留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光热自愈合超疏水膜的制备和防冰性能

刘黎明 陈盛龙 潘炜

刘黎明, 陈盛龙, 潘炜. 光热自愈合超疏水膜的制备和防冰性能[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 刘黎明, 陈盛龙, 潘炜. 光热自愈合超疏水膜的制备和防冰性能[J]. 复合材料学报, 2024, 42(0): 1-12.
LIU Liming, CHEN Shenglong, PAN Wei. Preparation and Anti-icing Performance of a Photothermal Self-Healing Superhydrophobic Membrane[J]. Acta Materiae Compositae Sinica.
Citation: LIU Liming, CHEN Shenglong, PAN Wei. Preparation and Anti-icing Performance of a Photothermal Self-Healing Superhydrophobic Membrane[J]. Acta Materiae Compositae Sinica.

光热自愈合超疏水膜的制备和防冰性能

基金项目: 广西青年科学基金项目(2023JJB160178);广西科技基地和人才专项项目(AE30100196);广西大学引进人才科研项目(A3010051020)
详细信息
    通讯作者:

    刘黎明,博士,助理教授,硕士生导师,研究方向为功能性超浸润表面 E-mail: llming@gxu.edu.cn

  • 中图分类号: TB34;O647;TB332

Preparation and Anti-icing Performance of a Photothermal Self-Healing Superhydrophobic Membrane

Funds: Youth Science Foundation of Guangxi Zhuang Autonomous Region (2023JJB160178) ; Specific Research Project of Guangxi for Research Bases and Talents (AE30100196); Research Project for Introduced Talents of Guangxi University (A3010051020)
  • 摘要: 针对柔性超疏水膜基材料在户外防冰应用中面临动态抗润湿能力、机械耐久性和因紫外线氧化引起的化学耐久性不足等问题。本文通过对石墨烯、TiO2和SiO2等纳米颗粒氟化修饰,并将修饰后的颗粒分布在热塑性聚氨酯(TPU)基质内,通过优化激光加工参数,制备了一种可大变形的光热自愈合超疏水膜(Photothermal self-healing superhydrophobic, PTHSHM)。本文研究了PTHSHM的动态抗润湿性、机械耐久性、防/除冰性能以及在物理/化学损伤下的愈合性能。PTHSHM在400%应变下,经1000次循环拉伸后表面水接触角不低于156.4°。同时,断裂后的PTHSHM在0.4 W/cm2红外光照射下8分钟后愈合效率达到97.6%。此外,在化学损伤-愈合方面,经过10次氧等离子刻蚀-修复循环后,其表面水接触角仍在(5±2)°和155°之间可逆转换。此外,在−15℃的环境下,PTHSHM表面延迟结冰时间为350 s,冰粘附强度低至55 kPa,20 μL冰滴在0.1 W/cm2的太阳光下的融化并滚落时间为77 s。综上,PTHSHM表现出良好的机械和化学耐久性,在延迟结冰时间和降低冻结粘附方面优势显著。

     

  • 图  1  光热自愈合超疏水膜(PTHSHM)制备流程示意图。其中,① 、②分别为TiO2/SiO2纳米粒子和石墨烯改性过程,③为复合薄膜(FM)预聚物制膜过程,④为激光加工过程

    Figure  1.  Schematic diagram of the photothermal self-healing superhydrophobic (PTHSHM) fabrication process. Here, ① and ② represent the TiO2/SiO2 nanoparticle and graphene modification processes, respectively, ③ is the pre-polymer film (FM) formation process, and ④ is the laser irradiation process

    图  2  (a)PTHSHM的SEM图,插图为对应的接触角图像;(b)在倾斜1°的PTHSHM表面上表征WSA(c)纯热塑性聚氨酯(TPU)、FM、PTHSHM的FTIR光谱;(d) FM和PTHSHM表面化学元素的EDS能谱分析

    Figure  2.  (a) SEM images of PTHSHM, with insets showing the corresponding contact angle images; (b) Characterization of WSA on the PTHSHM surface at a 1° tilt angle; (c) FTIR spectra of pure thermoplastic polyurethane (TPU), FM, and PTHSHM; (d) EDS elemental analysis of the chemical composition on the surfaces of FM and PTHSHM

    图  3  PTHSHM XPS全谱图

    Figure  3.  XPS survey spectra of PTHSHM

    图  4  PTHSHM的10、100、200、500和1000次循环拉伸应力-应变曲线,插图分别是第10个循环和第1000个循环中​的水接触角光学图像

    Figure  4.  The stress-strain curves of the PTHSHM after 10, 100, 200, 500, and 1000 stretching cycles, with insets showing the optical images of water contact angle during the 10 th and 1000 th cycles respectively

    图  5  不同超疏水膜在循环拉伸下的润湿性比较

    Figure  5.  Comparison of the wetting properties of different superhydrophobic membranes under stretching cycles

    图  6  PTHSHM在不同pH溶液中的接触角变化

    Figure  6.  Changes in Contact Angle of PTHSHM in Solutions with Different pH Values

    图  7  PTHSHM磨损距离与接触角变化

    Figure  7.  Wear Distance and Corresponding Contact Angle Changes of PTHSHM

    图  8  PTHSHM在400%应变下的自清洁测试

    Figure  8.  Schematic illustration and process of self-cleaning of PTHSHM at 400% strain

    图  9  (a)PTHSHM光热性能,(b)、(c)PTHSHM的断裂损伤和愈合过程及相应的SEM图,(b)中插图为局部放大图,(c1)(c2)插图为对应的接触角图像,(c3)为(c2)修复位置的高分辨图;(d)自修复机制图

    Figure  9.  (a) Photothermal Performance of PTHSHM, (b), (c) Fracture damage and healing process of PTHSHM and corresponding SEM images, with the inset in (b) being a zoomed-in view, the insets in (c1) and (c2) showing the corresponding contact angle images, and (c3) being a magnified view of the repaired area in (c2); (d) Self-healing mechanism image

    图  10  PTHSHM经0.4 W/cm2的红外辐照8分钟条件下的5个愈合周期中的愈合效率曲线

    Figure  10.  The healing efficiency curves of the PTHSHM during the 5 cycles of healing process that was carried out under the 0.4 W/cm2 IR irradiation for 8 min

    图  11  自修复效率与愈合时间的文献研究对比

    Figure  11.  Comparative literature study on self-healing efficiency and healing time

    图  12  O2等离子体刻蚀-加热循环的水接触角,插图为对应的水接触角图像

    Figure  12.  Water contact angles during O2 plasma etching- healing cycles, with insets showing the corresponding water contact angle images

    图  13  PTHSHM在-10℃和-16.5℃下的光热效应曲线

    Figure  13.  Photothermal effect curves of PTHSHM at -10°C and -16.5°C

    图  14  (a)铝、玻璃、I-PSHM、D-PSHM、H-PSHM表面的延迟结冰过程;(b)铝、玻璃、I-PSHM、D-PSHM、H-PSHM表面在-16.5℃下的冰粘附强度;(c)PTHSHM和铝的光热除冰性能比较

    Figure  14.  (a) Delayed icing process on the surface of aluminum, glass, I-PSHM, D-PSHM, and H-PSHM; (b) ice adhesion strength on the surfaces of aluminum, glass, I-PSHM, D-PSHM, and H-PSHM at -16.5°C; (c) comparison of the photothermal de-icing performance between PTHSHM and aluminum

    图  15  PTHSHM在除冰循环中的冰粘附强度与光热除冰时间变化图

    Figure  15.  Variation of ice adhesion strength and photothermal deicing time of PTHSHM during 10 cycles

  • [1] MUHAMMED M, VIRK M S. Ice Accretion on Rotary-Wing Unmanned Aerial Vehicles-A Review Study[J]. Aerospace, 2023, 10(3): 1-26.
    [2] CAO Y H, TAN W Y, WU Z L. Aircraft icing: An ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75: 353-385. doi: 10.1016/j.ast.2017.12.028
    [3] 超 邱, 杨京龙, 祎 寇. 飞机防冰除冰技术的研究进展[J]. 西安航空学院学报, 2023, 41(3): 1-8.

    CHAO Qiu, YANG Jinglong, KOU Yi. Research progress of anti-icing and de-icing technology for aircraft[J]. Journal of Xi'an Aeronautical Institute, 2023, 41(3): 1-8(in Chinese).
    [4] 贾佳, 龚欢, 叶兆艺, 等. 冰冻灾害条件下集电线路塔架稳定性数值模拟研究[J]. 科技通报, 2023, 39(12): 90-94.

    JIA Jia, GONG Huan, YE Zhaoyi, et al. Numerical simulation study on stability of sransmission sine tower under freezing disaster condition[J]. Bulletin of Science and Technology, 2023, 39(12): 90-94(in Chinese).
    [5] HUANG Q Z, LIU J W, ZHOU Y, et al. A Study on De-icing Technology for Electric Transmission Line[J]. Advanced Materials Research, 2012, 479: 2339-2342.
    [6] HOU M T, JIANG Z Y, SUN W, et al. Efficient Photothermal Anti-/Deicing Enabled by 3D Cu2-xS Encapsulated Phase Change Materials Mixed Superhydrophobic Coatings[J]. Advanced Materials, 2024, 36(3): 1-12.
    [7] ZHOU M L, ZHANG L, ZHONG L S, et al. Robust Photothermal Icephobic Surface with Mechanical Durability of Multi-Bioinspired Structures[J]. Advanced Materials, 2024, 36(3): 1-10.
    [8] WANG D H, SUN Q Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59. doi: 10.1038/s41586-020-2331-8
    [9] WANG L, LUO J C, CHEN Y, et al. Fluorine-free Superhydrophobic and Conductive Rubber Composite with Outstanding Deicing Performance for Highly Sensitive and Stretchable Strain Sensors[J]. Acs Applied Materials & Interfaces, 2019, 11(19): 17774-17783.
    [10] JIA L C, SUN W J, XU L, et al. Facile Construction of a Superhydrophobic Surface on a Textile with Excellent Electrical Conductivity and Stretchability[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7546-7553.
    [11] WANG J W, ZHANG Y B, HE Q. Stretchable superhydrophobic fluororubber fabricated by transferring mesh microstructures[J]. Soft Matter, 2023, 19(8): 1560-1568. doi: 10.1039/D2SM01677J
    [12] OH M S, RYU J, JEON M, et al. A Fully Transparent, Stretchable Multi-Layered Water Barrier Thin Film for the Passivation of Underwater Device Applications[J]. Advanced Materials Interfaces, 2022, 9(27): 1-9.
    [13] LIN L, CHOI Y, CHEN T, et al. Superhydrophobic and wearable TPU based nanofiber strain sensor with outstanding sensitivity for high-quality body motion monitoring[J]. Chemical Engineering Journal, 2021, 419: 1-10.
    [14] LIU M, TAN X Y, LI X Y, et al. Transparent superhydrophobic EVA/SiO2/PTFE/KH-570 coating with good mechanical robustness, chemical stability, self-cleaning effect and anti-icing property fabricated by facile dipping method[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2023, 658: 1-12.
    [15] LI B F, XUE S Y, MU P, et al. Robust Self-Healing Graphene Oxide-Based Superhydrophobic Coatings for Efficient Corrosion Protection of Magnesium Alloys[J]. Acs Applied Materials & Interfaces, 2022, 14(26): 30192-30204.
    [16] WANG J L, KAPLAN J A, COLSON Y L, et al. Stretch-Induced Drug Delivery from Superhydrophobic Polymer Composites: Use of Crack Propagation Failure Modes for Controlling Release Rates[J]. Angewandte Chemie-International Edition, 2016, 55(8): 2796-2800. doi: 10.1002/anie.201511052
    [17] PENG Y J, HU J P, FAN Z, et al. A stretchable superhydrophobic coating with electrothermal ability for anti-icing application[J]. Materials Research Express, 2021, 8(4): 1-9.
    [18] 张应轩, 鲁浈浈, 葛倩倩, 等. 光催化型超疏水自清洁涂层研究现状[J]. 表面技术, 2023, 52(12): 298-314.

    ZHANG Yingxuan, LU Zhenzhen, GE Qianqian, et al. Overview of photocatalytic superhydrophobic self-cleaning coatings[J]. Surface Technology, 2023, 52(12): 298-314(in Chinese).
    [19] JIAO X, LI M T, YU X Q, et al. Mechanically robust superamphiphobic ceramic coatings with releasable nanoparticle-capsules[J]. Chemical Engineering Journal, 2022, 446: 1-9.
    [20] FU Y H, XU F C, WENG D H, et al. Superhydrophobic Foams with Chemical- and Mechanical-Damage-Healing Abilities Enabled by Self-Healing Polymers[J]. Acs Applied Materials & Interfaces, 2019, 11(40): 37285-37294.
    [21] LIN L W, WANG L, LI B, et al. Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors[J]. Chemical Engineering Journal, 2020, 385: 1-11.
    [22] DING Y R, XUE C H, GUO X J, et al. Fabrication of TPE/CNTs film at air/water interface for flexible and superhydrophobic wearable sensors[J]. Chemical Engineering Journal, 2021, 409: 1-9.
    [23] DAI Z Y, CHEN G, DING S, et al. Facile Formation of Hierarchical Textures for Flexible, Translucent, and Durable Superhydrophobic Film[J]. Advanced Functional Materials, 2021, 31(7): 1-12.
    [24] LI B, LUO J C, HUANG X W, et al. A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring[J]. Composites Part B-Engineering, 2020, 181: 1-10.
    [25] RATHER A M, MANNA U. Stretchable and durable superhydrophobicity that acts both in air and under oil[J]. Journal of Materials Chemistry A, 2017, 5(29): 15208-15216. doi: 10.1039/C7TA04073C
    [26] JU J, YAO X, HOU X, et al. A highly stretchable and robust non-fluorinated superhydrophobic surface[J]. Journal of Materials Chemistry A, 2017, 5(31): 16273-16280. doi: 10.1039/C6TA11133E
    [27] CHO S J, NAM H, RYU H, et al. A Rubberlike Stretchable Fibrous Membrane with Anti-Wettability and Gas Breathability[J]. Advanced Functional Materials, 2013, 23(45): 5577-5584. doi: 10.1002/adfm.201300442
    [28] YUAN R X, LIU H, CHEN Y G, et al. Design ambient-curable superhydrophobic/electroactive coating toward durable pitting corrosion resistance[J]. Chemical Engineering Journal, 2019, 374: 840-851. doi: 10.1016/j.cej.2019.05.209
    [29] HUANG L, YI N, WU Y, et al. Multichannel and Repeatable Self-Healing of Mechanical Enhanced Graphene-Thermoplastic Polyurethane Composites[J]. Advanced Materials, 2013, 25(15): 2224-2228. doi: 10.1002/adma.201204768
    [30] GHOSH B, CHELLAPPAN K V, URBAN M W. Self-healing inside a scratch of oxetane-substituted chitosan-polyurethane (OXE-CHI-PUR) networks[J]. Journal of Materials Chemistry, 2011, 21(38): 14473-14486. doi: 10.1039/c1jm12321a
    [31] YANG Y, URBAN M W. Self-healing polymeric materials[J]. Chemical Society Reviews, 2013, 42(17): 7446-7467. doi: 10.1039/c3cs60109a
    [32] WANG S Y, URBAN M W. Self-healing polymers[J]. Nature Reviews Materials, 2020, 5(8): 562-583. doi: 10.1038/s41578-020-0202-4
    [33] YANG Y, PEI Z Q, ZHANG X Q, et al. Carbon nanotube-vitrimer composite for facile and efficient photo-welding of epoxy[J]. Chemical Science, 2014, 5(9): 3486-3492. doi: 10.1039/C4SC00543K
    [34] LI C Y, WANG P, ZHANG D, et al. Near-Infrared Responsive Smart Superhydrophobic Coating with Self-Healing and Robustness Enhanced by Disulfide-Bonded Polyurethane[J]. Acs Applied Materials & Interfaces, 2022, 14(40): 45988-46000.
    [35] MAO T Y, FENG H, WU J R, et al. Waterborne organic silicone polyurethane with excellent self-healing performance for oil/water-separation and oil-recovery applications[J]. Sustainable Materials and Technologies, 2023, 36: 1-11.
    [36] ZHANG D J, CHEN J J, LIU X F, et al. A general tape-coating strategy to construct multifunctional superhydrophobic surfaces with self-adhesion, self-healing, and conductivity on various substrates[J]. Chemical Engineering Journal, 2022, 441: 1-9.
    [37] XU H, TU J, LI H Z, et al. Room-temperature self-healing, high ductility, recyclable polyurethane elastomer fabricated via asymmetric dynamic hard segments strategy combined with self-cleaning function application[J]. Chemical Engineering Journal, 2023, 454: 1-11.
    [38] QIN L M, CHEN N, ZHOU X, et al. A superhydrophobic aerogel with robust self-healability[J]. Journal of Materials Chemistry A, 2018, 6: 4424-4431. doi: 10.1039/C8TA00323H
    [39] WU L S, LIU P, HUA X C, et al. Photothermal superhydrophobic membrane based on breath figure: Anti-icing and deicing[J]. Chemical Engineering Journal, 2024, 480: 1-8.
  • 加载中
计量
  • 文章访问数:  98
  • HTML全文浏览量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-02
  • 修回日期:  2024-05-13
  • 录用日期:  2024-05-18
  • 网络出版日期:  2024-06-17

目录

    /

    返回文章
    返回