Effect of hygrothermal aging on the mechanical and frictional wear properties of carbon fiber reinforced composites
-
摘要: 碳纤维增强复合材料(CFRP)具有轻质、高强、耐腐蚀、抗疲劳、耐磨损等优点,已经成为新型的先进海洋工程结构材料。本文研究了湿热老化对CFRP热/力学(拉伸、弯曲、短梁剪切性能)和摩擦磨损性能影响规律,结合微观形貌与结构分析,揭示CFRP在60 ℃蒸馏水浸泡长达90天力学和摩擦磨损性能退化机制。研究发现,湿热老化使得CFRP拉伸、弯曲和短梁剪切强度最大退化幅值为5.8%、13.0%和20.9%,归因于湿热老化过程水分子破坏了树脂高分子树脂链氢键和部分共价键,导致CFRP内部产生缺陷并丧失对纤维束横向约束,最终引起纤维/树脂界面脱粘。此外,湿热环境CFRP热力学和粘弹性行为呈现非线性变化规律,归因于积极的树脂后固化和消极的湿热老化耦合效应。与浸泡前相比,老化15、30、60和90天CFRP的平均摩擦系数依次降低了23.8%、35.0%、43.7%和53.8%,归因于扩散CFRP内部水分子摩擦过程中充当了摩擦润滑剂,缓解了CFRP/研磨球界面磨损程度;湿热老化90天CFRP的Ws和WSW较老化前增加了254.6%和114.9%,归因于与树脂基体形成新氢键的水分子处于结合水状态,导致树脂分子链间作用力减小及其内部微裂纹不断萌生,引发严重的疲劳磨损。Abstract: Carbon fiber reinforced composites (CFRP) have the advantages of light weight, high strength, corrosion resistance, fatigue resistance and wear resistance, and have become a new advanced structural materials for marine engineering. In this paper, the effects of hygrothermal aging on the thermal/mechanical (tensile, flexural and short-beam shear properties) and frictional wear properties of CFRP were investigated. Combined with the analysis of micro-morphology and structure, the degradation mechanisms of mechanical and frictional wear properties of CFRP immersed in the distilled water at 60℃ for up to 90 days were revealed. It was found that the maximum degradation amplitudes of CFRP tensile, flexural and short-beam shear strengths were 5.8%, 13.0%, and 20.9%, due to the destruction of hydrogen bonds and partial covalent bonds of polymer resin chains by water molecules during the hygrothermal aging process, which resulted in the defect creation and the lateral restraint loss of the fiber bundles within the CFRP, ultimately leading to the de-bonding of fiber/resin interfaces. In addition, the thermodynamic and viscoelastic behavior of CFRP in the hygrothermal environment exhibited a nonlinear change, attributing to the coupling effects of positive resin post-curing and negative hygrothermal aging. Compared with those before immersion, the average COFs of CFRP aged for 15, 30, 60, and 90 days decreased by 23.8%, 35.0%, 43.7% and 53.8%, respectively, which was attributed to the friction lubrication of water molecules inside the diffused CFRP acting as friction lubricants during friction, alleviating the wear of the CFRP/abrasive ball interface. The Ws and WSW of CFRP aged for 90 days increased by 254.6% and 114.9% compared with that before aging, which was attributed to the fact that the water molecules forming new hydrogen bonds with the resin matrix were in the bonded water state, reducing inter-chain force between resin molecules and the continuous growth of their internal micro-cracks, resulting in severe fatigue wear.
-
Key words:
- Epoxy resin /
- Carbon fiber composites /
- Hygrothermal aging /
- Mechanical properties /
- Friction behavior /
- Wear mechanism
-
图 3 湿热老化90天前后CFRP形貌分析:(a) 老化前表面形貌;(b) 老化后表面形貌;(c) 老化后拉伸断口;(d) 老化后弯曲断口;(e) 老化后低倍数下短梁剪切断口;(f) 老化后高倍数下短梁剪切断口
Figure 3. Morphology analysis of CFRP before and after 90 days of hygrothermal aging: (a) surface morphology before aging; (b) surface morphology after aging; (c) tensile fracture after aging; (d) bending fracture after aging; (e) short beam shear fracture at low magnification after aging; (f) short beam shear fracture at high magnification after aging
表 1 碳纤维增强复合材料(CFRP)及其环氧树脂基体力学性能
Table 1. Mechanical properties of carbon fiber reinforced composite (CFRP) and epoxy resin matrix
Formula Strength/MPa Modulus/GPa Maximum strain/% Tensile properties Resin matrix 63.91(±1.87) 3.66(±0.11) 3.78(±0.11) CFRP 1330.45(±62.24) 103.32(±3.09) 1.29(±0.08) Bending properties Resin matrix 115.30(±3.79) 3.26(±0.22) 4.34(±0.12) CFRP 1224.15(±51.74) 80.41(±1.70) 1.47(±0.03) Shear properties of short beams CFRP 80.41(±3.32) / / Notes: The preparation and testing methods of the epoxy resin system can be found in Reference [22]。 表 2 湿热老化对CFRP力学性能的影响
Table 2. Effect of hygrothermal aging on the CFRP mechanical properties
Formula Immersion time Tensile strength/MPa Bending strength/MPa Shear strength/MPa CFRP 0 day 1330.45(±62.24) 1224.15(±51.74) 82.41(±3.32) 15 days 1323.35(±52.48) 1188.65(±65.35) 76.63(±2.15) 30 days 1307.83(±48.24) 1167.84(±57.48) 74.38(±1.56) 45 days 1291.87(±53.27) 1129.89(±68.32) 71.32(±0.87) 60 days 1301.18(±62.92) 1143.36(±42.54) 70.36(±4.42) 75 days 1273.24(±29.67) 1101.74(±39.65) 66.90(±3.42) 90 days 1252.63(±43.15) 1065.01(±52.25) 65.13(±3.90) FC5F(F:Flax;C5:Carbon of 5 lays;))/CFRP-70℃
(Water solution)[36]/ FC5F CFRP / 0 day 626.32(±46.12) 634.56(±63.28) / 14 days 423.35(±35.45) 523.18(±48.17) 28 days 384.26(±39.12) 489.32(±54.78) 56 days 368.34(±58.85) 465.25(±89.12) CFRP-70℃
Under 80% RH[37]0 day / 785.34(±68.41) / 14 days 736.15(±75.24) 28 days 683.15(±59.24) 56 days 632.89(±65.24) 表 3 60℃湿热老化工况下浸泡时间对CFRP热力学性能的影响
Table 3. Effect of immersion time on CFRP thermodynamic properties under hygrothermal aging condition at 60℃
Immersion time Tg/℃ Storage modulus/MPa Loss modulus/MPa Loss factor 0 day 136.80 (±2.01) 38536 9071 0.2354 15 days 129.93 (±1.59) 35216 7906 0.2245 30 days 122.56 (±1.26) 32326 6582 0.2036 45 days 118.25 (±2.06) 30457 5991 0.1967 60 days 117.69 (±0.95) 28456 5620 0.1975 75 days 120.25 (±1.26) 29574 5445 0.1841 90 days 116.49 (±0.68) 25740 4438 0.1724 Notes: Tg stands for glass transition temperature. 表 4 FTIR光谱中环氧树脂和CFRP特征吸收谱带所对应的化学基团
Table 4. The chemical groups corresponding to the characteristic absorption bands of epoxy resin and CFRP in FTIR spectra
Wavenumber/cm−1 Corresponding chemical group Reference number 3400 O—H stretching vibration [35] 2930 C—H stretching vibration [33] 1612 C=C stretching vibration (olefin) [33] 1509 C=C (arene) [35] 1244 C—O—Φ nonsymmetric stretching vibration [33] 1041 C—O—Φ symmetrical stretching vibration [39] 827 C—H (benzene) [35] -
[1] ABDULLA F A, HAMID K L, OGAILI A A F, et al. Experimental study of Wear Rate Behavior for Composite Materials under Hygrothermal Effect; proceedings of the IOP Conference Series: Materials Science and Engineering, F, 2020 [C]. IOP Publishing. [2] BACHCHAN A A, DAS P P, CHAUDHARY V. Effect of moisture absorption on the properties of natural fiber reinforced polymer composites: A review[J]. Materials Today: Proceedings, 2022, 49: 3403-3408. doi: 10.1016/j.matpr.2021.02.812 [3] 李涛, 刘喜, 李振军, 等. 基于BP-ANN与RBF-ANN的钢筋与混凝土黏结强度预测模型研究[J]. 南京工业大学学报(自然科学版), 2024, 46(1): 112-118.LI Tao, LIU Xi, LI Zhenjun, et al. Research on prediction model of bond strength between reinforcement and concrete based on BP-ANN and RBF-ANN[J]. Journal of Nanjing Tech University (Natural Science Edition), 2024, 46(1): 112-118(in Chinese). [4] QI X, TIAN J, XIAN G. Hydrothermal ageing of carbon fiber reinforced polymer composites applied for construction: A review[J]. Journal of Materials Research and Technology, 2023, 27: 1017-1045. doi: 10.1016/j.jmrt.2023.09.198 [5] XIA Z, JIANG T, YU T. Innovating arch structures with fiber-reinforced polymer composites: A review[J]. Advances in Structural Engineering, 2023, 26(13): 2341-2358. doi: 10.1177/13694332231180373 [6] HEGDE S, SHENOY B S, CHETHAN K. Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance[J]. Materials Today: Proceedings, 2019, 19: 658-662. doi: 10.1016/j.matpr.2019.07.749 [7] KARATAŞ M A, GöKKAYA H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology, 2018, 14(4): 318-326. doi: 10.1016/j.dt.2018.02.001 [8] RAFIQUE I, KAUSAR A, MUHAMMAD B. Epoxy resin composite reinforced with carbon fiber and inorganic filler: Overview on preparation and properties[J]. Polymer-Plastics Technology and Engineering, 2016, 55(15): 1653-1672. doi: 10.1080/03602559.2016.1163597 [9] 唐亮, 汪登, 屈建, 等. 温度对碳纤维增强复合材料力学行为影响的研究进展[J]. 冶金与材料, 2022, 42(4): 56-58. doi: 10.3969/j.issn.1674-5183.2022.04.023TANG Liang, WANG Deng, QV Jian, et al. Research progress on the effect of temperature on the mechanical behaviour of carbon fiber reinforced polymer composites[J]. Metallurgy and materials, 2022, 42(4): 56-58(in Chinese). doi: 10.3969/j.issn.1674-5183.2022.04.023 [10] 刘文迪, 张芝芳, 王景东. 纤维增强复合材料结构的弯曲疲劳性能研究现状[J]. 南京工业大学学报(自然科学版), 2023, 45(5): 478-489.LIU Wendi, ZHANG Zhifang, WANG Jingdong. Review of bending fatigue behavior of fiber reinforced polymer composites[J]. Journal of Nanjing Tech University ( Natural Science Edition), 2023, 45(5): 478-489(in Chinese). [11] 王安妮, 刘晓刚, 岳清瑞. 碳纤维复合材料拉索的锚固体系及服役性能研究进展[J]. 建筑结构学报, 2022, 43(9): 45-54.WANG Anni, LlU Xiaogang, YUE Qingrui. Research progress of carbon fiber reinforced polymer composite cable: anchorage system and service performance[J]. Journal of Building Structures, 2022, 43(9): 45-54(in Chinese). [12] GUO R, XIAN G J, LI F, et al. Hygrothermal resistance of pultruded carbon, glass and carbon/glass hybrid fiber reinforced epoxy composites[J]. Constr Build Mater, 2022, 315: 125710-125730. doi: 10.1016/j.conbuildmat.2021.125710 [13] CARFAGNA C, MASTRONARDI P, NICOLAIS L. Hygrothermal ageing of epoxy based coatings[J]. Journal of Materials Science, 1982, 17(8): 2239-2244. doi: 10.1007/BF00543733 [14] GUO R, XIAN G J, LI C G, et al. Water uptake and interfacial shear strength of carbon/glass fiber hybrid composite rods under hygrothermal environments: effects of hybrid modes[J]. Polym Degrad Stabil, 2021, 193: 109723-109736. doi: 10.1016/j.polymdegradstab.2021.109723 [15] NANDAGOPAL R A, BOAY C G, NARASIMALU S. An empirical model to predict the strength degradation of the hygrothermal aged CFRP material[J]. Compos Struct, 2020, 236: 111876-111891. doi: 10.1016/j.compstruct.2020.111876 [16] PRUSTY R K, RATHORE D K, RAY B C. Water-induced degradations in MWCNT embedded glass fiber/epoxy composites: An emphasis on aging temperature[J]. Journal of Applied Polymer Science, 2018, 135(11): 45987-45995. doi: 10.1002/app.45987 [17] 陆中宇. 玄武岩纤维增强树脂基复合材料的高温性能研究 [D], 2016.LU Zhongyu. The elevated temperature performance of basalt fiber reinforced polymer composites [D], 2016(in Chinese). [18] 李昊, 宋世聪, 张炫烽, 等. 树脂基防隔热一体化热防护复合材料高温性能演变分析[J]. 南京工业大学学报(自然科学版), 2024, 46(2): 180-187.LI Hao, SONG Shicong, ZHANG Xuanfeng, et al. Analysis of the evolution of high temperature peformance of resin-based anti-insulation integrated thermal protection composites[J]. Joural of Nanjing Tech University (Natural Seience Edition), 2024, 46(2): 180-187(in Chinese). [19] BAO L R, YEE A F. Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites: part II - woven and hybrid composites[J]. Compos Sci Technol, 2002, 62(16): 2111-2119. doi: 10.1016/S0266-3538(02)00162-8 [20] ALAJMI M, ALRASHDAN K R, ALSAEED T, et al. Tribological characteristics of graphite epoxy composites using adhesive wear experiments[J]. Journal of Materials Research and Technology, 2020, 9(6): 13671-13681. doi: 10.1016/j.jmrt.2020.09.106 [21] SALEM A, BENSALAH W, MEZLINI S. Effect of hygrothermal aging on the tribological behavior of HDPE composites for bio-implant application[J]. Polym Test, 2021, 94: 107050-107058. doi: 10.1016/j.polymertesting.2020.107050 [22] TIAN J W, TANG Q W, LI C G, et al. Mechanical, bonding and tribological performances of epoxy-based nanocomposite coatings with multiple fillers[J]. Journal of Applied Polymer Science, 2022, 139(23): 52303-52317. doi: 10.1002/app.52303 [23] 张哲轩, 杨忠仪, 夏荣华, 等. Cr-C类石墨复合涂层制备表征及其在硬质合金铣刀上的应用[J]. 南京工业大学学报(自然科学版), 2024, 46(1): 55-64.ZHANG Zhexuan, YANG Zhongyi, XlA Ronghua, et al. Preparation and characterization of Cr-C type graphite composite coating and its application in cemented carbide milling culters[J]. Joumal of Nanjing Tech University (Natural Science Edition), 2024, 46(1): 55-64(in Chinese). [24] JIANG X, KOLSTEIN H, BIJLAARD F S K. Moisture diffusion in glass-fiber-reinforced polymer composite bridge under hot/wet environment[J]. Compos Part B-Eng, 2013, 45(1): 407-416. doi: 10.1016/j.compositesb.2012.04.067 [25] JIANG X, KOLSTEIN H, BIJLAARD F S K. Moisture diffusion and hygrothermal aging in pultruded fibre reinforced polymer composites of bridge decks[J]. Mater Design, 2012, 37: 304-312. doi: 10.1016/j.matdes.2012.01.017 [26] TIAN J W, QI X, LI C G, et al. Friction behaviors and wear mechanisms of multi-filler reinforced epoxy composites under dry and wet conditions: Effects of loads, sliding speeds, temperatures, water lubrication[J]. Tribol Int, 2023, 179: 108148-108161. doi: 10.1016/j.triboint.2022.108148 [27] ZHANG X F, CHEN Y Q, HU J M. Robust superhydrophobic SiO2/polydimethylsiloxane films coated on mild steel for corrosion protection[J]. Corros Sci, 2020, 166: 108452-108461. doi: 10.1016/j.corsci.2020.108452 [28] DEMIRCAN G. Structural integrity of glass fiber reinforced nanocomposites under hydrothermal aging for offshore structure applications[J]. Applied Ocean Research, 2024, 146: 103959-103971. doi: 10.1016/j.apor.2024.103959 [29] ASTM D3039/D3039M-00, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials [S]. [30] ASTM D7264/D7264M-07, Standard test method for flexural properties of polymer matrix composite materials [S]. [31] ASTM D2344/D2344M-22, Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates [S]. [32] ASTM D7028-07, Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA) [S]. [33] 王自柯. FRP筋在模拟海水—海砂混凝土孔溶液浸泡下的耐久性研究 [D], 2018.WANG Zike. Study on the durability performances of fiber reinforced polymer(FRP) bars exposed to simulated seawater and sea sand concrete pore solution [D], 2018(in Chinese). [34] QI X, TIAN J, GUO R, et al. Hydrothermal aging of carbon fiber reinforced polymer rods intended for cable applications in civil engineering[J]. Journal of Materials Research and Technology, 2023, 26: 5151-5166. doi: 10.1016/j.jmrt.2023.08.285 [35] TIAN J W, LI C G, QI X, et al. Hygrothermal aging behavior and mechanism of multi-filler reinforced epoxy composites for steel structure coatings[J]. Eur Polym J, 2023, 184: 111780-111795. doi: 10.1016/j.eurpolymj.2022.111780 [36] 王安妮. 亚麻表面改性与碳纤维混杂对亚麻复合材料性能的影响 [D], 2021.WANG Anni. Effect of flax surface modification and carbon fiber hybrid on the properties of flax reinforced polymer composites [D], 2018(in Chinese). [37] WANG A, WANG X, XIAN G. Mechanical, low-velocity impact, and hydrothermal aging properties of flax/carbon hybrid composite plates[J]. Polym Test, 2020, 90: 106759-106768. doi: 10.1016/j.polymertesting.2020.106759 [38] HEISTER K. The measurement of the specific surface area of soils by gas and polar liquid adsorption methods—Limitations and potentials[J]. Geoderma, 2014, 216: 75-87. doi: 10.1016/j.geoderma.2013.10.015 [39] BEHERA A, DUPARE P, THAWRE M, et al. Effects of hygrothermal aging and fiber orientations on constant amplitude fatigue properties of CFRP multidirectional composite laminates[J]. International Journal of Fatigue, 2020, 136: 105590-105599. doi: 10.1016/j.ijfatigue.2020.105590 [40] BELOTTI L P, VADIVEL H S, EMAMI N. Tribological performance of hygrothermally aged UHMWPE hybrid composites[J]. Tribol Int, 2019, 138: 150-156. doi: 10.1016/j.triboint.2019.05.034
计量
- 文章访问数: 133
- HTML全文浏览量: 54
- 被引次数: 0