留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿热老化对碳纤维增强复合材料力学和摩擦磨损性能的影响

田经纬 齐肖 郭瑞 咸贵军

田经纬, 齐肖, 郭瑞, 等. 湿热老化对碳纤维增强复合材料力学和摩擦磨损性能的影响[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 田经纬, 齐肖, 郭瑞, 等. 湿热老化对碳纤维增强复合材料力学和摩擦磨损性能的影响[J]. 复合材料学报, 2024, 42(0): 1-13.
TIAN Jingwei, QI Xiao, GUO Rui, et al. Effect of hygrothermal aging on the mechanical and frictional wear properties of carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica.
Citation: TIAN Jingwei, QI Xiao, GUO Rui, et al. Effect of hygrothermal aging on the mechanical and frictional wear properties of carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica.

湿热老化对碳纤维增强复合材料力学和摩擦磨损性能的影响

基金项目: 国家重点研发计划(2022YFB3706501)
详细信息
    通讯作者:

    咸贵军,博士,教授,博士生导师,研究方向为土木工程纤维增强树脂复合材料与结构 E-mail: gjxian@hit.edu.cn

  • 中图分类号: TB332

Effect of hygrothermal aging on the mechanical and frictional wear properties of carbon fiber reinforced composites

Funds: National Key Research and Development Program of China (No. 2022YFB3706501)
  • 摘要: 碳纤维增强复合材料(CFRP)具有轻质、高强、耐腐蚀、抗疲劳、耐磨损等优点,已经成为新型的先进海洋工程结构材料。本文研究了湿热老化对CFRP热/力学(拉伸、弯曲、短梁剪切性能)和摩擦磨损性能影响规律,结合微观形貌与结构分析,揭示CFRP在60 ℃蒸馏水浸泡长达90天力学和摩擦磨损性能退化机制。研究发现,湿热老化使得CFRP拉伸、弯曲和短梁剪切强度最大退化幅值为5.8%、13.0%和20.9%,归因于湿热老化过程水分子破坏了树脂高分子树脂链氢键和部分共价键,导致CFRP内部产生缺陷并丧失对纤维束横向约束,最终引起纤维/树脂界面脱粘。此外,湿热环境CFRP热力学和粘弹性行为呈现非线性变化规律,归因于积极的树脂后固化和消极的湿热老化耦合效应。与浸泡前相比,老化15、30、60和90天CFRP的平均摩擦系数依次降低了23.8%、35.0%、43.7%和53.8%,归因于扩散CFRP内部水分子摩擦过程中充当了摩擦润滑剂,缓解了CFRP/研磨球界面磨损程度;湿热老化90天CFRP的Ws和WSW较老化前增加了254.6%和114.9%,归因于与树脂基体形成新氢键的水分子处于结合水状态,导致树脂分子链间作用力减小及其内部微裂纹不断萌生,引发严重的疲劳磨损。

     

  • 图  1  环氧树脂基体及其对应的两种固化剂

    Figure  1.  Epoxy resin matrix and its corresponding two curing agents

    图  2  真空灌注成型工艺示意图

    Figure  2.  Vacuum perfusion molding process diagram

    图  3  湿热老化90天前后CFRP形貌分析:(a) 老化前表面形貌;(b) 老化后表面形貌;(c) 老化后拉伸断口;(d) 老化后弯曲断口;(e) 老化后低倍数下短梁剪切断口;(f) 老化后高倍数下短梁剪切断口

    Figure  3.  Morphology analysis of CFRP before and after 90 days of hygrothermal aging: (a) surface morphology before aging; (b) surface morphology after aging; (c) tensile fracture after aging; (d) bending fracture after aging; (e) short beam shear fracture at low magnification after aging; (f) short beam shear fracture at high magnification after aging

    图  4  环氧树脂基体与CFRP在60℃湿热老化工况下的傅里叶红外光谱

    Figure  4.  Fourier transform infrared spectroscopy of epoxy resin matrix and CFRP under hygrothermal aging condition at 60℃

    图  5  湿热老化对CFRP摩擦磨损性能的影响:(a) COFs;(b) Ws和WSW

    Figure  5.  Effect of hygrothermal aging on friction and wear properties of CFRP: (a) COFs; (b) Ws and WSW

    图  6  湿热老化对CFRP表面及其研磨球微观形貌影响:(a) 0天;(b) 15天;(c) 30天;(d) 60天;(e) 90天

    Figure  6.  Effect of hygrothermal aging on CFRP surface and grinding ball micro-morphologies: (a) 0 day; (b) 15 days; (c) 30 days; (d) 60 days; (e) 90 day

    图  7  湿热老化对CFRP磨损轨迹微观形貌影响:(a) 0天;(b) 15天;(c) 30天;(d) 60天;(e) 90天

    Figure  7.  Effect of hygrothermal aging on micro-morphologies of CFRP wear trajectory: (a) 0 day; (b) 15 days; (c) 30 days; (d) 60 days; (e) 90 days

    表  1  碳纤维增强复合材料(CFRP)及其环氧树脂基体力学性能

    Table  1.   Mechanical properties of carbon fiber reinforced composite (CFRP) and epoxy resin matrix

    Formula Strength/MPa Modulus/GPa Maximum strain/%
    Tensile properties Resin matrix 63.91(±1.87) 3.66(±0.11) 3.78(±0.11)
    CFRP 1330.45(±62.24) 103.32(±3.09) 1.29(±0.08)
    Bending properties Resin matrix 115.30(±3.79) 3.26(±0.22) 4.34(±0.12)
    CFRP 1224.15(±51.74) 80.41(±1.70) 1.47(±0.03)
    Shear properties of short beams CFRP 80.41(±3.32) / /
    Notes: The preparation and testing methods of the epoxy resin system can be found in Reference [22]。
    下载: 导出CSV

    表  2  湿热老化对CFRP力学性能的影响

    Table  2.   Effect of hygrothermal aging on the CFRP mechanical properties

    Formula Immersion time Tensile strength/MPa Bending strength/MPa Shear strength/MPa
    CFRP 0 day 1330.45(±62.24) 1224.15(±51.74) 82.41(±3.32)
    15 days 1323.35(±52.48) 1188.65(±65.35) 76.63(±2.15)
    30 days 1307.83(±48.24) 1167.84(±57.48) 74.38(±1.56)
    45 days 1291.87(±53.27) 1129.89(±68.32) 71.32(±0.87)
    60 days 1301.18(±62.92) 1143.36(±42.54) 70.36(±4.42)
    75 days 1273.24(±29.67) 1101.74(±39.65) 66.90(±3.42)
    90 days 1252.63(±43.15) 1065.01(±52.25) 65.13(±3.90)
    FC5F(F:Flax;C5:Carbon of 5 lays;))/CFRP-70℃
    (Water solution)[36]
    / FC5F CFRP /
    0 day 626.32(±46.12) 634.56(±63.28) /
    14 days 423.35(±35.45) 523.18(±48.17)
    28 days 384.26(±39.12) 489.32(±54.78)
    56 days 368.34(±58.85) 465.25(±89.12)
    CFRP-70℃
    Under 80% RH[37]
    0 day / 785.34(±68.41) /
    14 days 736.15(±75.24)
    28 days 683.15(±59.24)
    56 days 632.89(±65.24)
    下载: 导出CSV

    表  3  60℃湿热老化工况下浸泡时间对CFRP热力学性能的影响

    Table  3.   Effect of immersion time on CFRP thermodynamic properties under hygrothermal aging condition at 60℃

    Immersion timeTg/℃Storage modulus/MPaLoss modulus/MPaLoss factor
    0 day136.80 (±2.01)3853690710.2354
    15 days129.93 (±1.59)3521679060.2245
    30 days122.56 (±1.26)3232665820.2036
    45 days118.25 (±2.06)3045759910.1967
    60 days117.69 (±0.95)2845656200.1975
    75 days120.25 (±1.26)2957454450.1841
    90 days116.49 (±0.68)2574044380.1724
    Notes: Tg stands for glass transition temperature.
    下载: 导出CSV

    表  4  FTIR光谱中环氧树脂和CFRP特征吸收谱带所对应的化学基团

    Table  4.   The chemical groups corresponding to the characteristic absorption bands of epoxy resin and CFRP in FTIR spectra

    Wavenumber/cm−1 Corresponding chemical group Reference number
    3400 O—H stretching vibration [35]
    2930 C—H stretching vibration [33]
    1612 C=C stretching vibration (olefin) [33]
    1509 C=C (arene) [35]
    1244 C—O—Φ nonsymmetric stretching vibration [33]
    1041 C—O—Φ symmetrical stretching vibration [39]
    827 C—H (benzene) [35]
    下载: 导出CSV
  • [1] ABDULLA F A, HAMID K L, OGAILI A A F, et al. Experimental study of Wear Rate Behavior for Composite Materials under Hygrothermal Effect; proceedings of the IOP Conference Series: Materials Science and Engineering, F, 2020 [C]. IOP Publishing.
    [2] BACHCHAN A A, DAS P P, CHAUDHARY V. Effect of moisture absorption on the properties of natural fiber reinforced polymer composites: A review[J]. Materials Today: Proceedings, 2022, 49: 3403-3408. doi: 10.1016/j.matpr.2021.02.812
    [3] 李涛, 刘喜, 李振军, 等. 基于BP-ANN与RBF-ANN的钢筋与混凝土黏结强度预测模型研究[J]. 南京工业大学学报(自然科学版), 2024, 46(1): 112-118.

    LI Tao, LIU Xi, LI Zhenjun, et al. Research on prediction model of bond strength between reinforcement and concrete based on BP-ANN and RBF-ANN[J]. Journal of Nanjing Tech University (Natural Science Edition), 2024, 46(1): 112-118(in Chinese).
    [4] QI X, TIAN J, XIAN G. Hydrothermal ageing of carbon fiber reinforced polymer composites applied for construction: A review[J]. Journal of Materials Research and Technology, 2023, 27: 1017-1045. doi: 10.1016/j.jmrt.2023.09.198
    [5] XIA Z, JIANG T, YU T. Innovating arch structures with fiber-reinforced polymer composites: A review[J]. Advances in Structural Engineering, 2023, 26(13): 2341-2358. doi: 10.1177/13694332231180373
    [6] HEGDE S, SHENOY B S, CHETHAN K. Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance[J]. Materials Today: Proceedings, 2019, 19: 658-662. doi: 10.1016/j.matpr.2019.07.749
    [7] KARATAŞ M A, GöKKAYA H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology, 2018, 14(4): 318-326. doi: 10.1016/j.dt.2018.02.001
    [8] RAFIQUE I, KAUSAR A, MUHAMMAD B. Epoxy resin composite reinforced with carbon fiber and inorganic filler: Overview on preparation and properties[J]. Polymer-Plastics Technology and Engineering, 2016, 55(15): 1653-1672. doi: 10.1080/03602559.2016.1163597
    [9] 唐亮, 汪登, 屈建, 等. 温度对碳纤维增强复合材料力学行为影响的研究进展[J]. 冶金与材料, 2022, 42(4): 56-58. doi: 10.3969/j.issn.1674-5183.2022.04.023

    TANG Liang, WANG Deng, QV Jian, et al. Research progress on the effect of temperature on the mechanical behaviour of carbon fiber reinforced polymer composites[J]. Metallurgy and materials, 2022, 42(4): 56-58(in Chinese). doi: 10.3969/j.issn.1674-5183.2022.04.023
    [10] 刘文迪, 张芝芳, 王景东. 纤维增强复合材料结构的弯曲疲劳性能研究现状[J]. 南京工业大学学报(自然科学版), 2023, 45(5): 478-489.

    LIU Wendi, ZHANG Zhifang, WANG Jingdong. Review of bending fatigue behavior of fiber reinforced polymer composites[J]. Journal of Nanjing Tech University ( Natural Science Edition), 2023, 45(5): 478-489(in Chinese).
    [11] 王安妮, 刘晓刚, 岳清瑞. 碳纤维复合材料拉索的锚固体系及服役性能研究进展[J]. 建筑结构学报, 2022, 43(9): 45-54.

    WANG Anni, LlU Xiaogang, YUE Qingrui. Research progress of carbon fiber reinforced polymer composite cable: anchorage system and service performance[J]. Journal of Building Structures, 2022, 43(9): 45-54(in Chinese).
    [12] GUO R, XIAN G J, LI F, et al. Hygrothermal resistance of pultruded carbon, glass and carbon/glass hybrid fiber reinforced epoxy composites[J]. Constr Build Mater, 2022, 315: 125710-125730. doi: 10.1016/j.conbuildmat.2021.125710
    [13] CARFAGNA C, MASTRONARDI P, NICOLAIS L. Hygrothermal ageing of epoxy based coatings[J]. Journal of Materials Science, 1982, 17(8): 2239-2244. doi: 10.1007/BF00543733
    [14] GUO R, XIAN G J, LI C G, et al. Water uptake and interfacial shear strength of carbon/glass fiber hybrid composite rods under hygrothermal environments: effects of hybrid modes[J]. Polym Degrad Stabil, 2021, 193: 109723-109736. doi: 10.1016/j.polymdegradstab.2021.109723
    [15] NANDAGOPAL R A, BOAY C G, NARASIMALU S. An empirical model to predict the strength degradation of the hygrothermal aged CFRP material[J]. Compos Struct, 2020, 236: 111876-111891. doi: 10.1016/j.compstruct.2020.111876
    [16] PRUSTY R K, RATHORE D K, RAY B C. Water-induced degradations in MWCNT embedded glass fiber/epoxy composites: An emphasis on aging temperature[J]. Journal of Applied Polymer Science, 2018, 135(11): 45987-45995. doi: 10.1002/app.45987
    [17] 陆中宇. 玄武岩纤维增强树脂基复合材料的高温性能研究 [D], 2016.

    LU Zhongyu. The elevated temperature performance of basalt fiber reinforced polymer composites [D], 2016(in Chinese).
    [18] 李昊, 宋世聪, 张炫烽, 等. 树脂基防隔热一体化热防护复合材料高温性能演变分析[J]. 南京工业大学学报(自然科学版), 2024, 46(2): 180-187.

    LI Hao, SONG Shicong, ZHANG Xuanfeng, et al. Analysis of the evolution of high temperature peformance of resin-based anti-insulation integrated thermal protection composites[J]. Joural of Nanjing Tech University (Natural Seience Edition), 2024, 46(2): 180-187(in Chinese).
    [19] BAO L R, YEE A F. Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites: part II - woven and hybrid composites[J]. Compos Sci Technol, 2002, 62(16): 2111-2119. doi: 10.1016/S0266-3538(02)00162-8
    [20] ALAJMI M, ALRASHDAN K R, ALSAEED T, et al. Tribological characteristics of graphite epoxy composites using adhesive wear experiments[J]. Journal of Materials Research and Technology, 2020, 9(6): 13671-13681. doi: 10.1016/j.jmrt.2020.09.106
    [21] SALEM A, BENSALAH W, MEZLINI S. Effect of hygrothermal aging on the tribological behavior of HDPE composites for bio-implant application[J]. Polym Test, 2021, 94: 107050-107058. doi: 10.1016/j.polymertesting.2020.107050
    [22] TIAN J W, TANG Q W, LI C G, et al. Mechanical, bonding and tribological performances of epoxy-based nanocomposite coatings with multiple fillers[J]. Journal of Applied Polymer Science, 2022, 139(23): 52303-52317. doi: 10.1002/app.52303
    [23] 张哲轩, 杨忠仪, 夏荣华, 等. Cr-C类石墨复合涂层制备表征及其在硬质合金铣刀上的应用[J]. 南京工业大学学报(自然科学版), 2024, 46(1): 55-64.

    ZHANG Zhexuan, YANG Zhongyi, XlA Ronghua, et al. Preparation and characterization of Cr-C type graphite composite coating and its application in cemented carbide milling culters[J]. Joumal of Nanjing Tech University (Natural Science Edition), 2024, 46(1): 55-64(in Chinese).
    [24] JIANG X, KOLSTEIN H, BIJLAARD F S K. Moisture diffusion in glass-fiber-reinforced polymer composite bridge under hot/wet environment[J]. Compos Part B-Eng, 2013, 45(1): 407-416. doi: 10.1016/j.compositesb.2012.04.067
    [25] JIANG X, KOLSTEIN H, BIJLAARD F S K. Moisture diffusion and hygrothermal aging in pultruded fibre reinforced polymer composites of bridge decks[J]. Mater Design, 2012, 37: 304-312. doi: 10.1016/j.matdes.2012.01.017
    [26] TIAN J W, QI X, LI C G, et al. Friction behaviors and wear mechanisms of multi-filler reinforced epoxy composites under dry and wet conditions: Effects of loads, sliding speeds, temperatures, water lubrication[J]. Tribol Int, 2023, 179: 108148-108161. doi: 10.1016/j.triboint.2022.108148
    [27] ZHANG X F, CHEN Y Q, HU J M. Robust superhydrophobic SiO2/polydimethylsiloxane films coated on mild steel for corrosion protection[J]. Corros Sci, 2020, 166: 108452-108461. doi: 10.1016/j.corsci.2020.108452
    [28] DEMIRCAN G. Structural integrity of glass fiber reinforced nanocomposites under hydrothermal aging for offshore structure applications[J]. Applied Ocean Research, 2024, 146: 103959-103971. doi: 10.1016/j.apor.2024.103959
    [29] ASTM D3039/D3039M-00, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials [S].
    [30] ASTM D7264/D7264M-07, Standard test method for flexural properties of polymer matrix composite materials [S].
    [31] ASTM D2344/D2344M-22, Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates [S].
    [32] ASTM D7028-07, Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA) [S].
    [33] 王自柯. FRP筋在模拟海水—海砂混凝土孔溶液浸泡下的耐久性研究 [D], 2018.

    WANG Zike. Study on the durability performances of fiber reinforced polymer(FRP) bars exposed to simulated seawater and sea sand concrete pore solution [D], 2018(in Chinese).
    [34] QI X, TIAN J, GUO R, et al. Hydrothermal aging of carbon fiber reinforced polymer rods intended for cable applications in civil engineering[J]. Journal of Materials Research and Technology, 2023, 26: 5151-5166. doi: 10.1016/j.jmrt.2023.08.285
    [35] TIAN J W, LI C G, QI X, et al. Hygrothermal aging behavior and mechanism of multi-filler reinforced epoxy composites for steel structure coatings[J]. Eur Polym J, 2023, 184: 111780-111795. doi: 10.1016/j.eurpolymj.2022.111780
    [36] 王安妮. 亚麻表面改性与碳纤维混杂对亚麻复合材料性能的影响 [D], 2021.

    WANG Anni. Effect of flax surface modification and carbon fiber hybrid on the properties of flax reinforced polymer composites [D], 2018(in Chinese).
    [37] WANG A, WANG X, XIAN G. Mechanical, low-velocity impact, and hydrothermal aging properties of flax/carbon hybrid composite plates[J]. Polym Test, 2020, 90: 106759-106768. doi: 10.1016/j.polymertesting.2020.106759
    [38] HEISTER K. The measurement of the specific surface area of soils by gas and polar liquid adsorption methods—Limitations and potentials[J]. Geoderma, 2014, 216: 75-87. doi: 10.1016/j.geoderma.2013.10.015
    [39] BEHERA A, DUPARE P, THAWRE M, et al. Effects of hygrothermal aging and fiber orientations on constant amplitude fatigue properties of CFRP multidirectional composite laminates[J]. International Journal of Fatigue, 2020, 136: 105590-105599. doi: 10.1016/j.ijfatigue.2020.105590
    [40] BELOTTI L P, VADIVEL H S, EMAMI N. Tribological performance of hygrothermally aged UHMWPE hybrid composites[J]. Tribol Int, 2019, 138: 150-156. doi: 10.1016/j.triboint.2019.05.034
  • 加载中
计量
  • 文章访问数:  133
  • HTML全文浏览量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-13
  • 修回日期:  2024-06-11
  • 录用日期:  2024-07-05
  • 网络出版日期:  2024-07-19

目录

    /

    返回文章
    返回