Application of phosphorus-containing organic polysiloxane/geopolymer fireproof coating in RPUF
-
摘要: 为提高地聚物胶凝材料的抗裂性和与有机基体的粘结性,本文以9, 10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)和乙烯基三乙氧基硅烷(VTES)为主要原料合成了含磷有机聚硅氧烷(PDV)并用于地聚物胶凝材料改性,然后将其涂覆于硬质聚氨酯泡沫(RPUF)表面作为防火涂层。探究了PDV引入量对地聚物胶凝材料表干时间、抗裂性及粘结强度的作用机制,并考察了有机改性地聚物防火涂层厚度对RPUF阻燃性能和燃烧行为的影响。结果表明,PDV的引入可缩短地聚物涂层的表干时间,并有利于改善其抗裂性和与RPUF基体间的粘结强度;有机改性地聚物涂层可赋予RPUF阻燃/防火能力,能够有效抑制、延缓其燃烧热释放及生烟速率,仅涂覆400 μm厚度RPUF的极限氧指数(LOI)≥48%并可通过UL-94 V-0等级;随着涂层厚度的增加,样品的残炭含量逐渐提高,且PDV的引入未对地聚物胶凝材料的热降解行为产生显著影响。Abstract: In order to improve the crack resistance and adhesion with organic matrix of geopolymer cementitious materials, a novel phosphorus-containing organic polysiloxane (PDV) was synthesized using 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and vinyl triethoxysilane (VTES) as raw materials for the modification of geopolymer cementitious materials. The prepared organic-modified geopolymer cementitious materials were then coated on the surface of the rigid polyurethane foam (RPUF) as a fireproof coating. The effects of PDV content on the surface drying time, crack resistance, and adhesive strength of geopolymer cementitious materials were studied. In addition, the influences of thickness of organic-modified geopolymer fireproof coating on the flame retardant performance and combustion behavior of RPUF were investigated. The results show that the introduction of PDV shortens the surface drying time of geopolymer coating, and is beneficial to improve its crack resistance and adhesive strength with RPUF matrix. The organic-modified geopolymer coating can endow RPUF with flame retardancy/fire resistance, and effectively inhibit the heat release rate and smoke production rate during combustion. Specifically, the coated RPUF (400 μm) can achieve UL-94 V-0 certification, and its limit oxygen index (LOI) is greater than 48%. With the increase of coating thickness, the char residue of the prepared samples gradually increases. Importantly, the introduction of PDV has no significant impact on the thermal degradation behavior of geopolymer cementitious materials.
-
Key words:
- geopolymer /
- polysiloxane /
- rigid polyurethane foam /
- flame retardancy /
- combustion behavior
-
表 1 含磷有机聚硅氧烷改性地聚物(GP-PDV)胶凝材料的基础配方
Table 1. Basic formulation for phosphorus-containing organic polysiloxane modified geopolymer (GP-PDV) cementitious materials
Sample Slag/g Silica fume/g Na2O·nSiO2/g NaOH/g Water/g PDV/g GP 10 1 4.1 0.9 3 0 GP-PDV-0.5 10 1 4.1 0.9 3 0.5 GP-PDV-1.0 10 1 4.1 0.9 3 1.0 GP-PDV-2.0 10 1 4.1 0.9 3 2.0 GP-PDV-3.0 10 1 4.1 0.9 3 3.0 Notes: GP−geopolymer; PDV−phosphorus-containing organic polysiloxane; GP-PDV−phosphorus-containing organic polysiloxane modified geopolymer. 表 2 不同涂层厚度RPUF/GP-PDV-2.0样品的阻燃性能
Table 2. Flame retardancy of RPUF/GP-PDV-2.0 samples with different coating thickness
Coating thickness/μm LOI/% UL-94 t1/s t2/s rating 200 40 12 2 V-1 400 ≥48 7 1 V-0 600 ≥48 1 1 V-0 Notes: LOI−Limit oxygen index; UL-94−Vertical burning test; t1−The first afterflame time; t2−The second afterflame time. 表 3 不同涂层厚度RPUF/GP-PDV-2.0样品的锥形量热数据
Table 3. Cone calorimeter data of RPUF/GP-PDV-2.0 samples with different coating thickness
Coating thickness/μm TTI/s PHRR/(kW·m−2) TTPHRR/s THR/(MJ·m−2) PSPR/(m2·s−1) Residue/wt% 0 5 154.4 20 11.8 0.072 16.8 200 22 144.2 40 11.6 0.063 56.5 400 44 130.3 75 11.1 0.042 70.6 600 70 108.6 100 10.7 0.039 74.2 Notes: TTI−Time to ignition; PHRR−Peak of heat release rate; TTPHRR−Time to PHRR; THR−Total heat release; PSPR−Peak of smoke production rate. -
[1] 朱国全, 张继伦, 张扬, 等. 聚氨酯硬泡用含氮阻燃聚醚的制备及阻燃性能研究[J]. 山东化工, 2020, 49(15): 50+53.ZHU Guoquan, ZHANG Jilun, ZHANG Yang, et al. Preparation and Flame Resistance of Nitrogen-containing Flame Retardant Polyether for Polyurethane Rigid Foams[J]. Shandong Chemical Industry, 2020, 49(15): 50+53(in Chinese). [2] 孙俊杰, 杨素洁, 黄新杰, 等. 阻燃硬质聚氨 酯泡沫的进展[J]. 塑料, 2023, 52(5): 109-117.SUN Junjie, YANG Sujie, HUANG Xinjie, et al. Advances in Flame Retardants Rigid Polyurethane Foam[J]. Plastics, 2023, 52(5): 109-117(in Chinese). [3] WANG S, WANG X, WANG X, et al. Surface coated rigid polyurethane foam with durable flame retardancy and improved mechanical property[J]. Chemical Engineering Journal, 2020, 385: 123755. doi: 10.1016/j.cej.2019.123755 [4] SHAO X, DU Y, ZHENG X, et al. Reduced fire hazards of expandable polystyrene building materials via intumescent flame-retardant coatings[J]. Journal of Materials Science, 2020, 55(17): 7555-7572. doi: 10.1007/s10853-020-04548-z [5] ZHANG W, TONG M, XING F, et al. Enhanced flame-retardant performance of rigid polyurethane foam by using APTES-MMT and ATH mixed intumescent coatings[J]. Journal of Applied Polymer Science, 2024, 141(4): e54836. doi: 10.1002/app.54836 [6] 刘杰, 郑楠, 刘军海, 等. PDMS/地聚物杂化涂层的制备及性能研究[J]. 化工新型材料, 2017, 45(5): 99-102.LIU Jie, ZHENG Nan, LIU Junhai, et al. Preparation and property study of PDMS/geopolymer hybrid coating[J]. New Chemical Materials, 2017, 45(5): 99-102(in Chinese). [7] 万聪聪, 姜天华. 高性能地聚物混凝土早期收缩特性[J]. 复合材料学报, 2024, 41(2): 952-964.WAN Congcong, JIANG Tianhua. Early shrinkage characteristics of high performance geopolymer concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 952-964(in Chinese). [8] Roviello G, Ricciotti L, Ferone C, et al. Fire resistant melamine based organic-geopolymer hybrid composites[J]. Cement and Concrete Composites, 2015, 59: 89-99. doi: 10.1016/j.cemconcomp.2015.03.007 [9] WANG Y, ZHAO J. Comparative study on flame retardancy of silica fume-based geopolymer activated by different activators[J]. Journal of Alloys and Compounds, 2018, 743: 108-114. doi: 10.1016/j.jallcom.2018.01.302 [10] Colangelo F, Roviello G, Ricciotti L, et al. Preparation and characterization of new geopolymer-epoxy resin hybrid mortars[J]. Materials, 2013, 6(7): 2989-3006. doi: 10.3390/ma6072989 [11] 赵启迪, 薛平, 贾明印, 等. 水溶性树脂改性地质聚合物材料的性能研究[J]. 硅酸盐通报, 2018, 37(10): 3141-3146+3153.ZHAO Qidi, XUE Ping, JIA Mingyin, et al. Study on the properties of the water-soluble organic modified geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3141-3146+3153(in Chinese). [12] Sharkawi A, Taman M, Afefy HM, et al. Efficiency of geopolymer vs. high-strength grout as repairing material for reinforced cementitious elements[J]. Structures, 2020, 27: 330-342. doi: 10.1016/j.istruc.2020.06.001 [13] 中国国家标准化管理委员会. 漆膜、腻子膜干燥时间测定法: GB/T 1728-2020[S]. 北京: 中国标准出版社, 2020.Standardization Administration of the People's Republic of China. Determination of drying time of coating and putty films: GB/T 1728-2020[S]. Beijing: China Standards Press, 2020(in Chinese). [14] 中国国家标准化管理委员会. 复层建筑涂料: GB/T 9779-2015[S]. 北京: 中国标准出版社, 2015.Standardization Administration of the People's Republic of China. Multi-layer coatings for architecture: GB/T 9779-2015[S]. Beijing: China Standards Press, 2015(in Chinese). [15] 中国国家标准化管理委员会. 塑料 用氧指数法测定燃烧行为 第2部分: 室温试验: GB/T 2406.2-2009[S]. 北京: 中国标准出版社, 2009.Standardization Administration of the People's Republic of China. Plastics—Determination of burning behaviour by oxygen index—Part 2: Ambient-temperature test: GB/T 2406.2-2009[S]. Beijing: China Standards Press, 2009(in Chinese). [16] 中国国家标准化管理委员会. 塑料 硬质泡沫塑料燃烧性能试验方法 垂直燃烧法: GB/T 8333-2022[S]. 北京: 中国标准出版社, 2022.Standardization Administration of the People's Republic of China. Plastic—Test method for flammability of rigid cellular plastic—Virtical burning method: GB/T 8333-2022[S]. Beijing: China Standards Press, 2022(in Chinese). [17] International Organization for Standardization. Reaction to-fire tests−Heat release, smoke production and mass loss rate−Part 1: Heat release rate (cone calorimeter method) and somke production rate (dynamic measure ment): ISO 5660-1[S]. Geneva: ISO, 2015. [18] 李智奇, 许苗军, 高健, 等. 高效阻燃硅橡胶材料的制备及性能研究[J]. 化学与粘合, 2020, 42(3): 188-191. doi: 10.3969/j.issn.1001-0017.2020.03.010LI Zhiqi, XU Miaojun, GAO Jian, et al. Study on the preparation and performance of the high efficient flame retardant silicone rubber composites[J]. Chemistry and Adhesion, 2020, 42(3): 188-191(in Chinese). doi: 10.3969/j.issn.1001-0017.2020.03.010 [19] ZHAO W, ZHAO H B, CHENG J B, et al. A green, durable and effective flame-retardant coating for expandable polystyrene foams[J]. Chemical Engineering Journal, 2022, 440: 135807. doi: 10.1016/j.cej.2022.135807 [20] WANG Z H, LIU B W, ZENG F R, et al. Fully recyclable multifunctional adhesive with high durability, transparency, flame retardancy, and harsh-environment resistance[J]. Science Advances, 2022, 8(50): eadd8527. doi: 10.1126/sciadv.add8527 [21] 童国庆, 张吾渝, 高义婷, 等. 碱激发粉煤灰地聚物的力学性能及微观机制研究[J]. 材料导报, 2022, 36(4): 129-134. doi: 10.11896/cldb.20100278TONG Guoqing, ZHANG Wuyu, GAO Yiting, et al. Mechanical properties and micromechanism of alkali-activated fly ash geopolymer[J]. Materials Reports, 2022, 36(4): 129-134(in Chinese). doi: 10.11896/cldb.20100278 [22] 朱宝贵, 焦宝祥, 张长森, 等. 硅烷偶联剂对地聚合物力学性能及微观结构的影响[J]. 硅酸盐通报, 2018, 37(10): 3066-3070+3081.ZHU Baogui, JIAO Baoxiang, ZHANG Changsen, et al. Effect of silane coupling agent on mechanical properties and microstructure of geopolymers[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3066-3070+3081(in Chinese). [23] 商珂, 林贵德, 姜慧婧, 等. 助熔剂对可陶瓷化阻燃室温硫化硅橡胶泡沫性能的影响[J]. 复合材料学报, 2023, 40(7): 4060-4071.SHANG Ke, LIN Guide, JIANG Huijing, et al. Effect of flux agents on properties of ceramifiable flame retardant room temperature vulcanized silicone rubber foam[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4060-4071(in Chinese). [24] 潘颖, 赵红挺. 埃洛石自组装涂层在软质聚氨酯泡沫上的制备及其阻燃抑烟性能[J]. 材料研究学报, 2021, 35(6): 9.PAN Ying, ZHAO Hongting. Preparation of halloysite based layer-by-layer coating on flexible polyurethane foam and its performance of flame retardant and smoke suppression[J]. Chinese Journal of Materials Research, 2021, 35(6): 9(in Chinese). [25] SHANG K, LIN G D, JIANG H J, et al. Flame retardancy, combustion, and ceramization behavior of ceramifiable flame-retardant room temperature vulcanized silicone rubber foam[J]. Fire and Materials, 2023, 47(8): 1082-1091. doi: 10.1002/fam.3154 [26] 黄昊, 张红, 王宇飞, 等. 空心玻璃微珠/石膏涂层对RPUF燃烧性能的影响[J]. 四川建材, 2022, 48(12): 225-227. doi: 10.3969/j.issn.1672-4011.2022.12.096HUANG Hao, ZHANG Hong, WANG Yufei, et al. Effect of hollow gass microspheres/gypsum coating on the combustion properties of RPUF[J]. Sichuan Building Materials, 2022, 48(12): 225-227(in Chinese). doi: 10.3969/j.issn.1672-4011.2022.12.096
计量
- 文章访问数: 27
- HTML全文浏览量: 33
- 被引次数: 0