留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料层合板自由边缘冲击失效机制

钟小丹 李朝阳 李念 叶强 居程

钟小丹, 李朝阳, 李念, 等. 复合材料层合板自由边缘冲击失效机制[J]. 复合材料学报, 2023, 41(0): 1-15
引用本文: 钟小丹, 李朝阳, 李念, 等. 复合材料层合板自由边缘冲击失效机制[J]. 复合材料学报, 2023, 41(0): 1-15
Xiaodan ZHONG, Zhaoyang LI, Nian LI, Qiang YE, Cheng JU. Failure mechanisms of composite laminate subjected to edge-on impact[J]. Acta Materiae Compositae Sinica.
Citation: Xiaodan ZHONG, Zhaoyang LI, Nian LI, Qiang YE, Cheng JU. Failure mechanisms of composite laminate subjected to edge-on impact[J]. Acta Materiae Compositae Sinica.

复合材料层合板自由边缘冲击失效机制

基金项目: 国家自然科学基金 (基金号11802116)
详细信息
    通讯作者:

    李念,博士,副教授,硕士生导师,研究方向为复合材料结构设计与分析 E-mail: linian@njtech.edu.cn

  • 中图分类号: TB332

Failure mechanisms of composite laminate subjected to edge-on impact

Funds: National Natural Science Foundation of China (11802116)
  • 摘要: 当复合材料层合板的自由边缘遭受局部低速冲击后,相同冲击能量引起的损伤程度比面外冲击更为严重,且边缘冲击产生的严重强度降将可能对结构安全性造成灾难性打击。迄今为止,大量论述复合材料低速冲击损伤阻抗与损伤容限的工作局限于冲击位置远离边缘的冲击事件,对边缘冲击失效机制和相互作用规律的认识尚不充分。为确保复合材料结构运营安全,同时鉴于边缘冲击失效机制对剩余强度的评估与后续检测方法的选择至关重要,亟需开展复合材料边缘冲击失效机制方面的基础工作。本文以T700/YPH307复合材料层合板为研究对象,采用试验研究与数值模拟并行的研究手段,揭示2种冲击能量(1.5J/mm和3J/mm)下不同铺层层合板在其自由边缘受到低速冲击时的力学响应和失效机制。试验中结合冲击表面的目视检测、超声C扫描、电子显微观测以及三维X-ray计算机断层扫描(CT)技术对边缘冲击损伤的三维空间分布情况进行宏细观表征。针对复合材料层内纤维与基体损伤,发展了基于Mohr失效面理论的连续介质损伤力学模型,并采用粘聚区模型预测分层的起始与扩展,建立了适用于纤维增强复合材料边缘冲击失效分析模型。结果表明:边缘冲击损伤呈现高度局部化特征,除了基体开裂与大面积分层外,典型损伤包括纤维压缩断裂以及冲头挤压下纤维基体压裂堆积形成碎片楔。碎片楔的产生决定了极限冲击力,外侧子层弯曲断裂导致了冲击力的稳定波动。此外增加冲击能量会使得边缘冲击损伤越严重,但是铺层顺序对边缘冲击响应与损伤影响相对有限。有限元预测不同截面上的边缘冲击损伤形貌与试验观测比较

     

  • 图  1  复合材料层合板边缘冲击试验夹具

    Figure  1.  Edge-on impact fixture for composite laminates

    图  2  CEAST 9350落锤式冲击试验机

    Figure  2.  Instron CEAST 9350 drop-weight tower

    图  3  Xradia 620 Versa Micro-CT检测系统与边缘冲击损伤三维重构区域

    Figure  3.  Xradia 620 Versa Micro-CT detecting system and three-dimensional reconstruction area of edge-on impact induced damage

    图  4  复合材料层合板边缘冲击力学响应

    Figure  4.  Mechanical responses of composite laminates subjected to edge-on impact

    图  5  边缘冲击后层合板目视损伤形貌

    Figure  5.  Visual inspection of edge-on impact damage within the composite laminates

    图  6  复合材料层合板冲击边缘处纵向长裂纹的光学显微镜检测

    Figure  6.  Optical microscope detection of a long longitudinal crack on the impacted edge of composite laminates

    图  7  超声C扫描检测的复合材料层合板典型分层投影

    Figure  7.  Typical delamination projection of composite laminates detected by ultrasonic C-scanning

    图  8  基于X-ray CT的复合材料层合板典型边缘冲击损伤形貌

    Figure  8.  Typical edge-impact damage morphology of composite laminates based on X-ray CT

    图  9  边缘冲击复合材料层合板有限元模型及边界条件

    Figure  9.  FE model and boundary condition of composite laminate subjected to edge-on impact

    图  10  有限元预测的T700/YPH-07复合材料层合板冲击力-位移曲线与试验结果的比较

    Figure  10.  Comparison between numerical and experimental results of impact force-displacement curves for T700/YPH-07 composite laminates

    图  11  T700/YPH-07复合材料层合板边缘冲击点的表面损伤形貌

    Figure  11.  Damage morphology of the edge surface near the impacted site for T700/YPH-07 composite laminates

    图  12  T700/YPH-07复合材料层合板C扫描与有限元模型得到的分层投影

    Figure  12.  Comparisons of projected delamination area obtained by C-scanning and FE model for T700/YPH-07 composite laminates

    图  13  T700/YPH-07复合材料层合板边缘冲击分层的空间分布

    Figure  13.  Spatial distribution of edge-on impact induced delamination for T700/YPH-07 composite laminates

    图  14  T700/YPH-07复合材料层合板边缘冲击引入层内损伤的X-ray CT观测与有限元模拟结果

    Figure  14.  X-ray CT and numerical results of intra-laminar damage caused by edge-on impact for T700/YPH-07 composite laminates

    图  15  T700/YPH-07复合材料层合板不同截面上的边缘冲击损伤形貌

    Figure  15.  Edge-on impact induced damage morphology at different cross-sections for T700/YPH-07 composite laminates

    图  16  T700/YPH-07复合材料层合板在边缘冲击下的内部损伤演化

    Figure  16.  Evolution of internal damage within the T700/YPH-07 composite laminate under edge-on impact

    表  1  边缘冲击试件的铺层参数

    Table  1.   Lay-up parameters of the specimens subjected to edge-on impact

    Specimen No.TypeLay-upPly number
    QIQuasi-isotropic[45/0/−45/90]4S32
    CPCross-ply[902/02]4S32
    下载: 导出CSV

    表  2  T700/YPH-07复合材料力学性能参数

    Table  2.   Material properties used for T700/YPH-07 composite

    E11 /GPaE22(=E33)/GPaG12(=G13)/GPav12(v13)Xt/MPaXc/MPaYt/MPaYc/MPa
    121840.32497106446109
    S12/MPaKn(=Ks=Kt)/
    (N·mm−3)
    tn/MPats(tt)/MPa$ {G_{{\text{Ic}}}} $/(kJ·m−2)$ {G_{{\text{IIc}}}} $/(kJ·m−2)$ G_{1 c}^t $/(kJ·m−2)$ G_{1 c}^c $/(kJ·m−2)
    66106[28]19.522.80.321.195[13]133.3[13]
    Notes: E11 and E22 (E33) are longitudinal and transverse elastic moduli; G12 (G13) is in-plane shear modulus; v12(v13) is poisson’s ratio; Xt and Xc are longitudinal tensile and compressive strengths; Yt and Yc are transverse tensile and compressive strengths; S12 is in-plane shear strength; Kn(=Ks=Kt) is the penalty stiffness of cohesive elements; tn and ts(tt) are interfacial strengths; $ {G_{{\text{Ic}}}} $ and $ {G_{{\text{IIc}}}} $ are the critical fracture energy release rates for Mode-I and Mode-II, respectively; $ G_{1 c}^t $ and $ G_{1 c}^c $ are the critical fracture energy release rates for fiber tensile and compressive fracture.
    下载: 导出CSV

    表  3  T700/YPH-07复合材料层合板典型冲击阶段冲击力的有限元预测值与试验测量值

    Table  3.   FEM predictions and experimental measurements of impact force for T700/YPH-07 composite laminates during typical edge-on impact stages

    Lay-upEnergy/(J·mm−1)Fm/NFp/N
    TestFEMTestFEM
    QI1.58953974273984961
    38996911065605698
    CP1.57505851651315345
    38779964666085743
    Notes: Fm and Fp denote the forces corresponding to peak value and average value of the loading plateau, respectively.
    下载: 导出CSV

    表  4  T700/YPH-07复合材料层合板C扫描与有限元预测损伤面积

    Table  4.   Delamination area obtained by C-scanning and FEM for T700/YPH-07 composite laminates

    Lay-upEnergy/(J·mm−1)Damaged area/mm2Error/%
    TestSimulation
    QI1.538442711.2
    3.0952912−4.2
    CP1.5433431−0.5
    3.0832767−7.8
    下载: 导出CSV
  • [1] MALHOTRA A. Low Velocity Edge Impact on Composite Laminates: Damage Tolerance and Numerical Simulations[D]. University of London, 2014.
    [2] MARCIN A R. Analysis of edge impacts on stiffened composite structures[D]. Utah: University of Utah, 2010.
    [3] FENG D, AYMERICH F. Finite element modelling of damage induced by low-velocity impact on composite laminates[J]. Composite Structures,2014,108:161-171. doi: 10.1016/j.compstruct.2013.09.004
    [4] 李念, 陈普会. 复合材料层合板低速冲击损伤分析的连续介质损伤力学模型[J]. 力学学报, 2015, 47(3):458-470. doi: 10.6052/0459-1879-14-169

    LI Nian, CHEN Puhui. Continuum damage mechanics model for low-velocity impact damage analysis of composite laminates[J]. Chinese Journal of Theoretical and Applied Mechanics,2015,47(3):458-470(in Chinese). doi: 10.6052/0459-1879-14-169
    [5] JUNG K H, KIM D H, KIM H J, et al. Finite element analysis of a low-velocity impact test for glass fiber-reinforced polypropylene composites considering mixed-mode interlaminar fracture toughness[J]. Composite Structures,2017,160:446-456. doi: 10.1016/j.compstruct.2016.10.093
    [6] GLISZCZYNSKIl A. Numerical and experimental investigations of the low velocity impact in GFRP plates[J]. Composites Part B,2018,138:181-193. doi: 10.1016/j.compositesb.2017.11.039
    [7] ZhOU J, LIAO B, SHI Y, et al. Low-velocity impact behavior and residual tensile strength of CFRP laminates[J]. Composites Part B,2019,161:300-313. doi: 10.1016/j.compositesb.2018.10.090
    [8] TUO H, LU Z, MA X, et al. Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions[J]. Composites:Part B,2019,163:642-654. doi: 10.1016/j.compositesb.2019.01.006
    [9] OSTRE B, BOUVET C, MINOT C, et al. Experimental analysis of CFRP laminates subjected to compression after edge impact[J]. Composite Structures,2016,152:767-778. doi: 10.1016/j.compstruct.2016.05.068
    [10] THORSSON S I, SRINGERI S P, WAAS A M, et al. Experimental investigation of composite laminates subject to low-velocity edge-on impact and compression after impact[J]. Composite Structures,2018,186:335-346. doi: 10.1016/j.compstruct.2017.11.084
    [11] OSTRE B, BOUVET C, LACHAUD F, et al. Edge impact modeling on stiffened composite structures[J]. Composite Structures,2015,126:314-328. doi: 10.1016/j.compstruct.2015.02.020
    [12] DEUSCHLE H M. 3 D Failure Analysis of UD Fibre Reinforced Composites: Puck’s Theory within FEA[D]. Germany: University Stuttgart, 2010.
    [13] ARTEIRO A, GRAY P J, CAMANHO P P. Simulation of edge impact and compression after edge impact in CFRP laminates[J]. Composite Structures,2020,240:112018. doi: 10.1016/j.compstruct.2020.112018
    [14] FURTADO C, CATALANOTTI G, ARTEIRO A, et al. Simulation of failure in laminated polymer composites: Building-block validation[J]. Composite Structures,2019,226:111168. doi: 10.1016/j.compstruct.2019.111168
    [15] LI N, CHEN P H. Experimental investigation on edge impact damage and compression-after- -impact behavior of stiffened composite panels[J]. Composite Structures 2016, 138: 134-150.
    [16] ASTM Committee. ASTM–D7136/D7136 M–15 Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event[S]. US: ASTM International, 2015.
    [17] 张嘉睿. 复合材料T型长桁边缘冲击损伤数值仿真与试验验证[D]. 南京: 南京航空航天大学, 2019.

    ZHANG Jiarui. Numerical simulation for edge impact damage of composite T-type stringer with experimental verification[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019(in Chinese).
    [18] BOUVET C, CASTANIE B, BIZEUL M, et al. Low velocity impact modelling in laminate composite panels with discrete interface elements[J]. International Journal of Solids and Structures,2009,46:2809-2821. doi: 10.1016/j.ijsolstr.2009.03.010
    [19] LI N, CHEN P H. Micro–macro FE modeling of damage evolution in laminated composite plates subjected to low velocity impact[J]. Composite Structures,2016,147:111-121. doi: 10.1016/j.compstruct.2016.02.063
    [20] LIAO B B, ZHOU J W, LI Y, et al. Damage accumulation mechanism of composite laminates subjected to repeated low velocity impacts[J]. International Journal of Mechanical Sciences,2020,182:105783. doi: 10.1016/j.ijmecsci.2020.105783
    [21] BULLEGAS G, PINHO S T, PIMENTA S. Engineering the translaminar fracture behaviour of thin-ply composites[J]. Composites Science and Technology,2016,131:110-122. doi: 10.1016/j.compscitech.2016.06.002
    [22] BULLEGAS G, BENOLIEL J, FENELLI P L, et al. Towards quasi isotropic laminates with engineered fracture behaviour for industrial applications[J]. Composites Science and Technology,2018,165:290-306. doi: 10.1016/j.compscitech.2018.07.004
    [23] SHI Y, SWAIT T, SOUTIS C. Modelling damage evolution in composite laminates subjected to low velocity impact[J]. Composite Structures,2012,94:2902-2913. doi: 10.1016/j.compstruct.2012.03.039
    [24] MAMALIS A G, MANOLAKOS D E, DEMOSTHENOUS G A, et al. Analytical modelling of the static and dynamic axial collapse of thin-walled fiberglass composite conical shell[J]. International Journal of Impact Engineering,1997,19:477-492. doi: 10.1016/S0734-743X(97)00007-9
    [25] LI N, GU J F, CHEN P H. Fracture plane based failure criteria for fibre-reinforced composites under three-dimensional stress state[J]. Composite Structures,2018,204:466-474. doi: 10.1016/j.compstruct.2018.07.103
    [26] PUCK A, SCHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology,1998,58:1045-1067. doi: 10.1016/S0266-3538(96)00140-6
    [27] 吴义韬, 姚卫星, 吴富强. 复合材料层合板面内渐进损伤分析的CDM模型[J]. 力学学报, 2014, 46(1):94-104. doi: 10.6052/0459-1879-13-106

    WU Yitao, YAO Weixing, WU Fuqiang. CDM model for intralaminar progressive damage analysis of composite laminates[J]. Chinese Journal of Theoretical and Applied Mechanics,2014,46(1):94-104(in Chinese). doi: 10.6052/0459-1879-13-106
    [28] CAMANHO P P, DAVILA C G, DE MOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials,2003,37(16):1415-1438. doi: 10.1177/0021998303034505
    [29] YE Q, CHEN P H. Prediction of the cohesive strength for numerically simulating composite delamination via CZM-based FEM[J]. Composites:Part B,2011,42(5):1076-1083. doi: 10.1016/j.compositesb.2011.03.021
    [30] YE Q, CHEN P H. Prediction of the strength parameter of cohesive zone model for simulating composite delamination by the equivalent inclusion method[J]. Polymer Composites,2011,32(10):1561-1567. doi: 10.1002/pc.21189
    [31] TURON A, DAVILA C G, CAMANHO P P, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[J]. Engineering Fracture Mechanics,2007,74(10):1665-1682. doi: 10.1016/j.engfracmech.2006.08.025
    [32] MICHAELI W, MANNIGEL M, PRELLER F. On the effect of shear stresses on the fibre failure behaviour in CFRP[J]. Composites Science and Technology,2009,69(9):1354-1357. doi: 10.1016/j.compscitech.2008.09.024
    [33] GUTKIN R, PINHO S, ROBINSON P, CURTIS P T. On the transition from shear-driven fibre compressive failure to fibre kinking in notched CFRP laminates under longitudinal compression[J]. Composites Science and Technology,2010,70:1223-1231. doi: 10.1016/j.compscitech.2010.03.010
    [34] TOTRY E, GONZALEZ C, LLORCA J, et al. Mechanisms of shear deformation in fiber reinforced polymers: experiments and simulations[J]. International Journal of Fracture,2009,158:197-209. doi: 10.1007/s10704-009-9353-4
    [35] TOTRY E, MOLINA-ALDAREGUIA JM, GONZALEZ C, et al. Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites[J]. Composites Science and Technology,2010,70:970-980. doi: 10.1016/j.compscitech.2010.02.014
    [36] Abaqus 2021 Documentation [M]. Dassault Systemes Simulia Corporation.
  • 加载中
计量
  • 文章访问数:  123
  • HTML全文浏览量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 修回日期:  2023-01-16
  • 录用日期:  2023-02-03
  • 网络出版日期:  2023-02-27

目录

    /

    返回文章
    返回