留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶/Fe-Si软磁复合材料的电磁特性及微观组织

郭海 聂敏 杨依婷 赵冯香 何家毅

郭海, 聂敏, 杨依婷, 等. 非晶/Fe-Si软磁复合材料的电磁特性及微观组织[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 郭海, 聂敏, 杨依婷, 等. 非晶/Fe-Si软磁复合材料的电磁特性及微观组织[J]. 复合材料学报, 2024, 42(0): 1-9.
GUO Hai, NIE Min, YANG Yiting, et al. Electromagnetic performance and microstructure of amorphous/Fe-Si soft magnetic composites[J]. Acta Materiae Compositae Sinica.
Citation: GUO Hai, NIE Min, YANG Yiting, et al. Electromagnetic performance and microstructure of amorphous/Fe-Si soft magnetic composites[J]. Acta Materiae Compositae Sinica.

非晶/Fe-Si软磁复合材料的电磁特性及微观组织

详细信息
    通讯作者:

    聂敏,硕士,高级工程师,研究方向为磁性功能材料 E-mail: min_nie@sunlordinc.com

    何家毅,博士,博士后,研究方向为磁性功能材料、材料表面技术 E-mail: jiayi_he@sunlordinc.com

  • 中图分类号: TB333

Electromagnetic performance and microstructure of amorphous/Fe-Si soft magnetic composites

  • 摘要: 本文利用成分与粒径级配两种手段优化了Fe-Si系软磁复合材料的电磁特性,并探究了软磁性能与微观组织的关系。先采用不同粉末粒径的Fe-Si粉末级配,之后利用Fe-Si-B-C非晶粉部分替代粒径相当的Fe-Si粗粉,可以获得良好的综合电磁性能。所制备的非晶/Fe-Si软磁复合材料在1 MHz内均具备良好的频率稳定性。当非晶粉∶Fe-Si粗粉∶Fe-Si细粉的质量比为25∶25∶50时,在100 kHz下的有效磁导率为47.6,100 Oe下的直流偏置能力为79.5%,100 kHz/100 mT下的功率损耗为1806 mW/cm3。相比于已报道的其他含非晶软磁复合材料,本文所报道的非晶Fe-Si-B-C/Fe-Si软磁复合材料有明显的成本和综合电磁性能上的优势。细小的Fe-Si粉末可以填充粗粉之间的空隙,有利于提高材料密度与磁导率,而非晶粉末的添加则可以明显降低功率损耗。本文制备的非晶/Fe-Si软磁复合材料具备良好的综合电磁特性,可以为工业生产提供潜在的解决方案。

     

  • 图  1  (a) Fe-Si-B-C非晶粉、Fe-Si粗粉和Fe-Si细粉和的粒径分布;三种粉末的形貌与表面元素分布:(b) Fe-Si-B-C非晶粉(c) Fe-Si粗粉、(d) Fe-Si细粉

    Figure  1.  (a) Particle distribution of Fe-Si-B-C amorphous powder Fe-Si coarse powder and Fe-Si fine powder. Morphology and surface element distribution of the three powders: (b) Fe-Si-B-C amorphous powder, (c) Fe-Si coarse powder, and (d) Fe-Si fine powder

    图  2  本文所用三种软磁粉末的X射线衍射图谱

    Figure  2.  X-ray diffraction patterns of the three soft magnetic powders in this work

    图  3  本文所用三种软磁粉末的DSC曲线

    Figure  3.  The DSC curve of the three soft magnetic powders in this work

    图  4  本文所用三种软磁粉末的磁滞曲线

    Figure  4.  Hysteresis loops of the three soft magnetic powders in this work

    图  5  不同质量分数Fe-Si细粉添加Fe-Si级配磁粉芯的:(a)密度、(b)有效磁导率频谱、(c)直流偏置特性与(d)功率损耗

    Figure  5.  (a) Density, (b) dependence of effective permeability, (c) DC bias performance and (d) core loss for the Fe-Si magnetic powder cores mixed with different weight ratios of fine Fe-Si particles. The insets in b, c and d show the effective permeability at 100 kHz, percent permeability at 100 Oe, and core loss at 100 kHz, respectively

    图  6  不同质量分数Fe-Si-B-C非晶粉添加的非晶/Fe-Si磁粉芯的:(a)密度、(b)有效磁导率频谱、(c)直流偏置特性与(d)功率损耗

    Figure  6.  (a) Density, (b) dependence of effective permeability, (c) DC bias performance and (d) core loss for the amorphous/Fe-Si magnetic powder cores mixed with different weight ratios of fine Fe-Si particles. The insets in b, c and d show the effective permeability at 100 kHz, percent permeability at 100 Oe, and core loss at 100 kHz, respectively

    图  7  Fe-Si-B-C非晶粉∶Fe-Si粗粉∶Fe-Si细粉的质量比为0∶100∶0、0∶50∶50、25∶25∶50和50∶0∶50磁粉芯样品的X射线衍射图谱

    Figure  7.  X-ray diffraction patterns of the soft magnetic composites with mass ratios among Fe-Si-B-C amorphous powder, Fe-Si coarse powder, Fe-Si fine powder of 0∶100∶0, 0∶50∶50, 25∶25∶50 and 50∶0∶50

    图  8  不同Fe-Si-B-C非晶粉∶Fe-Si粗粉∶Fe-Si细粉质量比磁粉芯的微观组织:(a) 0∶100∶0、(b) 0∶50∶50、(c) 25∶25∶50与(d) 50∶0∶50

    Figure  8.  Microstructure of the magnetic powder cores with different mass ratio among Fe-Si-B-C amorphous powder, Fe-Si coarse powder, and Fe-Si fine powder: (a) 0∶100∶0, (b) 0∶50∶50, (c) 25∶25∶50 and (d) 50∶0∶50

    表  1  含非晶软磁复合材料的成本与电磁特性对比[14, 15, 22, 23]

    Table  1.   Comparison of cost and electromagnetic performance of some amorphous-containing soft magnetic composites[14, 15, 22, 23]

    Material Material
    cost/
    (¥·kg−1)
    Electromagnetic performance Ref.
    μe at 100 kHz %μe at 100 kHz Pcv/ (mW·cm−3) at 50 kHz, 100 mT Pcm/(mW·g−1) at 50 kHz, 100 mT Pcv/ (mW·cm−3) at 100 kHz, 100 mT Pcm/(mW·g−1) at 100 kHz, 100 mT
    Amorphous Fe-Si-B-C/Fe-Si (Amorphous∶coarse Fe-Si∶fine Fe-Si = 25∶25∶50) 35~40 47.6 79.5% 898 138 1806 277 This work
    Amorphous Fe-Si-B-P-
    Nb/Fe-Si
    57~62 60 78.0% / 159 / / [15]
    Amorphous Fe-Si-B-P-Nb 60~65 56 75.0% / / 1734 / [22]
    Amorphous Fe-Si-B-P-C 45~50 48 54.3% / / 770 / [14]
    Amorphous Fe-Si-B-P-
    Nb-Cr/Fe-Co
    72~78 42.3 65.1% / / 1315 / [23]
    Notes: Pcv–Power loss per unit volume; Pcm–Power loss per unit mass
    下载: 导出CSV
  • [1] SHOKROLLAHI H, JANGHORBAN K. Soft magnetic composite materials (SMCs)[J]. Journal of Materials Processing Technology, 2007, 189(1-3): 1-12. doi: 10.1016/j.jmatprotec.2007.02.034
    [2] PERIGO E A, WEIDENFELLER B, KOLLAR P. Past, present, and future of soft magnetic composites[J]. Applied Physics Reviews, 2018, 5: 031301. doi: 10.1063/1.5027045
    [3] Silveyra J M, Ferrara E, Huber D L, et al. Soft magnetic materials for a sustainable and electrified world[J]. Science, 2018, 362(6413): eaao0195. doi: 10.1126/science.aao0195
    [4] 余红雅, 李开沥, 黎向东, 等. 共混树脂包覆铁基磁粉芯的制备与性能[J]. 复合材料学报, 2024, 41(1): 315-322.

    Yu H, Li K, Li X, et al. Preparation and properties of iron based soft magnetic composites coated with mixed resin[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 315-322 (in Chinese).
    [5] 车声雷. 面向第三代半导体驱动电源的高频低功耗功率软磁材料研发现状 [R]. 中国功率变换器磁元件联合学术年会. 德清, 2022.

    CHE S. Development progress of soft magnetic materials for the third generation semiconductor high frequency power supply [R]. Power Converters & Magnetic Components Joint Annual Conference of China. Deqing, 2022 (in Chinese).
    [6] HE J, YUAN H, NIE M, et al. Soft magnetic materials for power inductors: State of art and future development[J]. Materials Today Electronics, 2023, 6: 100066. doi: 10.1016/j.mtelec.2023.100066
    [7] FAN X A, WU Z Y, LI G Q, et al. High resistivity and low core loss of intergranular insulated Fe–6.5 wt. %Si/SiO2 composite compacts[J]. Materials & Design, 2016, 89: 1251-1258.
    [8] LUO Z, FAN X A, HU W, et al. Enhanced magnetic properties and reduced core loss of intergranular insulating Fe-Si soft magnetic composites with three-shell SiO2-Fe2SiO4-SiO2 insulating layer[J]. Journal of Solid State Chemistry, 2019, 270: 311-316. doi: 10.1016/j.jssc.2018.11.034
    [9] LU S, WANG M, ZHAO Z. Recent advances and future developments in Fe-based amorphous soft magnetic composites[J]. Journal of Non-Crystalline Solids, 2023, 616: 122440. doi: 10.1016/j.jnoncrysol.2023.122440
    [10] OTSUKA I, WADA K, MAETA Y, et al. Magnetic Properties of Fe-Based Amorphous Powders With High-Saturation Induction Produced by Spinning Water Atomization Process (SWAP)[J]. IEEE Transactions on Magnetics, 2008, 44(11): 3891-3894. doi: 10.1109/TMAG.2008.2002249
    [11] ZHOU B, DONG Y, LIU L, et al. Enhanced soft magnetic properties of the Fe-based amorphous powder cores with novel TiO2 insulation coating layer[J]. Journal of Magnetism and Magnetic Materials, 2019, 474: 1-8 doi: 10.1016/j.jmmm.2018.11.014
    [12] 姚可夫, 施凌翔, 陈双琴, 等. 铁基软磁非晶/纳米晶合金研究进展及应用前景[J]. 物理学报, 2018, 67: 8-15.

    YAO K, SHI L, Chen S, et al. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys[J]. Acta Physica Sinica, 2018, 67: 8-15 (in Chinese).
    [13] FIORILLO F, BERTOTTI G, APPINO C, et al. Soft Magnetic Materials [M]. Wiley Encyclopedia of Electrical and Electronics Engineering, 1999: 1-42.
    [14] ZHANG Y, DONG Y, ZHOU B, et al. Poly-para-xylylene enhanced Fe-based amorphous powder cores with improved soft magnetic properties via chemical vapor deposition[J]. Materials & Design, 2020, 191: 108650.
    [15] CHANG C, GUO J, LI Q, et al. Improvement of soft magnetic properties of FeSiBPNb amorphous powder cores by addition of FeSi powder[J]. Journal of Alloys and Compounds, 2019, 788: 1177-1181. doi: 10.1016/j.jallcom.2019.02.301
    [16] CHUJO N, KINO F, KUME K, et al. Effect of packing fraction on magnetic properties of the FeSiAl powder cores by corase powder and fine powder mixing[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63(7): 624-629. doi: 10.2497/jjspm.63.624
    [17] LI S, PENG K, ZOU L. The improved magnetic properties of FeSi powders cores composed with different size particles[J]. Journal of Materials Science:Materials in Electronics, 2022, 33(2): 607-616. doi: 10.1007/s10854-021-07330-2
    [18] CHEN D, LI K, YU H, et al. Effects of secondary particle size distribution on the magnetic properties of carbonyl iron powder cores[J]. Journal of Magnetism and Magnetic Materials, 2020, 497: 166062. doi: 10.1016/j.jmmm.2019.166062
    [19] LUO P, YU H, WANG C, et al. Properties optimization of soft magnetic composites based on the amorphous powders with double layer inorganic coating by phosphating and sodium silicate treatment[J]. Metals, 2023, 13: 560. doi: 10.3390/met13030560
    [20] 聂敏, 谈敏, 黄静, 等. FeSiCr 合金粉与羰基铁粉及其在一体成型电感中的应用对比分析[J]. 磁性材料及器件, 2020, 51: 47-50.

    NIE M, TAN M, HUANG J, et al. Comparative analysis on FeSiCr alloy powder and carbonyl iron powder and their application in molding inductors[J]. Journal of Magnetic Materials and Devices, 2020, 51: 47-50 (in Chinese).
    [21] WANG Y, XU J, LIU Y, et al. Microstructure evolution, magnetic properties and frequency characteristics of Si-rich FeSiBCuNb soft magnetic alloy induced by annealing treatment[J]. Materials Characterization, 2022, 187: 111830. doi: 10.1016/j.matchar.2022.111830
    [22] GUO J, DONG Y, MAN Q, et al. Fabrication of FeSiBPNb amorphous powder cores with high DC-bias and excellent soft magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2016, 401: 432-435. doi: 10.1016/j.jmmm.2015.10.069
    [23] ZHANG Y, CHI Q, CHANG L, et al. Novel Fe-based amorphous compound powder cores with enhanced DC bias performance by adding FeCo alloy powder[J]. Journal of Magnetism and Magnetic Materials, 2020, 507: 166840. doi: 10.1016/j.jmmm.2020.166840
  • 加载中
计量
  • 文章访问数:  101
  • HTML全文浏览量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-02
  • 修回日期:  2024-01-23
  • 录用日期:  2024-01-25
  • 网络出版日期:  2024-03-01

目录

    /

    返回文章
    返回