留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含磷有机聚硅氧烷/地聚物防火涂层在RPUF中的应用

刘杨 胡胜利 林贵德 赵璧 王俊胜

刘杨, 胡胜利, 林贵德, 等. 含磷有机聚硅氧烷/地聚物防火涂层在RPUF中的应用[J]. 复合材料学报, 2024, 43(0): 1-10.
引用本文: 刘杨, 胡胜利, 林贵德, 等. 含磷有机聚硅氧烷/地聚物防火涂层在RPUF中的应用[J]. 复合材料学报, 2024, 43(0): 1-10.
LIU Yang, HU Shengli, LIN Guide, et al. Application of phosphorus-containing organic polysiloxane/geopolymer fireproof coating in RPUF[J]. Acta Materiae Compositae Sinica.
Citation: LIU Yang, HU Shengli, LIN Guide, et al. Application of phosphorus-containing organic polysiloxane/geopolymer fireproof coating in RPUF[J]. Acta Materiae Compositae Sinica.

含磷有机聚硅氧烷/地聚物防火涂层在RPUF中的应用

基金项目: 天津市应用基础研究多元投入--城市消防项目(22 JCZDJC00890);应急管理部天津消防研究所基础科研业务费(2024 SJ26)
详细信息
    通讯作者:

    王俊胜,博士,研究员,研究方向为防火阻燃材料和消防员个人防护装备 E-mail: wangjunsheng@tfri.com.cn

  • 中图分类号: TB332

Application of phosphorus-containing organic polysiloxane/geopolymer fireproof coating in RPUF

Funds: Applied Basic Research Foundation of Tianjin Municipality--Urban Fire Protection (22 JCZDJC00890); Basic Scientific Research Expenses of Tianjin Fire Science and Technology Research Institute of MEM (2024 SJ26)
  • 摘要: 为提高地聚物胶凝材料的抗裂性和与有机基体的粘结性,本文以9, 10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)和乙烯基三乙氧基硅烷(VTES)为主要原料合成了含磷有机聚硅氧烷(PDV)并用于地聚物胶凝材料改性,然后将其涂覆于硬质聚氨酯泡沫(RPUF)表面作为防火涂层。探究了PDV引入量对地聚物胶凝材料表干时间、抗裂性及粘结强度的作用机制,并考察了有机改性地聚物防火涂层厚度对RPUF阻燃性能和燃烧行为的影响。结果表明,PDV的引入可缩短地聚物涂层的表干时间,并有利于改善其抗裂性和与RPUF基体间的粘结强度;有机改性地聚物涂层可赋予RPUF阻燃/防火能力,能够有效抑制、延缓其燃烧热释放及生烟速率,仅涂覆400 μm厚度RPUF的极限氧指数(LOI)≥48%并可通过UL-94 V-0等级;随着涂层厚度的增加,样品的残炭含量逐渐提高,且PDV的引入未对地聚物胶凝材料的热降解行为产生显著影响。

     

  • 图  1  含磷有机聚硅氧烷(PDV)的合成路线

    Figure  1.  Synthetic process of phosphorus-containing organic polysiloxane (PDV)

    图  2  VTES、DOPO、DV及PDV的FT-IR (a)谱图;PDV的1H NMR (b)谱图

    Figure  2.  FT-IR spectra (a) of VTES, DOPO, DV and PDV; 1H NMR spectra (b) of PDV

    图  3  RPUF/GP-PDV样品的表干时间(a)和粘结强度(b)

    Figure  3.  Surface drying time (a) and adhesive strength (b) of RPUF/GP-PDV samples

    图  4  RPUF/GP-PDV样品经力学测试前后的外观

    Figure  4.  Appearance of RPUF/GP-PDV samples before and after mechanical testing

    图  5  RPUF/GP-PDV样品(涂层厚度:~400 μm)的LOI (a)和UL-94等级(b)

    Figure  5.  LOI (a) and UL-94 rating (a) of RPUF/GP-PDV samples (coating thickness: ~400 μm)

    图  6  RPUF/GP-PDV样品经垂直燃烧测试后的外观

    Figure  6.  Appearance of RPUF/GP-PDV samples after UL-94 testing

    图  7  不同涂层厚度RPUF/GP-PDV-2.0样品经垂直燃烧测试后的外观

    Figure  7.  Appearance of RPUF/GP-PDV-2.0 samples with different coating thickness after UL-94 testing

    图  8  不同涂层厚度RPUF/GP-PDV-2.0样品的热释放速率(a)、总热释放(b)、烟气释放(c)和质量损失(d)曲线

    Figure  8.  HRR(a), THR(b), SPR(c) and mass loss (d) curves of RPUF/GP-PDV-2.0 samples with different coating thickness

    图  9  不同涂层厚度RPUF/GP-PDV-2.0样品经锥形量热测试后残炭的数码图像

    Figure  9.  Photographs of carbon residues for RPUF/GP-PDV-2.0 samples with different coating thickness after cone calorimeter testing

    图  10  RPUF/GP-PDV-2.0 (400 μm)样品的耐火性能

    Figure  10.  Fire resistance performance of RPUF/GP-PDV-2.0 (400 μm) sample

    图  11  GP和GP-PDV-2.0的TGA (a)和DTG (b)曲线

    Figure  11.  TG (a) and DTG (b) curves of GP and GP-PDV-2.0

    表  1  含磷有机聚硅氧烷改性地聚物(GP-PDV)胶凝材料的基础配方

    Table  1.   Basic formulation for phosphorus-containing organic polysiloxane modified geopolymer (GP-PDV) cementitious materials

    SampleSlag/gSilica fume/gNa2O·nSiO2/gNaOH/gWater/gPDV/g
    GP1014.10.930
    GP-PDV-0.51014.10.930.5
    GP-PDV-1.01014.10.931.0
    GP-PDV-2.01014.10.932.0
    GP-PDV-3.01014.10.933.0
    Notes: GP−geopolymer; PDV−phosphorus-containing organic polysiloxane; GP-PDV−phosphorus-containing organic polysiloxane modified geopolymer.
    下载: 导出CSV

    表  2  不同涂层厚度RPUF/GP-PDV-2.0样品的阻燃性能

    Table  2.   Flame retardancy of RPUF/GP-PDV-2.0 samples with different coating thickness

    Coating thickness/μmLOI/%UL-94
    t1/st2/srating
    20040122V-1
    400≥4871V-0
    600≥4811V-0
    Notes: LOI−Limit oxygen index; UL-94−Vertical burning test; t1−The first afterflame time; t2−The second afterflame time.
    下载: 导出CSV

    表  3  不同涂层厚度RPUF/GP-PDV-2.0样品的锥形量热数据

    Table  3.   Cone calorimeter data of RPUF/GP-PDV-2.0 samples with different coating thickness

    Coating thickness/μmTTI/sPHRR/(kW·m−2)TTPHRR/sTHR/(MJ·m−2)PSPR/(m2·s−1)Residue/wt%
    05154.42011.80.07216.8
    20022144.24011.60.06356.5
    40044130.37511.10.04270.6
    60070108.610010.70.03974.2
    Notes: TTI−Time to ignition; PHRR−Peak of heat release rate; TTPHRR−Time to PHRR; THR−Total heat release; PSPR−Peak of smoke production rate.
    下载: 导出CSV
  • [1] 朱国全, 张继伦, 张扬, 等. 聚氨酯硬泡用含氮阻燃聚醚的制备及阻燃性能研究[J]. 山东化工, 2020, 49(15): 50+53.

    ZHU Guoquan, ZHANG Jilun, ZHANG Yang, et al. Preparation and Flame Resistance of Nitrogen-containing Flame Retardant Polyether for Polyurethane Rigid Foams[J]. Shandong Chemical Industry, 2020, 49(15): 50+53(in Chinese).
    [2] 孙俊杰, 杨素洁, 黄新杰, 等. 阻燃硬质聚氨 酯泡沫的进展[J]. 塑料, 2023, 52(5): 109-117.

    SUN Junjie, YANG Sujie, HUANG Xinjie, et al. Advances in Flame Retardants Rigid Polyurethane Foam[J]. Plastics, 2023, 52(5): 109-117(in Chinese).
    [3] WANG S, WANG X, WANG X, et al. Surface coated rigid polyurethane foam with durable flame retardancy and improved mechanical property[J]. Chemical Engineering Journal, 2020, 385: 123755. doi: 10.1016/j.cej.2019.123755
    [4] SHAO X, DU Y, ZHENG X, et al. Reduced fire hazards of expandable polystyrene building materials via intumescent flame-retardant coatings[J]. Journal of Materials Science, 2020, 55(17): 7555-7572. doi: 10.1007/s10853-020-04548-z
    [5] ZHANG W, TONG M, XING F, et al. Enhanced flame-retardant performance of rigid polyurethane foam by using APTES-MMT and ATH mixed intumescent coatings[J]. Journal of Applied Polymer Science, 2024, 141(4): e54836. doi: 10.1002/app.54836
    [6] 刘杰, 郑楠, 刘军海, 等. PDMS/地聚物杂化涂层的制备及性能研究[J]. 化工新型材料, 2017, 45(5): 99-102.

    LIU Jie, ZHENG Nan, LIU Junhai, et al. Preparation and property study of PDMS/geopolymer hybrid coating[J]. New Chemical Materials, 2017, 45(5): 99-102(in Chinese).
    [7] 万聪聪, 姜天华. 高性能地聚物混凝土早期收缩特性[J]. 复合材料学报, 2024, 41(2): 952-964.

    WAN Congcong, JIANG Tianhua. Early shrinkage characteristics of high performance geopolymer concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 952-964(in Chinese).
    [8] Roviello G, Ricciotti L, Ferone C, et al. Fire resistant melamine based organic-geopolymer hybrid composites[J]. Cement and Concrete Composites, 2015, 59: 89-99. doi: 10.1016/j.cemconcomp.2015.03.007
    [9] WANG Y, ZHAO J. Comparative study on flame retardancy of silica fume-based geopolymer activated by different activators[J]. Journal of Alloys and Compounds, 2018, 743: 108-114. doi: 10.1016/j.jallcom.2018.01.302
    [10] Colangelo F, Roviello G, Ricciotti L, et al. Preparation and characterization of new geopolymer-epoxy resin hybrid mortars[J]. Materials, 2013, 6(7): 2989-3006. doi: 10.3390/ma6072989
    [11] 赵启迪, 薛平, 贾明印, 等. 水溶性树脂改性地质聚合物材料的性能研究[J]. 硅酸盐通报, 2018, 37(10): 3141-3146+3153.

    ZHAO Qidi, XUE Ping, JIA Mingyin, et al. Study on the properties of the water-soluble organic modified geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3141-3146+3153(in Chinese).
    [12] Sharkawi A, Taman M, Afefy HM, et al. Efficiency of geopolymer vs. high-strength grout as repairing material for reinforced cementitious elements[J]. Structures, 2020, 27: 330-342. doi: 10.1016/j.istruc.2020.06.001
    [13] 中国国家标准化管理委员会. 漆膜、腻子膜干燥时间测定法: GB/T 1728-2020[S]. 北京: 中国标准出版社, 2020.

    Standardization Administration of the People's Republic of China. Determination of drying time of coating and putty films: GB/T 1728-2020[S]. Beijing: China Standards Press, 2020(in Chinese).
    [14] 中国国家标准化管理委员会. 复层建筑涂料: GB/T 9779-2015[S]. 北京: 中国标准出版社, 2015.

    Standardization Administration of the People's Republic of China. Multi-layer coatings for architecture: GB/T 9779-2015[S]. Beijing: China Standards Press, 2015(in Chinese).
    [15] 中国国家标准化管理委员会. 塑料 用氧指数法测定燃烧行为 第2部分: 室温试验: GB/T 2406.2-2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Plastics—Determination of burning behaviour by oxygen index—Part 2: Ambient-temperature test: GB/T 2406.2-2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [16] 中国国家标准化管理委员会. 塑料 硬质泡沫塑料燃烧性能试验方法 垂直燃烧法: GB/T 8333-2022[S]. 北京: 中国标准出版社, 2022.

    Standardization Administration of the People's Republic of China. Plastic—Test method for flammability of rigid cellular plastic—Virtical burning method: GB/T 8333-2022[S]. Beijing: China Standards Press, 2022(in Chinese).
    [17] International Organization for Standardization. Reaction to-fire tests−Heat release, smoke production and mass loss rate−Part 1: Heat release rate (cone calorimeter method) and somke production rate (dynamic measure ment): ISO 5660-1[S]. Geneva: ISO, 2015.
    [18] 李智奇, 许苗军, 高健, 等. 高效阻燃硅橡胶材料的制备及性能研究[J]. 化学与粘合, 2020, 42(3): 188-191. doi: 10.3969/j.issn.1001-0017.2020.03.010

    LI Zhiqi, XU Miaojun, GAO Jian, et al. Study on the preparation and performance of the high efficient flame retardant silicone rubber composites[J]. Chemistry and Adhesion, 2020, 42(3): 188-191(in Chinese). doi: 10.3969/j.issn.1001-0017.2020.03.010
    [19] ZHAO W, ZHAO H B, CHENG J B, et al. A green, durable and effective flame-retardant coating for expandable polystyrene foams[J]. Chemical Engineering Journal, 2022, 440: 135807. doi: 10.1016/j.cej.2022.135807
    [20] WANG Z H, LIU B W, ZENG F R, et al. Fully recyclable multifunctional adhesive with high durability, transparency, flame retardancy, and harsh-environment resistance[J]. Science Advances, 2022, 8(50): eadd8527. doi: 10.1126/sciadv.add8527
    [21] 童国庆, 张吾渝, 高义婷, 等. 碱激发粉煤灰地聚物的力学性能及微观机制研究[J]. 材料导报, 2022, 36(4): 129-134. doi: 10.11896/cldb.20100278

    TONG Guoqing, ZHANG Wuyu, GAO Yiting, et al. Mechanical properties and micromechanism of alkali-activated fly ash geopolymer[J]. Materials Reports, 2022, 36(4): 129-134(in Chinese). doi: 10.11896/cldb.20100278
    [22] 朱宝贵, 焦宝祥, 张长森, 等. 硅烷偶联剂对地聚合物力学性能及微观结构的影响[J]. 硅酸盐通报, 2018, 37(10): 3066-3070+3081.

    ZHU Baogui, JIAO Baoxiang, ZHANG Changsen, et al. Effect of silane coupling agent on mechanical properties and microstructure of geopolymers[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3066-3070+3081(in Chinese).
    [23] 商珂, 林贵德, 姜慧婧, 等. 助熔剂对可陶瓷化阻燃室温硫化硅橡胶泡沫性能的影响[J]. 复合材料学报, 2023, 40(7): 4060-4071.

    SHANG Ke, LIN Guide, JIANG Huijing, et al. Effect of flux agents on properties of ceramifiable flame retardant room temperature vulcanized silicone rubber foam[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4060-4071(in Chinese).
    [24] 潘颖, 赵红挺. 埃洛石自组装涂层在软质聚氨酯泡沫上的制备及其阻燃抑烟性能[J]. 材料研究学报, 2021, 35(6): 9.

    PAN Ying, ZHAO Hongting. Preparation of halloysite based layer-by-layer coating on flexible polyurethane foam and its performance of flame retardant and smoke suppression[J]. Chinese Journal of Materials Research, 2021, 35(6): 9(in Chinese).
    [25] SHANG K, LIN G D, JIANG H J, et al. Flame retardancy, combustion, and ceramization behavior of ceramifiable flame-retardant room temperature vulcanized silicone rubber foam[J]. Fire and Materials, 2023, 47(8): 1082-1091. doi: 10.1002/fam.3154
    [26] 黄昊, 张红, 王宇飞, 等. 空心玻璃微珠/石膏涂层对RPUF燃烧性能的影响[J]. 四川建材, 2022, 48(12): 225-227. doi: 10.3969/j.issn.1672-4011.2022.12.096

    HUANG Hao, ZHANG Hong, WANG Yufei, et al. Effect of hollow gass microspheres/gypsum coating on the combustion properties of RPUF[J]. Sichuan Building Materials, 2022, 48(12): 225-227(in Chinese). doi: 10.3969/j.issn.1672-4011.2022.12.096
  • 加载中
计量
  • 文章访问数:  27
  • HTML全文浏览量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-20
  • 修回日期:  2024-09-30
  • 录用日期:  2024-10-07
  • 网络出版日期:  2024-10-19

目录

    /

    返回文章
    返回