C. Experimental investigation on uniaxial tension behavior of textile-reinforced highly ductile concrete[J]. China Civil Engineering Journal,2020,53(10):13-25(in Chinese).
    [13] 寇佳亮, 邓明科, 梁兴文. 延性纤维增强混凝土单轴拉伸性能试验研究[J]. 建筑结构, 2013, 43(01):59-64.

    KOU JL, DENG MK, LIANG XW. Experimental study of uniaxial tensile properties of ductile fiber reinforced concrete[J]. Building Structure,2013,43(01):59-64(in Chinese).
    [14] 邓明科, 刘海勃, 秦萌, 梁兴文. 高延性纤维混凝土抗压韧性试验研究[J]. 西安建筑科技大学学报(自然科学版), 2015, 47(05):660-665.

    DENG MK, LIU HB, QIN M, LIANG XW. Experimental research on compressive toughness of the high ductile fiber reinforced concrete[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition),2015,47(05):660-665(in Chinese).
    [15] DENG MK, DONG ZF, ZHANG C. Experimental investigation on tensile behavior of carbon textile reinforced mortar (TRM) added with short polyvinyl alcohol (PVA) fibers[J]. Construction and Building Materials,2020,235:117801.
    [16] DONG ZF, DENG MK, ZHANG C, et al. Tensile behavior of glass textile reinforced mortar (TRM) added with short PVA fibers[J]. Construction and Building Materials,2020,260:119897. doi: 10.1016/j.conbuildmat.2020.119897
    [17] ZHENG YZ, WANG WW, BRIGHAM JC. Flexural behaviour of reinforced concrete beams strengthened with a composite reinforcement layer: BFRP grid and ECC[J]. Construction and Building Materials,2016,115:424-437. doi: 10.1016/j.conbuildmat.2016.04.038
    [18] YANG X, GAO WY, DAI JG, et al. Flexural strengthening of RC beams with CFRP grid-reinforced ECC matrix[J]. Composite Structures,2018,189:9-26. doi: 10.1016/j.compstruct.2018.01.048
    [19] 滕锦光, 陈建飞, 史密斯 S T, 等. FRP 加固混凝土结构[J]. 李荣, 滕锦光, 顾磊, 译. 北京:中国建筑工业出版社, 2005:100-101.

    TENG Jinguang, CHEN Jianfei, SMITH S T, et al. FRP strengthened RC structures[J]. Translated by LI Rong, TENG Jinguang, GU Lei. Beijing:China Architecture & Building Press,2005:100-101(in Chinese).
    [20] 郑宇宙, 王文炜, 戴建国, 等. FRP-UHTCC复合层抗剪增强RC梁受力性能试验研究[J]. 建筑结构学报, 2019(8):118-126.

    ZHENG Yuzhou, Wang Wenwei, Dai Jianguo, et al. Experimental study on mechanical performance of reinforced concrete beams shear-strengthened with FRP-UHTCC composite[J]. Journal of Building Structures,2019(8):118-126(in Chinese).
    [21] GUO Rui, REN Yu, LI Mengqi, et al. Experimental study on flexural shear strengthening effect on low-strength RC beams by using FRP grid and ECC[J]. Engineering Structures,2021,227:111434. doi: 10.1016/j.engstruct.2020.111434
    [22] GB50010-2010混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB50010-2010 Code for design of concrete structures[S]. Beijing: China Architectures & Building Press, 2010(in Chinese).
    [23] DBJ 61/T 112−2016 高延性混凝土应用技术规程[S]. 北京: 中国建材工业出版社, 2016.

    DBJ 61/T 112−2016 Technical specification for application of high ductile concrete[S]. Beijing: China Building Materials Press, 2016(in Chinese).
    [24] TAN KH, TONG K, TANG CY. Direct strut-and-tie model for prestressed deep beams[J]. ASCE Journal of Structural Engineering,2001,127(9):1076-1084. doi: 10.1061/(ASCE)0733-9445(2001)127:9(1076)
    [25] TANG CY, TONG K, TAN KH. A direct method for deep beams with web reinforcement[J]. Magazine of Concrete Research,2003,55(1):53-63. doi: 10.1680/macr.2003.55.1.53
    [26] COOK RD, YOUNG WC. Advanced Mechanics of Materials[M]. Macmillan, New York, 1985.
    [27] ZHANG N, TAN KH. Direct strut-and-tie model for single span and continuous deep beams[J]. Engineering Structures,2007,29(11):2987-3001. doi: 10.1016/j.engstruct.2007.02.004
    [28] 邓明科, 马福栋, 李勃志, 等. 基于修正拉-压杆模型的型钢混凝土深梁受剪承载力分析[J]. 工程力学, 2017, 34(12):95-103.

    DENG MK, MA FD, LI BZ, et al. Analysis on shear capacity of SRC deep beams based on modified strut-and-tie model[J]. Engineering mechanics,2017,34(12):95-103(in Chinese).
    [29] DENG MK, MA FD, YE W, et al. Investigation of the shear strength of HDC deep beams based on a modified direct strut-and-tie model[J]. Construction and Building Materials,2018,172:340-348. doi: 10.1016/j.conbuildmat.2018.03.274
    [30] HEGGER J, VOSS S, PRISCO M Di, et al. Textile reinforced concrete under biaxial loading[C]. in: 6 th International RILEM Symposium on Fibre Reinforced Concretes, Varenna, Italy, 2004.
    [31] 张海霞, 孙闯, 黄妍. 考虑二次受力的内嵌BFRP筋加固混凝土T形梁受剪性能试验研究[J]. 建筑结构学报, 2019, 40(6):56-63.

    ZHANG Haixia, SUN Chuang, HUANG Yan. Experimental study on shear behavior of RC T-beams strengthened with near-surface mounted BFRP bars considering effect of secondary loading[J]. Journal of Building Structures,2019,40(6):56-63(in Chinese).
    [32] 刘君, 周朝阳, 宋朋. 持载混凝土梁端锚无黏结预应力U形碳纤维带受剪加固试验研究[J]. 建筑结构学报, 2019, 40(12):96-104.

    LIU Jun, ZHOU Chaoyang, SONG Peng. Experimental research on shear strengthening of concrete beams under sustained load with end-anchored and unbonded prestressed CFRP U-strips[J]. Journal of Building Structures,2019,40(12):96-104(in Chinese).
  • 加载中
计量
  • 文章访问数:  66
  • HTML全文浏览量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 录用日期:  2022-04-19
  • 修回日期:  2022-04-04
  • 网络出版日期:  2022-05-11

目录

    /

    返回文章
    返回