留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陶瓷基复合材料构件内嵌孔加工工艺研究进展

罗潇 刘小冲 曾雨琪 李坚 徐友良 李龙彪

罗潇, 刘小冲, 曾雨琪, 等. 陶瓷基复合材料构件内嵌孔加工工艺研究进展[J]. 复合材料学报, 2024, 42(0): 1-17.
引用本文: 罗潇, 刘小冲, 曾雨琪, 等. 陶瓷基复合材料构件内嵌孔加工工艺研究进展[J]. 复合材料学报, 2024, 42(0): 1-17.
LUO Xiao, LIU Xiaochong, ZENG Yuqi, et al. Research progress on machining process of embedded holes in hot-section ceramic-matrix composite components[J]. Acta Materiae Compositae Sinica.
Citation: LUO Xiao, LIU Xiaochong, ZENG Yuqi, et al. Research progress on machining process of embedded holes in hot-section ceramic-matrix composite components[J]. Acta Materiae Compositae Sinica.

陶瓷基复合材料构件内嵌孔加工工艺研究进展

基金项目: 中国航发自主创新专项资金(ZZCX-2017-016)
详细信息
    通讯作者:

    刘小冲,副研究员,研究方向是:陶瓷基复合材料设计、制备、性能表征,及材料结构健康监测研究 E-mail: liuchong@nwpu.edu.cn

  • 中图分类号: TB332

Research progress on machining process of embedded holes in hot-section ceramic-matrix composite components

Funds: Independent Innovation Special Fund Project of Aero Engine Corporation of China (ZZCX-2017-016)
  • 摘要: 陶瓷基复合材料是一种典型的难加工材料,除了各向异性的特点外,其硬度仅次于金刚石和立方氮化硼。航空发动机热端部件内嵌孔(气膜孔等)是陶瓷基复合材料部件的基本结构,对陶瓷基复合材料构件制备成型和服役性能的发挥具有重要意义。本文给出了陶瓷基复合材料热端部件内嵌孔的分类,以及用于加工陶瓷基复合材料内嵌孔的方法,包括:常规机械加工方法,超声振动辅助加工方法,激光加工方法等,阐述了上述加工方法的加工原理、工艺特征、工艺参数的选取,以及加工缺陷特征、形成机制等,给出了不同直径、深径比陶瓷基复合材料内嵌孔加工工艺的建议。

     

  • 图  1  GE公司首次实现陶瓷基复合材料(CMCs)转子叶片地面试验

    Figure  1.  Ground test of ceramic-matrix composites (CMCs) blade in GE company

    图  2  CFM公司LEAP发动机和CMCs涡轮外环应用情况

    Figure  2.  CMCs turbine shround in LEAP engine developed by CFM company

    图  3  GE9 X发动机采用SiC/SiC部件示意图

    Figure  3.  Schematic diagram of GE9 X engine with SiC/SiC components

    图  4  SiC/SiC整体涡轮叶盘试飞情况

    Figure  4.  Flight tests of SiC/SiC turbine blisk

    图  5  (a)某CMCs火焰筒部件热管理微孔;(b)CMCs加工出的直通和异形热管理孔

    Figure  5.  (a) Thermal management micro holes of a CMCs flame component; (b) through and shaped thermal management holes machined from CMCs

    图  6  (a)三维针刺;(b)二维叠层;(c) 2.5维编织;(d)三维编织C/SiC复合材料纤维预制体结构[21]

    Figure  6.  (a) 3 D needled-punch; (b) two-dimensional lamination; (c) 2.5-dimensional woven; and (d) three-dimensional braided fiber architectures in C/SiC composites[21]

    图  7  (a)沿轴向纤维磨削;(b)沿横向纤维磨削;(c)沿法向纤维磨削[24]

    Figure  7.  Grinding schematic diagram in fiber (a) longitudinal direction; (b) transverse direction; and (c) normal direction[24]

    图  8  单颗粒切割纤维束的三种模式(a)轴向;(b)横向;(c)法向[26]

    Figure  8.  Three modes of the single-grain cutting into a fiber bundle (a) longitudinal; (b) transverse; and (c) normal[26]

    图  9  (a)平底金刚石;(b)锋利金刚石磨粒划擦2.5维SiC/SiC复合材料表面形貌[28]

    Figure  9.  Topographies of 2.5 D SiC/SiC composite after scribing by (a) flat grit and (b) sharp grit [28]

    图  10  CMCs不同部位处钻头所受径向力示意图[39]

    Figure  10.  Diagram representing radial stress changes with the position in CMCs[39]

    图  11  C/SiC复合材料钻孔和螺旋铣孔的出入口质量(a)钻削入口;(b)钻削出口;(c)螺旋铣削出口[40]

    Figure  11.  Hole quality under helical milling and drilling of C/SiC composite (a) drilling cut-in; (b) drilling cut-out; and (c) helical milling cut-out[40]

    图  12  C/SiC内嵌孔的加工照

    Figure  12.  Processing photos of C/SiC embedded holes

    图  13  不同刀具制孔获得的三维表面粗糙度Sa均值(1-金刚石涂层刀具;2-电镀超硬磨料刀具;3-钎焊金刚石刀具;4-多刃PCD刀具)

    Figure  13.  Mean values of three-dimensional surface roughness Sa obtained by different tools for hole making (1 Diamond-coated Cutting Tools; 2-Electroplated Superhard Abrasive Cutting Tools; 3-Brazed Diamond Cutting Tools; 4-Multiple Cutting PCD Tools)

    图  14  液氮辅助低温加工系统[41]

    Figure  14.  Liquid nitrogen assisted cryogenic processing system[41]

    图  15  液氮辅助加工C/SiC复合材料的效果(a)刀具温度;(b)切削力[41]

    Figure  15.  Effectiveness of liquid nitrogen-assisted machining of C/SiC composites (a) Cutting tool temperature; and (b) Cutting force[41]

    图  16  超声振动辅助铣削过程中切削力示意图[42]

    Figure  16.  Schematic diagram of cutting force during ultrasonic vibration-assisted milling process[42]

    图  17  (a)传统钻孔C/SiC表面形貌(b)旋转超声波加工C/SiC表面形貌[44]

    Figure  17.  (a) Conventional drilling C/SiC surface morphology (b) Rotary ultrasonic machining C/SiC surface morphology[44]

    图  18  飞秒激光加工SiC/SiC复合材料机制[55]

    Figure  18.  Femtosecond laser processing mechanism of SiC/SiC composites[55]

    图  19  SiC/SiC叶片激光加工工艺示意图

    Figure  19.  Schematic diagram of laser machining process of SiC/SiC blade

    图  20  水导激光加工原理示意图[56]

    Figure  20.  Basic principle of the water jet-guided laser technology[56]

    图  21  水导激光加工SiC/SiC复合材料圆孔形貌[57]

    Figure  21.  The circular hole morphology of SiC/SiC composite under water-guided laser processing[57]

  • [1] NASLAIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview[J]. Composites Science & Technology, 2004, 64(2): 155-170.
    [2] LI L B. Modeling the effect of oxidation on fatigue life of carbon fiber-reinforced ceramic-matrix composites at elevated temperature[J]. Materials Science and Engineering A, 2015, 640: 106-117. doi: 10.1016/j.msea.2015.06.007
    [3] LI L B. Durability of ceramic matrix composites [M]. Elsevier, Oxford, UK, 2020.
    [4] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, (2): 1-6.

    ZHANG L T, CHENG L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, (2): 1-6(in Chinese).
    [5] 杜昆, 陈麒好, 孟宪龙, 等. 陶瓷基复合材料在航空发动机热端部件应用及热分析研究进展[J]. 推进技术, 2022, 43(2): 113-131.

    DU K, CHEN Q H, MENG X L, et al. Advancement in application and thermal analysis of ceramic matrix composites in aeroengine hot components[J]. Journal of Propulsion Technology, 2022, 43(2): 113-131(in Chinese).
    [6] 焦健, 孙世杰, 焦春荣, 等. SiCf/SiC复合材料涡轮导向叶片研究进展[J]. 复合材料学报, 2023, 40(8): 4342-4354.

    JIAO J, SUN S J, JIAO C, et al. Research progress of SiCf/SiC turbine guide vanes: A review[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4342-4354(in Chinese).
    [7] 马雪寒, 王守财, 陈旭, 等. 陶瓷基复合材料紧固件制造技术及其连接性能研究进展[J]. 复合材料学报, 2023, 40(6): 3075-3089.

    MA X, WANG S, CHEN X, et al. Review of preparation processes and joining performance of ceramic matrix composite fasteners[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3075-3089(in Chinese).
    [8] 邹豪, 王宇, 刘刚, 等. 碳化硅纤维增韧碳化硅陶瓷基复合材料的发展现状及其在航空发动机上的应用[J]. 航空制造技术, 2017, 15: 76-84.

    ZOU H, WANG Y, LIU G, et al. Development situation and application of SiC/SiC ceramic matrix composites in aeroengine[J]. Aeronautical Manufacturing Technology, 2017, 15: 76-84(in Chinese).
    [9] 谭米, 首台XA100自适应循环发动机完成测试[J]. 航空动力, 2021, 3: 8-10.

    TAN M, First XA100 adaptive cycle engine completes test[J]. Aerospace Power, 2021, 3: 8-10. (in Chinese)
    [10] 刘小冲, 徐友良, 李坚, 等. 陶瓷基复合材料涡轮叶盘设计、制备与考核验证[J]. 复合材料学报, 2023, 40(3): 1702-1712.

    LIU X C, XU Y L, LI J, LUO X, et al. Design, fabrication and testing of ceramic-matrix composite turbine blisk[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1702-1712(in Chinese).
    [11] LIU XC, Zhao WL, GUO HQ, et al. XCT damage evaluation and analysis of SiC/SiC turbine guide vanes after thermal shocks[J]. International Journal of Applied Ceramic Technology, 2023, 20(5): 2919-2929. doi: 10.1111/ijac.14423
    [12] 刘彦杰, 马武军, 吴建军, 等. C/SiC陶瓷基复合材料燃烧室壁厚设计与验证[J]. 国防科技大学学报, 2012, 34(6): 121-124.

    LIU YJ, MA WJ, WU JJ, et al. Wall thickness design of combustion chamber for C/SiC composites rocket engine[J]. Journal of National University of Defense Technology, 2012, 34(6): 121-124(in Chinese).
    [13] 刘鑫, 乔逸飞, 董少静, 等. SiCf/SiC陶瓷基复合材料涡轮导叶热疲劳试验研究与损伤分析[J]. 燃气涡轮试验与研究, 2020, 33(4): 26-30.

    LIU X, QIAO YF, DONG SJ, et al. Thermal fatigue test and damage analysis of SiCf/SiC ceramic matrix composite turbine guide vane[J]. Gas Turbine Experiment and Research, 2020, 33(4): 26-30(in Chinese).
    [14] 石多奇, 刘长奇, 程震, 等. SiC/SiC复合材料涡轮叶片结构设计及静强度评价[J]. 航空动力学报, 2023, 38(1): 1-12.

    SHI DQ, LIU CQ, CHENG Z, et al. Structural design and static strength evaluation of SiC/SiC-composite turbine blade[J]. Journal of Aerospace Power, 2023, 38(1): 1-12(in Chinese).
    [15] LI LB. Ceramic matrix composites: Lifetime and strength prediction under static and stochastic loading [M]. Elsevier, Oxford, UK, 2023.
    [16] 罗潇, 李坚, 李敏, 等. 蛛网式骨架增强陶瓷基复合材料涡轮叶盘设计及验证[J]. 航空动力, 2021, 1: 54-56.

    LUO X, LI J, LI M, et al. Design and test of the CMC blisk reinforced by spider-web-like framework[J]. Aerospace Power, 2021, 1: 54-56(in Chinese).
    [17] 刘虎, 束小文, 洪智亮, 等. 航空发动机用SiC/SiC复合材料典型元件设计及性能评价研究进展[J]. 材料导报, 2023, 37(4): 22010147.

    LIU H, SHU X, HONG Z, et al. Research progress on design and evaluation of typical SiC/SiC composite sub-elements used for aero engines[J]. Materials Report, 2023, 37(4): 22010147(in Chinese).
    [18] 焦健, 杨金华, 侯金涛, 等. SiC/SiC复合材料切割方法对比研究[J]. 中国陶瓷, 2023, 59(6): 57-67.

    JIAO J, YANG J, HOU J, et al. Comparative study on cutting methods of SiC/SiC composites[J]. China Ceramics, 2023, 59(6): 57-67(in Chinese).
    [19] 孙明, 史一宁, 邱海鹏, 等. PIP法制备陶瓷基复合材料构件的弯曲性能研究[J]. 稀有金属材料与工程, 2011, 40(S1): 631-634.

    SUN M, SHI YN, QIU HP, et al. Studies of flexural strength of ceramic matrix composite component prepared by PIP process[J]. Rare Metal Materials and Engineering, 2011, 40(S1): 631-634(in Chinese).
    [20] 房金铭, 袁泽帅, 王俊山, 等. 碳纤维增强陶瓷基复合材料高温拉伸性能研究[J]. 导弹与航天运载技术, 2022, 4: 77-79.

    FANG JM, YUAN ZS, WANG JS, et al. Study on the high temperature tensile properties of carbon fiber reinforced ceramic matrix composites[J]. Missles and Space Vehicles, 2022, 4: 77-79(in Chinese).
    [21] MEI H, CHENG LF. Comparison of the mechanical hystersis of carbonc/ceramic-matrix composites with different fiber preforms[J]. Carbon, 2009, 47: 1034-1042. doi: 10.1016/j.carbon.2008.12.025
    [22] CAO X, LIN B, ZHANG X. Investigations on grinding process of woven ceramicmatrix composite based on reinforced fiber orientations[J]. Composites Part B: Engineering 2015, 71: 184–192.
    [23] 张立峰, 王盛, 乔伟林, 李战, 王映, 单向复合材料C/SiC平面磨削力实验研究[J], 硅酸盐通报, 2019, 38(4): 1155-1159.

    ZHANG LF, WANG S, QIAO WL, LI Z, WANG Y. Experimental study on surface grinding force of unidirectional C/SiC composites[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 1155-1159. (in Chinese)
    [24] ZHUANG LF, REN CZ, JI CH, WANG ZQ, CHEN G. Effect of fiber orientations on surface grinding process of unidiectional C/SiC composites[J]. Applied Surface Science, 2016, 366: 424-431. doi: 10.1016/j.apsusc.2016.01.142
    [25] 张立峰, 王盛, 李战, 张金, 等, 纤维方向对单向C/SiC复合材料磨削加工性能的影响[J]. 中国机械工程, 2020, 31(3): 373-377.

    ZHANG LF, WANG S, LI Z, ZHANG J, et al. Effects of fiber direction on grinding performance for undirectional C/SiC composites[J]. China Mechanical Engineering, 2020, 31(3): 373-377. (in Chinese)
    [26] LIU Q, HUANG G Q, CUI C C, TONG Z, XU X P. Investigation of grinding mechanism of a 2D C/C-SiC composite by single grain scratching[J]. Ceramics International, 2019, 45(10): 13422-13430. doi: 10.1016/j.ceramint.2019.04.041
    [27] 舍跃斌, 碳纤维增强碳化硅陶瓷基复合材料(Cf/SiC)磨削机制及工艺优化研究[D]. 硕士学位论文, 东北大学, 2019.

    SHE Y B. Research on grinding mechanism and process optimization of carbon fiber reinforced silicon carbide ceramic matrix composites (Cf/SiC) [D]. Master Thesis, Northeastern University, 2019. (in Chinese)
    [28] LIU Y, QUAN Y, WU C J, YE L Z, ZHU X J. Single diamond scribing of SiCf/SiC composite: force and material removal mechanism study[J]. Ceramics International, 2021, 47(19): 27702-27709. doi: 10.1016/j.ceramint.2021.06.195
    [29] 权宇, SiCf/SiC陶瓷基复合材料磨削实验研究[D]. 太原: 中北大学, 2022.

    QUAN Y. Experimental study on grinding of SiCf/SiC ceramic matrix composites [D]. Taiyuan: North University of China, 2022. (in Chinese)
    [30] 周雯雯, 单颗磨粒划擦碳化硅陶瓷基复合材料划擦力及表面损伤研究[D]. 太原: 中北大学, 2021.

    ZHOU W W. Resarch on scratch force and surface damage of single abrasive particle scratching silicon carbide ceramic matrix composite [D]. Taiyuan: North University of China, 2021. (in Chinese)
    [31] 殷景飞, 徐九华, 丁文锋, 苏宏华, 曹洋, 何静远, SiCf/SiC陶瓷基复合材料单颗磨粒磨削实验研究[J], 中国机械工程, 2022, 33(15): 1765-1771.

    YIN JF, XU JH, DING WF, SU HH, CAO Y, HE JY. Experimental study of single grain grinding for SiCf/SiC ceramic matrix composites[J]. China Mechanical Engineering, 2022, 33(15): 1765-1771. (in Chinese)
    [32] 何涛, 傅玉灿, 苏宏华, 等. C/SiC复合材料铣削表面完整性研究[J]. 南京航空航天大学学报, 2014, 46(5): 701-706. doi: 10.3969/j.issn.1005-2615.2014.05.006

    HE T, FU YC, SU HH, et al. Study on surface integrity in milling of C/SiC composite[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(5): 701-706(in Chinese). doi: 10.3969/j.issn.1005-2615.2014.05.006
    [33] 钟翔福, C/SiC复合材料旋转超声振动辅助铣削实验研究[D]. 南昌: 南昌航空大学, 2019.

    ZHONG XF, Experimental research on rotating ultrasonic vibration assisted milling of C/SiC composites [D]. Nanchang: Nanchang Hangkong Universiyu, 2019. (in Chinese)
    [34] HU M, MING WW, AN QL, et al. Experimental study on milling performance of 2D C/SiC composites using polycrystalline diamond tools[J]. Ceramics International, 2019, 45(8): 10581-10588. doi: 10.1016/j.ceramint.2019.02.124
    [35] 孔宪俊, 王文武, 赵明, 等, 陶瓷基复合材料铣削力优化及刀具磨损研究[J]. 工具技术, 2022, 56(3): 9-13

    KONG XJ, WANG WW, ZHAO M, et al. Research on milling force optimization and tool wear of ceramic matrix composites[J]. Gongju Jishu, 2022, 56(3): 9-13. (in Chinese)
    [36] SHAN CW, WANG X, YANG XX, et al. Prediction of cutting forces in ball-end milling of 2.5D C/C composites[J]. Chinese Journal of Aeronautics, 2016, 29(3): 824-830. doi: 10.1016/j.cja.2015.12.015
    [37] YUAN S, LI Z, ZHANG C, et al. Research into the transition of material removal machanism for C/SiC in rotary ultrasonic face machining[J]. International Journal of Advanced Manufacturing Technology, 2018, 95: 1751-1761. doi: 10.1007/s00170-017-1332-8
    [38] DIAZ OG, AXINTE DA, SMITH PB, et al. On understanding the microstructure of SiC/SiC ceramic matrix composites (CMCs) after a material removal process[J]. Materials Science and Engineering A, 2019, 743: 1-11. doi: 10.1016/j.msea.2018.11.037
    [39] DIAZ OG, AXINTE DA, Novovic D. Probabilistic modelling of tool unbalance during cutting of hard-heterogeneous materials: A case study in Ceramic Matrix Composites (CMCs)[J]. Composites Part B Engineering 2018, 148: 217–226.
    [40] 张瑾瑜, 王宁, 赵建设, 等. C/SiC复合材料螺旋铣削与钻削制孔效果对比[J]. 宇航材料工艺, 2020, 50(5): 39-40.

    ZHANG J Y, WANG N, ZHAO J S, et al. Comparison between helical milling and drilling of C/SiC composite materials[J]. Aerospace Materials & Technology, 2020, 50(5): 39-40(in Chinese).
    [41] 徐亮, 王凯, 王新永, 等. Cf/SiC复合材料低温铣削工艺优化研究[J]. 机械制造, 2021, 1: 36-40.

    XU L, WANG K, WANG X Y, et al. Experimental study on cryogenic cooling milling performance of Cf/SiC composites[J]. Machinery, 2021, 1: 36-40(in Chinese).
    [42] LIU Y, LIU ZB, WANG XB, HUANG T. Experimental study on cutting force and surface quality in ultrasonic vibration-assisted milling of C/SiC composites[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112: 2003-2014. doi: 10.1007/s00170-020-06355-x
    [43] BERTSCHE E, EHMANN K, MALUKHIN K. Ultrasonic slot machining of a silicon carbide matrix composite[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(5-8): 1119-1134. doi: 10.1007/s00170-012-4394-7
    [44] DING K, FU Y C, SU H H, et al. Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining[J]. Journal of Materials Processing Technology, 2014, 214(12): 2900-2907. doi: 10.1016/j.jmatprotec.2014.06.015
    [45] WANG JJ, FENG PF, ZHENG J Z, ZHANG JF. Improving hole exit quality in rotary ultrasonic machining of ceramic matrix composites using a compound step-taper drill[J]. Ceramics International, 2016, 42(12): 13387-13394. doi: 10.1016/j.ceramint.2016.05.095
    [46] XUE F, ZHENG K, LIAO W H, SHU J, MIAO D D. Experimental Investigation on fatigue property at room temperature of C/SiC composites machined by rotary ultrasonic milling[J]. Journal of the European Ceramic Society, 2021, 41(6): 3341-3356. doi: 10.1016/j.jeurceramsoc.2021.01.046
    [47] XUE F, ZHENG K, LIAO W H, SHU J, DONG S. Investigation on fiber fracture mechanism of C/SiC composites by rotary ultrasonic milling[J]. International Journal of Mechanical Sciences, 2021, 191: 106054. doi: 10.1016/j.ijmecsci.2020.106054
    [48] WANG J J, ZHANG J F, FENG P F. Effects of tool vibration on fiber fracture in rotary ultrasonic machining of C/SiC ceramic matrix composites[J]. Composites Part B, 2017, 129: 233-242. doi: 10.1016/j.compositesb.2017.07.081
    [49] ISLAM S, YUAN S, LI Z. A cutting force prediction model, experimental studies, and optimization of cutting parameters for rotary ultrasonic face milling of C/SiC composites[J]. Applied Composite Materials, 2020, 27: 407-431. doi: 10.1007/s10443-020-09815-5
    [50] 杨金华, 黄望全, 冯晓性, 等. 激光类型对SiC/SiC复合材料孔加工的影响[J]. 航空材料学报, 2023, 43(1): 80-86.

    YANG JH, HUANG DQ, FENG XX, et al. Effect of laser type on hole machining of SiC/SiC composites[J]. Journal of Aeronautical Materials, 2023, 43(1): 80-86(in Chinese).
    [51] ZHANG R H, LI W N, LIU Y S, WANG C H, WANG J, YANG X J, CHENG L F. Machining parameter optimization of C/SiC composites using high power picosecond laser[J]. Applied Surface Science, 2015, 330: 321-331. doi: 10.1016/j.apsusc.2015.01.010
    [52] LIU Y S, WANG C H, LI W N, ZHANG L T, YANG X J, CHENG G H, ZHANG Q. Effect of energy density and feeding speed on micro-hole drilling in C/SiC composites by picosecond laser[J]. Journal of Materials Processing Technology, 2014, 214: 3131-3140. doi: 10.1016/j.jmatprotec.2014.07.016
    [53] ZHAI Z Y, WANG W J, ZHAO J, MEI X S, WANG K D, WANG F C, YANG H Z. Influence of surface morphology on processing of C/SiC composites via femtosecond laser[J]. Composites Part A:Applied Science and Manufacturing, 2017, 102: 117-125. doi: 10.1016/j.compositesa.2017.07.031
    [54] WANG J, LIU Y, WANG C, LI W, YANG X, ZHANG Q, CHENG L F, ZHANG L T. Character and mechanism of surface micromachining for C/SiC composites by ultrashort plus laser[J]. Advances in Applied Ceramics, 2017, 116(2): 99-107. doi: 10.1080/17436753.2016.1257101
    [55] ZHAI Z Y, WEI C, ZHANG Y C, CUI Y H, ZENG Q R. Investigations on the oxidation phenomenon of SiC/SiC fabricated by high repetition frequency femtosecond laser[J]. Applied Surface Science, 2020, 502: 144131. doi: 10.1016/j.apsusc.2019.144131
    [56] GOBET M, OBI S, PAVIUS M, TAKANO M, VAGO N, LEE K. Implementation of short-pulse lasers for wafer scribing and grooving applications[J]. JLMN-Journal of Laser Micro/Nanoengineering, 2010, 5(1): 16-20. doi: 10.2961/jlmn.2010.01.0004
    [57] 徐俊杰. SiCf/SiC复合材料的水导激光加工工艺基础研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    XU J J. Basic research on the water-jet guided laser processing technology of SiC/SiC composites [D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
    [58] CHENG B, DING Y, LI Y, LI J Y, XU J J, LI Q, YANG L J. Coaxial helical gas assisted laser water jet machining of SiC/SiC ceramic[J]. Journal of Materials Processing Technology, 2021, 293: 117067. doi: 10.1016/j.jmatprotec.2021.117067
  • 加载中
计量
  • 文章访问数:  90
  • HTML全文浏览量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-02-14
  • 录用日期:  2024-02-26
  • 网络出版日期:  2024-03-26

目录

    /

    返回文章
    返回