Failure mechanisms of composite laminate subjected to edge-on impact
-
摘要:
当复合材料层合板的自由边缘遭受局部低速冲击后,相同冲击能量引起的损伤程度比面外冲击更为严重,且边缘冲击产生的严重强度降将可能对结构安全性造成灾难性打击。迄今为止,大量论述复合材料低速冲击损伤阻抗与损伤容限的工作局限于冲击位置远离边缘的冲击事件,对边缘冲击失效机制和相互作用规律的认识尚不充分。为确保复合材料结构运营安全,同时鉴于边缘冲击失效机制对剩余强度的评估与后续检测方法的选择至关重要,亟需开展复合材料边缘冲击失效机制方面的基础工作。本文以T700/YPH307复合材料层合板为研究对象,采用试验研究与数值模拟并行的研究手段,揭示2种冲击能量(1.5J/mm和3J/mm)下不同铺层层合板在其自由边缘受到低速冲击时的力学响应和失效机制。试验中结合冲击表面的目视检测、超声C扫描、电子显微观测以及三维X-ray计算机断层扫描(CT)技术对边缘冲击损伤的三维空间分布情况进行宏细观表征。针对复合材料层内纤维与基体损伤,发展了基于Mohr失效面理论的连续介质损伤力学模型,并采用粘聚区模型预测分层的起始与扩展,建立了适用于纤维增强复合材料边缘冲击失效分析模型。结果表明:边缘冲击损伤呈现高度局部化特征,除了基体开裂与大面积分层外,典型损伤包括纤维压缩断裂以及冲头挤压下纤维基体压裂堆积形成碎片楔。碎片楔的产生决定了极限冲击力,外侧子层弯曲断裂导致了冲击力的稳定波动。此外增加冲击能量会使得边缘冲击损伤越严重,但是铺层顺序对边缘冲击响应与损伤影响相对有限。 有限元预测不同截面上的边缘冲击损伤形貌与试验观测比较 -
关键词:
- 复合材料 /
- 边缘冲击 /
- 失效机制 /
- 连续介质损伤力学模型 /
- 损伤重构
Abstract: Low velocity impact on the structural free edge would threaten the safety of laminated composite structures. In this paper, experimental and numerical investigations were conducted to study the edge-on impact behaviors of T700/YPH307 composite laminates. Visual inspection, ultrasonic C-scanning, electron microscopy and X-ray computed tomography (CT) technique were performed to detect the post-impact damage status of composite laminates subjected to edge-on impact, which could further reveal 3D spatial distribution of internal damage. Based on the Mohr’s theory of fracture plane, a continuum damage mechanics model, considering fracture plane angle within anisotropic materials, was established. And with combination of cohesive zone model, the initiation, propagation and interaction of complicated edge-on impact damage modes, i.e. intra-laminar fiber and matrix failure and inter-laminar delamination, could be characterized in detail. There is a good agreement between numerical and experimental results. It is suggested that failure mechanisms induced by edge-on impact mainly include two distinct characteristics, namely the generation of localized debris wedge beneath the impactor corresponding to peak value of impact force, and the bending fracture of outer plies due to the wedge effect at the stage of stable fluctuations in impact force. Furthermore, it is found that the internal damage would be more serious with the impact energy increasing, while stacking sequence has a relatively small influence on the edge-on impact responses and damage morphology. -
表 1 边缘冲击试件的铺层参数
Table 1. Lay-up parameters of the specimens subjected to edge-on impact
Specimen No. Type Lay-up Ply number QI Quasi-isotropic [45/0/−45/90]4S 32 CP Cross-ply [902/02]4S 32 表 2 T700/YPH-07复合材料力学性能参数
Table 2. Material properties used for T700/YPH-07 composite
E11 /GPa E22(=E33)/GPa G12(=G13)/GPa v12(v13) Xt/MPa Xc/MPa Yt/MPa Yc/MPa 121 8 4 0.3 2497 1064 46 109 S12/MPa Kn(=Ks=Kt)/
(N·mm−3)tn/MPa ts(tt)/MPa $ {G_{{\text{Ic}}}} $/(kJ·m−2) $ {G_{{\text{IIc}}}} $/(kJ·m−2) $ G_{1 c}^t $/(kJ·m−2) $ G_{1 c}^c $/(kJ·m−2) 66 106[28] 19.5 22.8 0.32 1.1 95[13] 133.3[13] Notes: E11 and E22 (E33) are longitudinal and transverse elastic moduli; G12 (G13) is in-plane shear modulus; v12(v13) is poisson’s ratio; Xt and Xc are longitudinal tensile and compressive strengths; Yt and Yc are transverse tensile and compressive strengths; S12 is in-plane shear strength; Kn(=Ks=Kt) is the penalty stiffness of cohesive elements; tn and ts(tt) are interfacial strengths; $ {G_{{\text{Ic}}}} $ and $ {G_{{\text{IIc}}}} $ are the critical fracture energy release rates for Mode-I and Mode-II, respectively; $ G_{1 c}^t $ and $ G_{1 c}^c $ are the critical fracture energy release rates for fiber tensile and compressive fracture. 表 3 T700/YPH-07复合材料层合板典型冲击阶段冲击力的有限元预测值与试验测量值
Table 3. FEM predictions and experimental measurements of impact force for T700/YPH-07 composite laminates during typical edge-on impact stages
Lay-up Energy/(J·mm−1) Fm/N Fp/N Test FEM Test FEM QI 1.5 8953 9742 7398 4961 3 8996 9110 6560 5698 CP 1.5 7505 8516 5131 5345 3 8779 9646 6608 5743 Notes: Fm and Fp denote the forces corresponding to peak value and average value of the loading plateau, respectively. 表 4 T700/YPH-07复合材料层合板C扫描与有限元预测损伤面积
Table 4. Delamination area obtained by C-scanning and FEM for T700/YPH-07 composite laminates
Lay-up Energy/(J·mm−1) Damaged area/mm2 Error/% Test Simulation QI 1.5 384 427 11.2 3.0 952 912 −4.2 CP 1.5 433 431 −0.5 3.0 832 767 −7.8 -
[1] MALHOTRA A. Low Velocity Edge Impact on Composite Laminates: Damage Tolerance and Numerical Simulations[D]. University of London, 2014. [2] MARCIN A R. Analysis of edge impacts on stiffened composite structures[D]. Utah: University of Utah, 2010. [3] FENG D, AYMERICH F. Finite element modelling of damage induced by low-velocity impact on composite laminates[J]. Composite Structures,2014,108:161-171. doi: 10.1016/j.compstruct.2013.09.004 [4] 李念, 陈普会. 复合材料层合板低速冲击损伤分析的连续介质损伤力学模型[J]. 力学学报, 2015, 47(3):458-470. doi: 10.6052/0459-1879-14-169LI Nian, CHEN Puhui. Continuum damage mechanics model for low-velocity impact damage analysis of composite laminates[J]. Chinese Journal of Theoretical and Applied Mechanics,2015,47(3):458-470(in Chinese). doi: 10.6052/0459-1879-14-169 [5] JUNG K H, KIM D H, KIM H J, et al. Finite element analysis of a low-velocity impact test for glass fiber-reinforced polypropylene composites considering mixed-mode interlaminar fracture toughness[J]. Composite Structures,2017,160:446-456. doi: 10.1016/j.compstruct.2016.10.093 [6] GLISZCZYNSKIl A. Numerical and experimental investigations of the low velocity impact in GFRP plates[J]. Composites Part B,2018,138:181-193. doi: 10.1016/j.compositesb.2017.11.039 [7] ZhOU J, LIAO B, SHI Y, et al. Low-velocity impact behavior and residual tensile strength of CFRP laminates[J]. Composites Part B,2019,161:300-313. doi: 10.1016/j.compositesb.2018.10.090 [8] TUO H, LU Z, MA X, et al. Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions[J]. Composites:Part B,2019,163:642-654. doi: 10.1016/j.compositesb.2019.01.006 [9] OSTRE B, BOUVET C, MINOT C, et al. Experimental analysis of CFRP laminates subjected to compression after edge impact[J]. Composite Structures,2016,152:767-778. doi: 10.1016/j.compstruct.2016.05.068 [10] THORSSON S I, SRINGERI S P, WAAS A M, et al. Experimental investigation of composite laminates subject to low-velocity edge-on impact and compression after impact[J]. Composite Structures,2018,186:335-346. doi: 10.1016/j.compstruct.2017.11.084 [11] OSTRE B, BOUVET C, LACHAUD F, et al. Edge impact modeling on stiffened composite structures[J]. Composite Structures,2015,126:314-328. doi: 10.1016/j.compstruct.2015.02.020 [12] DEUSCHLE H M. 3 D Failure Analysis of UD Fibre Reinforced Composites: Puck’s Theory within FEA[D]. Germany: University Stuttgart, 2010. [13] ARTEIRO A, GRAY P J, CAMANHO P P. Simulation of edge impact and compression after edge impact in CFRP laminates[J]. Composite Structures,2020,240:112018. doi: 10.1016/j.compstruct.2020.112018 [14] FURTADO C, CATALANOTTI G, ARTEIRO A, et al. Simulation of failure in laminated polymer composites: Building-block validation[J]. Composite Structures,2019,226:111168. doi: 10.1016/j.compstruct.2019.111168 [15] LI N, CHEN P H. Experimental investigation on edge impact damage and compression-after- -impact behavior of stiffened composite panels[J]. Composite Structures 2016, 138: 134-150. [16] ASTM Committee. ASTM–D7136/D7136 M–15 Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event[S]. US: ASTM International, 2015. [17] 张嘉睿. 复合材料T型长桁边缘冲击损伤数值仿真与试验验证[D]. 南京: 南京航空航天大学, 2019.ZHANG Jiarui. Numerical simulation for edge impact damage of composite T-type stringer with experimental verification[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019(in Chinese). [18] BOUVET C, CASTANIE B, BIZEUL M, et al. Low velocity impact modelling in laminate composite panels with discrete interface elements[J]. International Journal of Solids and Structures,2009,46:2809-2821. doi: 10.1016/j.ijsolstr.2009.03.010 [19] LI N, CHEN P H. Micro–macro FE modeling of damage evolution in laminated composite plates subjected to low velocity impact[J]. Composite Structures,2016,147:111-121. doi: 10.1016/j.compstruct.2016.02.063 [20] LIAO B B, ZHOU J W, LI Y, et al. Damage accumulation mechanism of composite laminates subjected to repeated low velocity impacts[J]. International Journal of Mechanical Sciences,2020,182:105783. doi: 10.1016/j.ijmecsci.2020.105783 [21] BULLEGAS G, PINHO S T, PIMENTA S. Engineering the translaminar fracture behaviour of thin-ply composites[J]. Composites Science and Technology,2016,131:110-122. doi: 10.1016/j.compscitech.2016.06.002 [22] BULLEGAS G, BENOLIEL J, FENELLI P L, et al. Towards quasi isotropic laminates with engineered fracture behaviour for industrial applications[J]. Composites Science and Technology,2018,165:290-306. doi: 10.1016/j.compscitech.2018.07.004 [23] SHI Y, SWAIT T, SOUTIS C. Modelling damage evolution in composite laminates subjected to low velocity impact[J]. Composite Structures,2012,94:2902-2913. doi: 10.1016/j.compstruct.2012.03.039 [24] MAMALIS A G, MANOLAKOS D E, DEMOSTHENOUS G A, et al. Analytical modelling of the static and dynamic axial collapse of thin-walled fiberglass composite conical shell[J]. International Journal of Impact Engineering,1997,19:477-492. doi: 10.1016/S0734-743X(97)00007-9 [25] LI N, GU J F, CHEN P H. Fracture plane based failure criteria for fibre-reinforced composites under three-dimensional stress state[J]. Composite Structures,2018,204:466-474. doi: 10.1016/j.compstruct.2018.07.103 [26] PUCK A, SCHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology,1998,58:1045-1067. doi: 10.1016/S0266-3538(96)00140-6 [27] 吴义韬, 姚卫星, 吴富强. 复合材料层合板面内渐进损伤分析的CDM模型[J]. 力学学报, 2014, 46(1):94-104. doi: 10.6052/0459-1879-13-106WU Yitao, YAO Weixing, WU Fuqiang. CDM model for intralaminar progressive damage analysis of composite laminates[J]. Chinese Journal of Theoretical and Applied Mechanics,2014,46(1):94-104(in Chinese). doi: 10.6052/0459-1879-13-106 [28] CAMANHO P P, DAVILA C G, DE MOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials,2003,37(16):1415-1438. doi: 10.1177/0021998303034505 [29] YE Q, CHEN P H. Prediction of the cohesive strength for numerically simulating composite delamination via CZM-based FEM[J]. Composites:Part B,2011,42(5):1076-1083. doi: 10.1016/j.compositesb.2011.03.021 [30] YE Q, CHEN P H. Prediction of the strength parameter of cohesive zone model for simulating composite delamination by the equivalent inclusion method[J]. Polymer Composites,2011,32(10):1561-1567. doi: 10.1002/pc.21189 [31] TURON A, DAVILA C G, CAMANHO P P, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[J]. Engineering Fracture Mechanics,2007,74(10):1665-1682. doi: 10.1016/j.engfracmech.2006.08.025 [32] MICHAELI W, MANNIGEL M, PRELLER F. On the effect of shear stresses on the fibre failure behaviour in CFRP[J]. Composites Science and Technology,2009,69(9):1354-1357. doi: 10.1016/j.compscitech.2008.09.024 [33] GUTKIN R, PINHO S, ROBINSON P, CURTIS P T. On the transition from shear-driven fibre compressive failure to fibre kinking in notched CFRP laminates under longitudinal compression[J]. Composites Science and Technology,2010,70:1223-1231. doi: 10.1016/j.compscitech.2010.03.010 [34] TOTRY E, GONZALEZ C, LLORCA J, et al. Mechanisms of shear deformation in fiber reinforced polymers: experiments and simulations[J]. International Journal of Fracture,2009,158:197-209. doi: 10.1007/s10704-009-9353-4 [35] TOTRY E, MOLINA-ALDAREGUIA JM, GONZALEZ C, et al. Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites[J]. Composites Science and Technology,2010,70:970-980. doi: 10.1016/j.compscitech.2010.02.014 [36] Abaqus 2021 Documentation [M]. Dassault Systemes Simulia Corporation. -

计量
- 文章访问数: 123
- HTML全文浏览量: 79
- 被引次数: 0