留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玉米秸秆灰柠檬酸改性处理对水泥基材料主要理化性能的影响

范炜 刘国超 陈龙辉 王德辉

范炜, 刘国超, 陈龙辉, 等. 玉米秸秆灰柠檬酸改性处理对水泥基材料主要理化性能的影响[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 范炜, 刘国超, 陈龙辉, 等. 玉米秸秆灰柠檬酸改性处理对水泥基材料主要理化性能的影响[J]. 复合材料学报, 2024, 42(0): 1-10.
FAN Wei, LIU Guochao, CHEN Longhui, et al. Effects if corn straw ash citric acid modification treatment on the main physicochemical properties of cement-based materials[J]. Acta Materiae Compositae Sinica.
Citation: FAN Wei, LIU Guochao, CHEN Longhui, et al. Effects if corn straw ash citric acid modification treatment on the main physicochemical properties of cement-based materials[J]. Acta Materiae Compositae Sinica.

玉米秸秆灰柠檬酸改性处理对水泥基材料主要理化性能的影响

基金项目: 国家自基金青年科学基金项目(51608187); 福建省自然科学基金项目(2020J01941); 新型高性能混凝土材料与结构福建省高校工程研究中心开放基金(JXKFA202202); 福建省住房和城乡建设厅科技研究开发计划项目(2022-K-196)
详细信息
    通讯作者:

    王德辉,博士,副教授,硕士生导师,研究方向为高性能混凝土 E-mail: dhwang@fzu.edu.cn

  • 中图分类号: TU528;TB332

Effects if corn straw ash citric acid modification treatment on the main physicochemical properties of cement-based materials

Funds: This work was financially supported by Youth Fund of the National Natural Science Foundation of China (51608187); the Natural Science Foundation of Fujian Province (2020J01941); the Open Fund Project of Fujian University Engineering Research Center for New High Performance Concrete Materials and Structures (JXKFA202202); science and technology research and development plan project of housing and urban-rural development of Fujian Province (2022-K-196).
  • 摘要: 中国是农业大国,每年都会产生大量的玉米秸秆,亟需提高其综合利用率。玉米秸秆焚烧后的残渣具有潜在的火山灰活性,可望改善混凝土的性能。然而,玉米秸秆灰含有一定的杂质,不利于混凝土的相关性能,需要进行改性处理。为了减少杂质的影响,对玉米秸秆灰进行柠檬酸浸泡处理,对比分析了原状玉米秸秆灰和酸浸玉米秸秆灰在水泥基材料中的作用机制。结果表明:采用柠檬酸改性技术可以有效地减少玉米秸秆灰中的杂质,并能够提高水泥基材料的强度。随着玉米秸秆灰掺量的增加,试样基体的水化硅酸钙峰值面积先增大后降低,而界面过渡区处水化硅酸钙的Ca/Si比值则先减小后增大。同时,试样的孔隙率不断增大,抗压强度则先增大后降低。当玉米秸秆灰掺量为15wt%时,水泥基材料的强度达到最大。与掺入原状玉米秸秆灰的试样相比,掺入酸浸玉米秸秆灰试样基体的水化硅酸钙峰值面积更大,而界面过渡区处水化硅酸钙的Ca/Si比值下降了15.25%-26.72%。另外,试样的最可几孔径更小,抗压强度提高了2.53%-12.86%。本研究可降低玉米秸秆灰杂质对混凝土相关性能的不利影响,并为玉米秸秆灰在混凝土中的应用提供了理论基础。

     

  • 图  1  掺玉米秸秆灰胶砂的红外光谱:(a)原状玉米秸秆灰;(b)原状玉米秸秆灰在972 cm−1处的放大图;(c)酸浸玉米秸秆灰;(d)酸浸玉米秸秆灰在972 cm−1处的放大图

    Figure  1.  Infrared spectrum of mortars with corn straw ash: (a) original corn straw ash; (b) enlarged in original corn straw ash figure at 972 cm−1; (c) acid-soaked corn straw ash; (d) enlarged in acid-soaked corn straw ash figure at 972 cm−1

    图  2  掺玉米秸秆灰胶砂的拉曼光谱:(a)原状玉米秸秆灰;(b)酸浸玉米秸秆灰

    Figure  2.  Raman spectra of mortars with corn straw ash: (a) original corn straw ash; (b) acid-soaked corn straw ash

    图  3  玉米秸秆灰对胶砂孔结构的影响:(a)原状玉米秸秆灰;(b)酸浸玉米秸秆灰

    Figure  3.  Effects of corn straw ash on the pore structure of mortars: (a) original corn straw ash; (b) acid-soaked corn straw ash

    图  4  掺玉米秸秆灰胶砂中骨料界面过渡区SEM图:(a) 10wt% OCSA,×3000倍;(b) 15wt% OCSA,×3000倍;(c) 20wt% OCSA,×3000倍;(d) 25wt% OCSA,×3000倍;(e) 30wt% OCSA,×3000倍;(f) 10wt% ACSA,×3000倍;(g) 15wt% ACSA,×3000倍;(h) 20wt% ACSA,×3000倍;(i) 25wt% ACSA,×3000倍;(j) 30wt% ACSA,×3000倍

    Figure  4.  SEM of interfacial transition zone of aggregate in mortars with corn straw ash: (a) 10wt% OCSA, ×3000; (b) 15wt% OCSA, ×3000; (c) 20wt% OCSA, ×3000; (d) 25wt% OCSA, ×3000; (e) 30wt% OCSA, ×3000; (f) 10wt% ACSA, ×3000; (g) 15wt% ACSA, ×3000; (h) 20wt% ACSA, ×3000; (i) 25wt% ACSA, ×3000; (j) 30wt% ACSA, ×3000

    图  5  掺玉米秸秆灰胶砂中骨料界面过渡区EDX图:(a) 10wt%OCSA;(b) 15wt% OCSA;(c) 20wt% OCSA;(d) 25wt% OCSA;(e) 30wt% OCSA;(f) 10wt%ACSA;(g) 15wt%ACSA;(h) 20wt%ACSA;(i) 25wt%ACSA;(j) 30wt%ACSA

    Figure  5.  EDX of interfacial transition zone of aggregate in mortars with corn straw ash: (a) 10wt%OCSA; (b) 15wt% OCSA; (c) 20wt% OCSA; (d) 25wt% OCSA; (e) 30wt% OCSA; (f) 10wt%ACSA; (g) 15wt%ACSA; (h) 20wt%ACSA; (i) 25wt%ACSA; (j) 30wt%ACSA

    图  6  掺玉米秸秆灰胶砂界面过渡区处C-S-H的能谱分析图:(a)原状玉米秸秆灰;(b)酸浸玉米秸秆灰

    Figure  6.  EDX of C-S-H at interfacial transition zone of mortars with corn straw ash: (a) original corn straw ash; (b) acid-soaked corn straw ash

    图  7  掺玉米秸秆灰胶砂的抗压强度:(a) 原状玉米秸秆灰;(b) 酸浸玉米秸秆灰

    Figure  7.  Compressive strength of mortars with corn straw ash: (a) original corn straw ash; (b) acid-soaked corn straw ash

    表  1  水泥和玉米秸秆灰的主要化学成分(wt.%)

    Table  1.   Chemical compositions of cement and corn straw ash (wt.%)

    CaO SiO2 Al2O3 K2O Fe2O3 P2O5 Cl MgO SO3 Na2O LOI
    Cement 64.38 21.51 5.08 - 3.74 - - 2.48 0.52 0.53 1.80
    Corn straw ash 2.07 57.73 7.90 13.24 5.25 2.79 2.81 1.29 1.20 0.74 4.98
    Acid-soaked corn straw ash 0.2 88.66 5.32 0.2 1.31 0.91 - - 0.8 0.1 2.5
    下载: 导出CSV

    表  2  掺玉米秸秆灰胶砂的原材料组成

    Table  2.   Raw materials composition of mortars with corn straw ash

    Sample Cement/g Corn straw ash/g Sand/g Water/g
    Control0wt%OCSA45001350225
    Origin corn straw ash(OCSA)10wt%OCSA405451350225
    15wt%OCSA382.567.51350225
    20wt%OCSA360901350225
    25wt%OCSA337.5112.51350225
    30wt%OCSA3151351350225
    Acid corn straw ash(ACSA)10wt%ACSA405451350225
    15wt%ACSA382.567.51350225
    20wt%ACSA360901350225
    25wt%ACSA337.5112.51350225
    30wt%ACSA3151351350225
    下载: 导出CSV

    表  3  掺玉米秸秆灰胶砂的孔结构特征

    Table  3.   Pore structure parameter of mortars with corn straw ash

    Sample Total porosity/% Most probable pore size/nm
    10wt%OCSA 10.15 9.96
    15wt%OCSA 12.12 9.16
    20wt%OCSA 12.39 9.67
    25wt%OCSA 12.56 13.1
    30wt%OCSA 13.21 13.54
    10wt%ACSA 10.94 7.64
    15wt%ACSA 11.09 7.12
    20wt%ACSA 11.49 7.14
    25wt%ACSA 12.37 9.79
    30wt%ACSA 14.43 9.91
    下载: 导出CSV
  • [1] 李春光, 徐鹏飞, 李云霞, 等. 玉米秸秆微晶纤维素/聚乳酸复合膜的制备与性能[J]. 复合材料学报, 2011, 28(4): 94-98.

    LI Chunguang, XU Pengfei, LI Yunxia, et al. Preparation and properties of corn stalks cellulose microcrystal reinforced poly(lactic acid) composite film[J]. Acta Materiale Compositae Sinica, 2011, 28(4): 94-98(in Chinese).
    [2] 范甲, 胡世琴, 魏柏, 等. 磁性γ-Fe2O3/玉米秸秆淀粉的制备及其对废水中U(VI) 吸附性能[J]. 复合材料学报, 2022, 39(10): 4898-4907.

    FAN Jia, HU Shiqin, WEI Bai, et al. Preparation of magnetic γ-Fe2O3/corn stalk starch and its adsorption performance for U(VI) in wastewater[J]. Acta Materiale Compositae Sinica, 2022, 39(10): 4898-4907(in Chinese).
    [3] 王裕银, 李国忠, 柏玉婷. 玉米秸秆微晶纤维素/聚乳酸复合膜的制备与性能[J]. 复合材料学报, 2011, 28(4): 94-98.

    WANG Yuyin, LI Guozhong, BAI Yuting. Performance of corn straw fibre / desulfurization gypsum composite materials[J]. Acta Materiale Compositae Sinica, 2011, 28(4): 94-98.
    [4] KANG S H, HONG S G, MOON J. The use of rice husk ash as reactive filler in ultra-high performance concrete[J]. Cement and Concrete Research, 2019, 115: 389. doi: 10.1016/j.cemconres.2018.09.004
    [5] HUANG H, GAO X, WANG H, et al. Influence of rice husk ash on strength and permeability of ultra-high performance concrete[J]. Construction and Building Materials, 2017, 149: 621. doi: 10.1016/j.conbuildmat.2017.05.155
    [6] MORETTI J P, NUNES S, SALES A. Self-compacting concrete incorporating sugarcane bagasse ash[J]. Construction and Building Materials, 2018, 172: 635-649. doi: 10.1016/j.conbuildmat.2018.03.277
    [7] THOMAS B S. Green concrete partially comprised of rice husk ash as a supplementary cementitious material – A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3913. doi: 10.1016/j.rser.2017.10.081
    [8] QUDOOS A, ULLAH Z, BALOCH Z. Performance Evaluation of the Fiber-Reinforced Cement Composites Blended with Wheat Straw Ash[J]. Advances in Materials Science and Engineering, 2019, 2019: 1.
    [9] LIMA C P F D, CORDEIRO G C. Evaluation of corn straw ash as supplementary cementitious material: Effect of acid leaching on its pozzolanic activity[J]. Cement, 2021, 4: 100007. doi: 10.1016/j.cement.2021.100007
    [10] ZEIDABADI Z A, BAKHTIARI S, ABBASLOU H, et al. Synthesis. characterization and evaluation of biochar from agricultural waste biomass for use in building materials[J]. Construction and building materials, 2018, 181: 301-308. doi: 10.1016/j.conbuildmat.2018.05.271
    [11] LIU Y, YU K, LU S, et al. Experimental research on an environment-friendly form-stable phase change material incorporating modified rice husk ash for thermal energy storage[J]. Journal of Energy Storage, 2020, 31: 101599. doi: 10.1016/j.est.2020.101599
    [12] 国家市场监督管理总局. 通用硅酸盐水泥: GB175-2023[S]. 北京: 中国标准出版社, 2023.

    State administration for market regulation. Common Portland cement: GB 175—2023[S]. Beijing: Standards Press of China, 2023 (in Chinese).
    [13] 中华人民共和国国家质量监督检验检疫总局. 用于水泥和混凝土中的粉煤灰: GT/T 1596-2017[S]. 北京: 中国标准出版社, 2017.

    Inspection and Quarantine of the People's Republic of China. Fly ash used for cement and concrete: GT/T 1596-2017[S]. Beijing: Standards Press of China, 2017 (in Chinese).
    [14] 国家市场监督管理总局. 水泥胶砂强度检验方法(ISO法): GB/T-17671-2021[S]. 北京: 中国标准出版社, 2021.

    State administration for market regulation. Test method of cement mortar strength (ISO method): GB/T-17671-2021[S]. Beijing: Standards Press of China, 2021 (in Chinese).
    [15] QUDOOS A, KIM H G, RAHMAN A, et al. Effect of mechanical processing on the pozzolanic efficiency and the microstructure development of wheat straw ash blended cement composites[J]. Construction and Building Materials, 2018, 193: 481. doi: 10.1016/j.conbuildmat.2018.10.229
    [16] QUEDOU P G, WIRQUIN E, BOKHOREE C. Sustainable concrete: Potency of sugarcane bagasse ash as a cementitious material in the construction industry[J]. Case Studies in Construction Materials, 2021, 14: e00545. doi: 10.1016/j.cscm.2021.e00545
    [17] ODEYEMI S O, ATOYEBI O D, AYO E K. Effect of Guinea corn husk ash on the mechanical properties of lateritic concrete [C]. In: IOP Conference series: Earth and environmental science. Nigeria, 2020, pp. 012034.
    [18] HARIS JAVED M, ALI SIKANDAR M, AHMAD W, et al. Effect of various biochars on physical, mechanical, and microstructural characteristics of cement pastes and mortars[J]. Journal of Building Engineering, 2022, 57: 104850. doi: 10.1016/j.jobe.2022.104850
    [19] NAKANISHI E Y, FRÍAS M, MARTÍNEZ-RAMÍREZ S, et al. Characterization and properties of elephant grass ashes as supplementary cementing material in pozzolan/Ca(OH)2 pastes[J]. Construction and Building Materials, 2014, 73: 391. doi: 10.1016/j.conbuildmat.2014.09.078
    [20] 赵耀. 秸秆灰-水泥基复合材料性能的研究 [D]. 济南: 济南大学, 2021.

    ZHAO Yao. Study on properties of cornstalk ash-cement composites. Master’s thesis [D]. Jinan: University of Jinan, 2021(in Chinese).
    [21] MAGLAD A M, AMIN M, ZEYAD A M, et al. Engineering properties of ultra-high strength concrete containing sugarcane bagasse and corn stalk ashes[J]. Journal of Materials Research and Technology, 2023, 23: 3196. doi: 10.1016/j.jmrt.2023.01.197
    [22] QI T, WANG H, FENG G, et al. Effects of corn stalk Fly ash (CSFA) on the mechanical and deformation properties of cemented coal gangue backfill[J]. Advances in Materials Science and Engineering, 2020, 7421769: 1.
    [23] 刘钢, 王伟亚, 陈北齐, 等. 粉煤灰对玻化炉渣路面混凝土界面微观结构改善影响研究[J]. 新型建筑材料, 2021, 48(8): 7-11. doi: 10.3969/j.issn.1001-702X.2021.08.002

    LIU Gang, WANG Weiya, CHEN Beiqi, et al. Research on the effect of fly ash on the microstructure improvement of the concrete interface of vitrified slag pavement[J]. New Building Materials, 2021, 48(8): 7-11(in Chinese). doi: 10.3969/j.issn.1001-702X.2021.08.002
    [24] RAHEEM A A, ADEDOKUN S I. Application of corn stalk ash as partial replacement for cement in the production of interlocking paving stones[J]. International Journal of Engineering Research in Africa, 2017, 30: 85. doi: 10.4028/www.scientific.net/JERA.30.85
    [25] AHUMADA R, HOLMAN O M, KATHERINNE S N. Use of the rice and corn husk ashes as an innovative pozzolanic material in ceramic tile adhesive production[J]. Procedia Computer Science, 2022, 198: 572. doi: 10.1016/j.procs.2021.12.288
    [26] SELVARANJAN K, GAMAGE J C P H, De Silva G I P, et al. Development of sustainable mortar using waste rice husk ash from rice mill plant: Physical and thermal properties[J]. Journal of Building Engineering, 2021, 43: 102614. doi: 10.1016/j.jobe.2021.102614
    [27] LUHAR S, CHENG T-W, LUHAR I. Incorporation of natural waste from agricultural and aquacultural farming as supplementary materials with green concrete: A review[J]. Composites Part B:Engineering, 2019, 175: 107076. doi: 10.1016/j.compositesb.2019.107076
  • 加载中
计量
  • 文章访问数:  67
  • HTML全文浏览量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-08
  • 修回日期:  2024-03-04
  • 录用日期:  2024-03-10
  • 网络出版日期:  2024-04-16

目录

    /

    返回文章
    返回