留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维增强复合材料钻削热研究进展与展望

刘勇 潘子韬 周宏根 景旭文 李国超

刘勇, 潘子韬, 周宏根, 等. 纤维增强复合材料钻削热研究进展与展望[J]. 复合材料学报, 2023, 40(8): 4416-4439. doi: 10.13801/j.cnki.fhclxb.20230227.003
引用本文: 刘勇, 潘子韬, 周宏根, 等. 纤维增强复合材料钻削热研究进展与展望[J]. 复合材料学报, 2023, 40(8): 4416-4439. doi: 10.13801/j.cnki.fhclxb.20230227.003
LIU Yong, PAN Zitao, ZHOU Honggen, et al. Review and prospect of drilling heat for fiber reinforced composite[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4416-4439. doi: 10.13801/j.cnki.fhclxb.20230227.003
Citation: LIU Yong, PAN Zitao, ZHOU Honggen, et al. Review and prospect of drilling heat for fiber reinforced composite[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4416-4439. doi: 10.13801/j.cnki.fhclxb.20230227.003

纤维增强复合材料钻削热研究进展与展望

doi: 10.13801/j.cnki.fhclxb.20230227.003
基金项目: 国家自然科学基金(52105450);江苏省高校基金项目(21KJB460016)
详细信息
    通讯作者:

    刘勇,博士,讲师,硕士生导师,研究方向为复合材料切削加工 E-mail: liuyong.1991.happy@just.edu.cn

  • 中图分类号: TG52;TB332

Review and prospect of drilling heat for fiber reinforced composite

Funds: National Natural Science Foundation of China (52105450); University Science Research Project of Jiangsu Province (21KJB460016)
  • 摘要: 纤维增强复合材料(Fiber reinforced composites,FRC)钻削过程中产生的切削热及冷却策略对其工艺参数的优化与加工表面质量的控制起着至关重要的作用。本文从钻削热理论研究、钻削热对加工质量的影响研究、钻削热的影响因素与控制策略3个方面对FRC钻削热进行系统性的分析与概述。首先,综述了FRC钻孔过程中的钻削热形成机制、热传导与热损伤预测、切削热的数值模拟等理论研究。然后,阐述了FRC钻削热的主要测量方法及切削热对孔加工质量的影响,并探讨了FRC制孔的切削热影响因素及其辅助加工控制钻削热方法。最后,总结了当前FRC钻削热研究存在的问题及今后研究的重点。

     

  • 图  1  单向(UD)-碳纤维增强树脂基复合材料(CFRP)切削加工机制:(a) 刀具与纤维夹角;(b) 微观切削模型;(c) 四种切削模式[28]

    θ—Cutting direction; $\overrightarrow {V_{{\rm{c}}}} $—Cutting speed; $\overrightarrow k $—Fiber direction

    Figure  1.  Unidirectional (UD)-carbon fiber reinforced polymer (CFRP) cutting mechanism: (a) Angle between cutter and fiber; (b) Micro-cutting model; (c) Four cutting modes[28]

    图  2  CFRP切削热来源示意图[31]

    1, 2, 3—First, second, third deformation region

    Figure  2.  Schematic diagram of cutting heat source of CFRP[31]

    图  3  UD-CFRP钻削热传导模型[33]

    ω—Angular velocity; νf—Feed velocity of the drill; q1—Heat flux load which comes from the major cutting edges and chisel edge; q2—Heat flux load generated from the side edges; lx—CFRP length; ly—CFRP width; lz—CFRP thickness; d—Tool diameter

    Figure  3.  UD-CFRP drilling heat conduction model[33]

    图  4  CFRP切削热力耦合分析模型[46]

    S—Mises stress

    Figure  4.  Thermal-mechanical coupling analysis model of CFRP cutting[46]

    图  5  基于微结构的CFRP切削有限元模型[47]

    EHM—Equivalent homogeneous material; L1—Length of the first zone; L2—Length of the second zone; L3—Length of the third zone

    Figure  5.  Finite element model of CFRP cutting based on microstructure[47]

    图  6  有无超声振动辅助加工模拟结果对比:(a) 刚开始切削CFRP时;(b) 切削CFRP时[47]

    TEMP—Temperature/℃

    Figure  6.  Comparison of simulation results with or without ultrasonic vibration: (a) Start cutting CFRP; (b) During cutting CFRP[47]

    图  7  有限元研究主要类型分类:(a) (I) UD-CFRP[51];(II) 编织CFRP[50];(b) (III) 损伤预测[56];(IV) 温度预测[54]

    Figure  7.  Classification of main types of finite element research: (a) (I) UD-CFRP[51]; (II) Knitting CFRP[50]; (b) (III) Damage prediction[56]; (IV) Temperature prediction[54]

    图  8  CFRP钻孔时的二维热传导有限元模拟结果(高温区由尺寸标注,温度高于180°C):(a) 新刀具;(b) 磨损刀具[52]

    Figure  8.  Two-dimensional finite element simulation results of heat conduction during drilling with CFRP (The high temperature zone is marked by dimensions, the temperature is higher than 180 C): (a) New tool; (b) Wear the cutting tools[52]

    图  9  三种不同测温方法的实验原理图:(a) 刀具-工件热电偶法;(b) 工件嵌入热电偶法;(c) 热像仪测量法[61]

    PC—Personal computer

    Figure  9.  Experimental schematic diagram of three different temperature measurement methods: (a) Tool-workpiece thermocouple method; (b) Workpiece embedding thermocouple method; (c) Thermal imager measurement method[61]

    图  10  CFRP钻孔的主要损伤形式[12, 66]

    Figure  10.  Main damage forms of CFRP drilling holes[12, 66]

    图  11  CFRP钻出口热像图:(a) 实验所用刀具;(b) 钻出口处随钻孔深度变化的热像图(其中左侧使用常规刀具,右侧为新型刀具)[28]

    Figure  11.  Thermal images of CFRP drill hole: (a) Tool used in the experiment; (b) Thermal image of the drilling outlet with the change of drilling depth (In which conventional tools are used on the left side and new tools are used on the right side)[28]

    图  12  轨道钻孔及其刀具示意图[77]

    ap—Screw pitch of the helical path; D—Diameter of the peripheral cutting edges; e—Eccentricity of the helical path; d—Diameter of the milling part; R—Radius of the arc of the ODR tool; ODR—Orbital drilling and reaming

    Figure  12.  Schematic diagram of track drilling and its tools[77]

    图  13  刀具改进方法[66, 78, 84]

    CLS——Cutting lip of the sawtooth

    Figure  13.  Tool improvement method[66, 78, 84]

    图  14  进给速率和旋转速度对温度的影响:(a)两种钻头对比;(b)传统麻花钻;(c)具有锯齿结构的麻花钻[28]

    Figure  14.  Influence of feed rate and rotation speed on temperature: (a) Comparison of two kinds of drill bits; (b) Traditional twist drill; (c) Twist drill with sawtooth structure[28]

    图  15  最小润滑(MQL)辅助加工技术示意图:(a) 溢流润滑;(b) 最小润滑[95];(c) 最小润滑喷射方式[66]

    Figure  15.  Schematic diagram of minimum quantity lubrication (MQL) auxiliary processing technology: (a) Overflow lubrication; (b) Minimum lubrication[95]; (c) Minimum lubrication injection mode[66]

    图  16  CFRP钻孔实验装置:(a) 干钻;(b) 最小润滑辅助钻孔;(c) 液氮辅助钻孔;(d) 液化二氧化碳辅助钻孔[107]

    Figure  16.  CFRP drilling experimental device: (a) Dry drilling; (b) Minimum lubrication auxiliary drilling; (c) Liquid nitrogen assisted drilling; (d) Liquefied carbon dioxide assisted drilling[107]

    图  17  旋转超声椭圆振动加工原理:(a) 旋转超声振动加工;(b) 旋转超声椭圆振动加工;(c) 切屑排出示意图[22]

    vf—Feed speed; ns—Spindle speed; A—Vibration amplitude; H—Local section view H—H

    Figure  17.  Principle of rotary ultrasonic elliptical vibration machining: (a) Rotary ultrasonic vibration machining; (b) Rotary ultrasonic elliptical vibration processing; (c) Schematic diagram of chip discharge[22]

    表  1  切削热的数值模拟分析

    Table  1.   Numerical simulation analysis of cutting heat

    Simulation scale Object Keyword Reference
    Micro-scale UD-CFRP Fiber orientation angle [41]
    UD-CFRP Ultrasonic vibration [43]
    UD-CFRP Temperature
    pretreatment
    [26]
    3D braided composites Thermal conductivity [44]
    3D braided composites Braiding angle [45]
    3D braided composites Elastic-plastic damage constitutive laws [46]
    UD-CFRP Stress concentration [47]
    Macro-scale CFRP Thermal damage area prediction [48]
    Tool Cutting tool structure
    design
    [49]
    CFRP, GFRP Temperature prediction [50]
    AFRP Temperature prediction [51]
    CFRP Intralaminar damage [52]
    下载: 导出CSV

    表  2  辅助加工控制温度研究

    Table  2.   Study on control temperature of auxiliary machining

    Auxiliary method Object Subject Reference
    MQL CFRP/Ti6Al4V Torque, specific cutting energy, hole wall morphologies, burr [89]
    CFRP/Ti6Al4V Thrust force, delamination damage, tool wear, [90]
    CFRP torque, thrust force, delamination damage, hole diameter, roundness [91]
    LN2 CFRP Hole wall morphologies, hole wall surface roughness, tool wear, thrust force [92]
    CFRP, CFRPs Torque, thrust force, delamination damage, hole diameter, roundness [93]
    CFRPs Hole wall surface roughness, roundness, cylindricity, delamination damage [94]
    AFRP Thrust force, delamination damage, burr, ablation [95]
    LCO2 CFRP/Ti6Al4V Hole diameter, power consumption [96]
    CFRP Hole wall morphologies, hole wall surface roughness, torque [97]
    Air CFRP Burr, tear, tool wear [98]
    Ultrasonic vibration CFRPs Hole wall surface roughness, thrust force, torque, delamination damage, burr, tear [108]
    CFRP Thrust force [43]
    CFRPs Hole wall morphologies [22]
    CFRP Hole wall surface roughness, thrust force, delamination damage, burr, tear [110]
    下载: 导出CSV
  • [1] SHI Z Y, CUI P, LI X. A review on research progress of machining technologies of carbon fiber-reinforced polymer and aramid fiber-reinforced polymer[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2019,233(13):4508-4520. doi: 10.1177/0954406219830732
    [2] 陈春姣, 包宏伟, 李燕, 等. 石墨烯增强铜基复合材料研究进展[J]. 复合材料学报, 2023, 40(3):1248-1262.

    CHEN Chunjiao, BAO Hongwei, LI Yan, et al. Research progress of graphene reinforced copper matrix compo-sites[J]. Acta Materiae Compositae Sinica,2023,40(3):1248-1262(in Chinese).
    [3] 冯志海, 李俊宁, 田跃龙, 等. 航天先进复合材料研究进展[J]. 复合材料学报, 2022, 39(9):4187-4195.

    FENG Zhihai, LI Junning, TIAN Yuelong, et al. Research progress of advanced composite materials for aerospace applications[J]. Acta Materiae Compositae Sinica,2022,39(9):4187-4195(in Chinese).
    [4] QI Z C, LIU Y, CHEN W L. An approach to predict the mechanical properties of CFRP based on cross-scale simulation[J]. Composite Structures,2019,210:339-347. doi: 10.1016/j.compstruct.2018.11.056
    [5] 赵天, 李营, 张超, 等. 高性能航空复合材料结构的关键力学问题研究进展[J]. 航空学报, 2022, 43(6):526851.

    ZHAO Tian, LI Ying, ZHANG Chao, et al. Fundamental mechanical problems in high performance aerospace composite structures: State-of-art review[J]. Acta Aeronautica et Astronautica Sinica,2022,43(6):526851(in Chinese).
    [6] 肖遥, 李东升, 吉康, 等. 大型复合材料航空件固化成型模具技术研究与应用进展[J]. 复合材料学报, 2022, 39(3):907-925.

    XIAO Yao, LI Dongsheng, JI Kang, et al. Research and application progress of curing tooling technology for large composite aeronautical components[J]. Acta Materiae Compositae Sinica,2022,39(3):907-925(in Chinese).
    [7] 罗云烽, 姚佳楠. 高性能热塑性复合材料在民用航空领域中的应用[J]. 航空制造技术, 2021, 64(16):93-102.

    LUO Yunfeng, YAO Jianan. Application of high-performance thermoplastic composites in civil aviation[J]. Aviation Manufacturing Technology,2021,64(16):93-102(in Chinese).
    [8] 陈冰, 徐虎, 王健, 等. 纤维增强复合材料磨削制孔加工技术研究进展[J]. 复合材料学报, 2023, 40(1): 13-37.

    CHEN Bing, XU Hu, WANG Jian, et al. Research progress of fiber reinforced composites by grinding technology for hole making[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 13-37(in Chinese).
    [9] 邢丽英, 李亚锋, 陈祥宝. 先进复合材料在航空装备发展中的地位与作用[J]. 复合材料学报, 2022, 39(9):4179-4186.

    XING Liying, LI Yafeng, CHEN Xiangbao. Status and role of the advanced composite materials in the development of aviation equipment[J]. Acta Materiae Compositae Sinica,2022,39(9):4179-4186(in Chinese).
    [10] 王显峰, 段少华, 唐珊珊, 等. 复合材料自动铺放技术在航空航天领域的研究进展[J]. 航空制造技术, 2022, 65(16):64-77.

    WANG Xianfeng, DUAN Shaohua, TANG Shanshan, et al. Progress of composite automated placement technology in aviation field[J]. Aeronautical Manufacturing Technology,2022,65(16):64-77(in Chinese).
    [11] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):27732797.

    GU Yizhuo, LI Min, LI Yanxia, et al. Progress on manufacturing technology and process theory of aircraft compo-site structure[J]. Acta Aeronautica et Astronautica Sinica,2015,36(8):27732797(in Chinese).
    [12] 张月欣, 杨明君, 刘耿, 等. CFRP的钻削加工研究现状[J]. 复合材料科学与工程, 2021(12):120-128.

    ZHANG Yuexin, YANG Mingjun, LIU Geng, et al. A review about drilling of CFRP[J]. Composites Science and Engi-neering,2021(12):120-128(in Chinese).
    [13] 鲍永杰, 高航, 梁延德, 等. 碳纤维/环氧树脂复合材料钻削温度场建模与试验[J]. 兵工学报, 2013, 34(7):846-852.

    BAO Yongjie, GAO Hang, LIANG Yande, et al. Modeling and experimental research on drilling temperature field of carbon fiber/epoxy reinforced composites[J]. Acta Armamentarii,2013,34(7):846-852(in Chinese).
    [14] XU J Y, LIN T Y, DAVIM J P. On the machining tempera-ture and hole quality of CFRP laminates when using diamond-coated special drills[J]. Journal of Composites Science, 2022, 6(2): 45.
    [15] 刘亚军, 李皓, 李士鹏, 等. 钛合金/CFRP叠层构件螺旋铣孔界面切削热研究[J]. 机械科学与技术, 2019, 38(9):1406-1413.

    LIU Yajun, LI Hao, LI Shipeng, et al. Investigation of cutting heat of interface in helical milling of titanium and carbon fiber reinforced plastic stack[J]. Mechanical Science and Technology for Aerospace Engineering,2019,38(9):1406-1413(in Chinese).
    [16] 杨国林, 董志刚, 康仁科, 等. 螺旋铣孔技术研究进展[J]. 航空学报, 2020, 41(7):623311.

    YANG Guolin, DONG Zhigang, KANG Renke, et al. Research progress of helical milling technology[J]. Acta Aeronautica et Astronautica Sinica,2020,41(7):623311(in Chinese).
    [17] MU J, XU J H, CHEN Y, et al. Experimental research on temperature of drilling CFRP with brazed diamond core drill[J]. Materials Science Forum, 2014, 3256(800-801): 776-781.
    [18] 蔡建国, 林正英. C/E复合材料高速钻削温度测量研究[J]. 机械制造与自动化, 2015, 44(2):201-202, 214.

    CAI Jianguo, LIN Zhengying. Research on temperature measurement of high-speed drilling of C/E composites[J]. Machinery Manufacturing and Automation,2015,44(2):201-202, 214(in Chinese).
    [19] 陈文成, 王宏晓, 段玉岗, 等. 温变特性对C/E复合材料制孔质量影响的试验研究[J]. 机械制造, 2019, 57(8):84-90.

    CHEN Wencheng, WANG Hongduan, DUAN Yugang, et al. Experimental study on the influence of temperature change characteristics on the hole quality of C/E compo-sites[J]. Machinery Manufacturing,2019,57(8):84-90(in Chinese).
    [20] SANTIUSTE C, DIAZ-ALVAREZ J, SOLDANI X, et al. Modelling thermal effects in machining of carbon fiber reinforced polymer composites[J]. Journal of Reinforced Plastics & Composites,2011,33(8):758-766.
    [21] 王福吉, 殷俊伟, 贾振元, 等. CFRP复合材料铣削力、温度及表层损伤分析[J]. 机械工程学报, 2018, 3(3):186-195.

    WANG Fuji, YIN Junwei, JIA Zhenyuan, et al. Measurement and analysis of cutting force, temperature and cutting-induced top-layer damage in edge trimming of CFRPs[J]. Journal of Mechanical Engineering,2018,3(3):186-195(in Chinese).
    [22] GENG D X, LU Z H, YAO G, et al. Cutting temperature and resulting influence on machining performance in rotary ultrasonic elliptical machining of thick CFRP[J]. International Journal of Machine Tools and Manufacture,2017, 123:160-170.
    [23] 徐锦泱. 碳纤维增强树脂基复合材料钻削缺陷研究进展[J]. 航空制造技术, 2022, 65(22):24-33.

    XU Jinyang. Research advances in drilling-induced defects of carbon fiber reinforced polymers[J]. Aeronautical Manufacturing Technology,2022,65(22):24-33(in Chinese).
    [24] 吴小飞, 马保吉, 高红红, 等. 基于多目标优化的碳纤维复合材料钻削参数优化[J]. 工具技术, 2022, 56(9):43-47.

    WU Xiaofei, MA Baoji, GAO Honghong, et al. Optimization of drilling parameters for carbon fibre reinforced plastics based on multi-objective optimization[J]. Tool Technology,2022,56(9):43-47(in Chinese).
    [25] HOU G Y, ZHANG K F, FAN X T, et al. Analysis of exit-ply temperature characteristics and their effects on occurrence of exit-ply damages during UD CFRP drilling[J]. Composite Structures,2020,231:111456. doi: 10.1016/j.compstruct.2019.111456
    [26] 李丰辰, 齐振超, 陈文亮, 等. CF/PEEK钻削热历史对孔承载能力的影响规律研究[J]. 工具技术, 2022, 56(12):56-63.
    [27] 刘书暖, 夏文强, 王宁, 等. CFRP/钛合金叠层构件低温钻削的轴向力与成孔质量研究[J]. 航空制造技术, 2019, 62(13):82-86.

    LIU Shunuan, XIA Wenqiang, WANG Ning, et al. Research on thrust force and hole 1uality of drilling CFRP/Ti stacks in low temperature[J]. Aeronautical Manufacturing Technology,2019,62(13):82-86(in Chinese).
    [28] SHU L M, LI S H, FANG Z L, et al. Study on dedicated drill bit design for carbon fiber reinforced polymer drilling with improved cutting mechanism[J]. Composites Part A: Applied Science and Manufacturing,2020,142:106259.
    [29] 邹适, 李树健, 李鹏南, 等. CFRP钻削过程的切削热研究进展[J]. 宇航材料工艺, 2020, 50(4):13-18.

    ZOU Shi, LI Shujian, LI Pengnan, et al. Research progress of cutting heat in drilling process of CFRP[J]. Aerospace Materials and Technology,2020,50(4):13-18(in Chinese).
    [30] SEYEDBEHZAD G, GILBERT L, JEAN-FRANÇOIS C. Experimental investigation of the cutting temperature and surface quality during milling of unidirectional carbon fiber reinforced plastic[J]. Journal of Composite Materials,2016,50(8):1007-1142. doi: 10.1177/0021998315586078
    [31] HAN L, ZHANG J J, LIU Y, et al. Finite element investigation on pretreatment temperature-dependent orthogonal cutting of unidirectional CFRP[J]. Composite Structures,2021,278:114678. doi: 10.1016/j.compstruct.2021.114678
    [32] WANG F J, YIN J W, MA J W, et al. Heat partition in dry orthogonal cutting of unidirectional CFRP composite lami-nates[J]. Composite Structures,2018,197:28-38.
    [33] BAO Y J, WANG Y Q, GAO H, et al. Investigation on temperature field of unidirectional carbon fiber/epoxy composites during the drilling process[J]. Journal of Central South University,2019,26(10):2717-2728. doi: 10.1007/s11771-019-4208-2
    [34] 杨帆, 王福吉, 贾振元. CFRP/钛合金叠层钻削中的温度场计算研究[J]. 机电工程, 2019, 36(12):1261-1265.

    YANG Fan, WANG Fuji, JIA Zhenyuan. Temperature field calculation of CFRP/Ti alloy laminated drilling[J]. Electromechanical Engineering,2019,36(12):1261-1265(in Chinese).
    [35] LIU J, CHEN G, JI C H, et al. An investigation of workpiece temperature variation of helical milling for carbon fiber reinforced plastics (CFRP)[J]. International Journal of Machine Tools and Manufacture,2014,86:89-103. doi: 10.1016/j.ijmachtools.2014.06.008
    [36] SIKIRU O I, SAHEED O O, HOM N D. Thermo-mechani-cal modelling of FRP cross-ply composite laminates drilling: Delamination damage analysis[J]. Composites Part B: Engineering,2017,108:45-52. doi: 10.1016/j.compositesb.2016.09.100
    [37] 贾振元, 毕广健, 王福吉, 等. 碳纤维增强树脂基复合材料切削机理研究[J]. 机械工程学报, 2018, 54(23):199-208. doi: 10.3901/JME.2018.23.199

    JIA Zhenyuan, BI Guangjian, WANG Fuji, et al. The research of machining mechanism of carbon fiber reinforced plastic[J]. Journal of Mechanical Engineering,2018,54(23):199-208(in Chinese). doi: 10.3901/JME.2018.23.199
    [38] FATTAHI M Z, KISHAWY H A. Prediction of critical thrust force generated at the onset of delamination in machining carbon reinforced composites[J]. The International Journal of Advanced Manufacturing Technology,2019,103(5-8):2751-2759. doi: 10.1007/s00170-019-03517-4
    [39] LIU Y, LI Q N, QI Z C, et al. Rapid prediction of thrust force coupling scale-span model and revised ANN in drilling CFRPs[J]. The International Journal of Advanced Manufacturing Technology,2021,116:2255-2268. doi: 10.1007/s00170-021-07491-8
    [40] LIU Y, QI Z C, CHEN W L, et al. An approach to design high-performance unidirectional CFRPs based on a new sensitivity analysis model[J]. Composite Structures,2019,224:111078. doi: 10.1016/j.compstruct.2019.111078
    [41] LIU Y, LI Q N, QI Z C, et al. Scale-span modelling of dynamic progressive failure in drilling CFRPs using a tapered drill-reamer[J]. Composite Structures,2021,278:114710. doi: 10.1016/j.compstruct.2021.114710
    [42] DU J G, GENG M, MING W Y, et al. Simulation machining of fiber-reinforced composites: A review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(1- 2): 1-15.
    [43] LIU Y, QI Z C, CHEN W L, et al. Mesh size optimization of unidirectional fiber-reinforced composites model for precisely characterizing the effective elastic property[J]. Journal of Material Engineering and Performance,2020,29:2701-2719.
    [44] LIU Y, PAN Z T, LI Q N, et al. Comparative analysis of dynamic progressive failure of CFRPs using the scale-span and macroscopic modeling method in drilling[J]. Engi-neering Fracture Mechanics,2022,268:108434. doi: 10.1016/j.engfracmech.2022.108434
    [45] 齐振超, 李丰辰, 王二化. 基于热力耦合仿真的CFRP直角切削机理研究[J]. 工具技术, 2019, 53(10):36-41.

    QI Zhenchao, LI Fengchen, WANG Erhua. Research on orthogonal cutting mechanism of CFRP based on thermo-mechanical couple simulation[J]. Tool Technology,2019,53(10):36-41(in Chinese).
    [46] GAO C, XIAO J, XU J, et al. Factor analysis of machining parameters of fiber-reinforced polymer composites based on finite element simulation with experimental investigation[J]. The International Journal of Advanced Manufacturing Technology,2016,83(5-8):1113-1125. doi: 10.1007/s00170-015-7592-2
    [47] XU W X, ZHANG L C. Heat effect on the material removal in the machining of fibre-reinforced polymer compo-sites[J]. International Journal of Machine Tools and Manufacture,2019,140:1-11. doi: 10.1016/j.ijmachtools.2019.01.005
    [48] DONG K, ZHANG J J, JIN L M, et al. Multi-scale finite element analyses on the thermal conductive behaviors of 3D braided composites[J]. Composite Structures,2016,143:9-22. doi: 10.1016/j.compstruct.2016.02.029
    [49] ZHAI J J, CHENG S, ZENG T, et al. Thermo-mechanical behavior analysis of 3D braided composites by multiscale finite element method[J]. Composite Structures,2017,176:664-672. doi: 10.1016/j.compstruct.2017.05.064
    [50] HE C W, GE J R, ZHANG B B, et al. A hierarchical multiscale model for the elastic-plastic damage behavior of 3D braided composites at high temperature[J]. Composites Science and Technology,2020,196:108230. doi: 10.1016/j.compscitech.2020.108230
    [51] CHENG H, GAO J Y, KAFKA O L, et al. A micro-scale cutting model for UD CFRP composites with thermo-mechanical coupling[J]. Composites Science and Technology,2017,153:18-31. doi: 10.1016/j.compscitech.2017.09.028
    [52] DÍAZ-ÁLVAREZ J, OLMEDO A, SANTIUSTE C, et al. Theoretical estimation of thermal effects in drilling of woven carbon fiber composite[J]. Materials,2014,7(6):4442-4454. doi: 10.3390/ma7064442
    [53] SADEK A, SHI B, MESHREKI M, et al. Prediction and control of drilling-induced damage in fibre-reinforced polymers using a new hybrid force and temperature modelling approach[J]. CIRP Annals,2015,64(1):89-92. doi: 10.1016/j.cirp.2015.04.074
    [54] SORRENTINO L, TURCHETTA S, BELLINI C. In process monitoring of cutting temperature during the drilling of FRP laminate[J]. Composite Structures,2017,168:549-561. doi: 10.1016/j.compstruct.2017.02.079
    [55] BAO Y J, HAO W, GAO H, et al. Numerical and experimental investigations on temperature distribution of plain-woven aramid fiber-reinforced plastics composites with low-mild spindle velocities[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(1-4): 613-622.
    [56] KUBHER S, GURURAJA S, ZITOUNE R. Coupled thermo-mechanical modeling of drilling of multi-directional polymer matrix composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2022,156:106802. doi: 10.1016/j.compositesa.2022.106802
    [57] KEVIN K, GARRET E O. On the relationship between cutting temperature and workpiece polymer degradation during CFRP edge trimming[J]. Procedia CIRP,2016,55:170-175. doi: 10.1016/j.procir.2016.08.041
    [58] SORRENTINO L, TURCHETTA S, COLELLA L, et al. Analysis of thermal damage in FRP drilling[J]. Procedia Engineering,2016,167:206-215. doi: 10.1016/j.proeng.2016.11.689
    [59] MERINO-PÉREZ J L, ROYER R, AYVAR-SOBERANIS S, et al. On the temperatures developed in CFRP drilling using uncoated WC-Co tools Part I: Workpiece constituents, cutting speed and heat dissipation[J]. Composite Structures,2015,123:161-168. doi: 10.1016/j.compstruct.2014.12.033
    [60] LOJA M A R, ALVES M S F, BRAGANÇA I M F, et al. An assessment of thermally influenced and delamination-induced regions by composites drilling[J]. Composite Structures,2018,202:413-423. doi: 10.1016/j.compstruct.2018.02.046
    [61] TAKESHI Y, TAKAYUKI O, HIROYUKI S. Temperature measurement of cutting tool and machined surface layer in milling of CFRP[J]. International Journal of Machine Tools and Manufacture,2013,70:63-69. doi: 10.1016/j.ijmachtools.2013.03.009
    [62] 付鹏强, 蒋银红, 王义文, 等. CFRP制孔加工技术的研究进展与发展趋势[J]. 航空材料学报, 2019, 39(6):32-45.

    FU Pengqiang, JIANG Yinhong, WANG Yiwen, et al. Research progress and perspective trend of drilling technology for carbon fiber reinforced polymer[J]. Journal of Aeronautical Materials,2019,39(6):32-45(in Chinese).
    [63] 蔡建国, 林正英. 碳纤维复合材料钻削温度对孔壁微观形貌的影响分析研究[J]. 机械设计与制造工程, 2017, 46(7):69-73.

    CAI Jianguo, LIN Zhengying. The influence analysis of carbon fiber reinforced composites drilling temperature on morphology of hole wall[J]. Machine Design and Manufacturing Engineering,2017,46(7):69-73(in Chinese).
    [64] CHRISTOPHE R, GERARD P, FREDERIC R, et al. Tool wear monitoring and hole surface quality during CFRP drilling[J]. Procedia CIRP,2014,13:163-168. doi: 10.1016/j.procir.2014.04.028
    [65] 王春浩, 李鹏南, 李树健, 等. CFRP钻削加工过程的分层缺陷研究进展[J]. 兵器材料科学与工程, 2019, 42(6):109-115.

    WANG Chunhao, LI Pengnan, LI Shujian, et al. Research progress on delamination defect in CFRP cutting process[J]. Ordnance Material Science and Engineering,2019,42(6):109-115(in Chinese).
    [66] GAO T, LI C H, WANG Y Q, et al. Carbon fiber reinforced polymer in drilling: From damage mechanisms to suppression[J]. Composite Structures,2022,286:115232. doi: 10.1016/j.compstruct.2022.115232
    [67] LUIGI S, DAVI S, MARCO D, et al. Effect of temperature on static and low velocity impact properties of thermoplastic composites[J]. Composites Part B: Engineering,2017,113:100-110. doi: 10.1016/j.compositesb.2017.01.010
    [68] XAVIER G, VINCENT P, FRÉDÉRIQUE T, et al. About the thermomechanical behaviour of a carbon fibre reinforced high-temperature thermoplastic composite[J]. Composites Part B: Engineering,2016,95:386-394. doi: 10.1016/j.compositesb.2016.03.068
    [69] UM H J, HWANG Y T, CHOI K H, et al. Effect of crystalli-nity on the mechanical behavior of carbon fiber reinforced polyethylene-terephthalate (CF/PET) composites considering temperature conditions[J]. Composites Science and Technology,2021,207:108745. doi: 10.1016/j.compscitech.2021.108745
    [70] SIDDHARTH J, KRISHNA R, BALAN A S S. A novel approach to predict the delamination factor for dry and cryogenic drilling of CFRP[J]. Journal of Materials Processing Tech,2018,262:521-531. doi: 10.1016/j.jmatprotec.2018.07.026
    [71] FU R, JIA Z Y, WANG F J, et al. Drill-exit temperature characteristics in drilling of UD and MD CFRP composites based on infrared thermography[J]. International Jour-nal of Machine Tools and Manufacture,2018,135:24-37. doi: 10.1016/j.ijmachtools.2018.08.002
    [72] GE J, CATALANOTTI G, FALZON B G, et al. Towards understanding the hole making performance and chip formation mechanism of thermoplastic carbon fibre/polyetherketoneketone (CF/PEKK) composite[J]. Composites Part B: Engineering, 2022, 234: 109752.
    [73] MERINO-PÉREZ J L, ROYER R, MERSON E, et al. Influence of workpiece constituents and cutting speed on the cutting forces developed in the conventional drilling of CFRP composites[J]. Composite Structures,2016,140:621-629. doi: 10.1016/j.compstruct.2016.01.008
    [74] 伍俏平, 赵恒, 王煜, 等. 纤维增强复合材料制孔刀具研究现状与展望[J]. 兵器材料科学与工程, 2018, 41(6):113-118.

    WU Qiaoping, ZHAO Heng, WANG Yan, et al. Research status and perspectives of cutting tools for drilling fibre reinforced composites[J]. Weapon Materials Science and Engineering,2018,41(6):113-118(in Chinese).
    [75] NORBERT G J, PAULO D, TIBOR S. Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review[J]. Composites Part A: Applied Science and Manufacturing,2019,125:105552. doi: 10.1016/j.compositesa.2019.105552
    [76] 陈浩, 李鹏南, 唐思文, 等. 麻花钻几何参数对碳纤维复合材料钻削性能的影响[J]. 宇航材料工艺, 2015, 45(3):63-67.

    CHEN Hao, LI Pengnan, TANG Siwen, et al. Effects of the geometrical parameter of twist drill on the drilling properties of carbon fiber reinforced plastics[J]. Aerospace Materials Technology,2015,45(3):63-67(in Chinese).
    [77] KONG L H, GAO D, LU Y, et al. Novel orbital drilling and reaming tool for machining holes in carbon fiber-reinforced plastic (CFRP) composite laminates[J]. The International Journal of Advanced Manufacturing Technology,2020,110(3-4):977-988. doi: 10.1007/s00170-020-05928-0
    [78] XU J Y. A comparative evaluation of polycrystalline diamond drills in drilling high-strength T800 S/250 F CFRP[J]. Composite Structures,2014,117:71-82. doi: 10.1016/j.compstruct.2014.06.034
    [79] 伍俏平, 刘平, 邓朝晖, 等. 基于超细晶硬质合金钻头的AFRP钻削性能[J]. 复合材料学报, 2017, 34(10):2246-2253.

    WU Qiaoping, LIU Ping, DENG Zhaohui, et al. Drilling performance of ultrafine cemented carbide drill inmachining aramid fiber reinforce polymer composites[J]. Acta Materiae Compositae Sinica,2017,34(10):2246-2253(in Chinese).
    [80] GAUGEL S, SRIPATHY P, HAEGER A, et al. A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers(CFRP)[J]. Composite Structures,2016,155:173-183. doi: 10.1016/j.compstruct.2016.08.004
    [81] XU J, EL MANSORI M. Experimental study on drilling mechanisms and strategies of hybrid CFRP/Ti stacks[J]. Composite Structures,2016,157:461-482. doi: 10.1016/j.compstruct.2016.07.025
    [82] REDOUANE Z, NICOLAS C, COLLOMBET F, et al. Temperature and wear analysis in function of the cutting tool coating when drilling of composite structure: In situ measurement by optical fiber[J]. Wear,2017, 376-377:1849-1858.
    [83] 宿友亮, 孟志坚, 郜雪楠, 等. CFRP切削加工中刀具磨损研究进展[J/OL]. 表面技术: 1-20[2023-05-30]. http://kns.cnki.net/kcms/detail/50.1083.TG.20220818.0922.004.html.

    SU Youliang, MENG Zhijian, GAO Xuenan, et al. Research progress of tool wear in cutting of CFRP[J/OL]. Surface Technology: 1-20[2023-05-30]. http://kns.cnki.net/kcms/detail/50.1083.TG.20220818.0922.004.html (in Chinese).
    [84] JIA Z Y, FU R, NIU B, et al. Novel drill structure for damage reduction in drilling CFRP composites[J]. International Journal of Machine Tools & Manufacture,2016,110:55-65.
    [85] 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2):3013-3016.

    CHEN Yan, GE Ende, FU Yucan, et al. Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica,2015,32(2):3013-3016(in Chinese).
    [86] CHEN W C. Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) compo-site laminates[J]. International Journal of Machine Tools and Manufacture,1997,37(8):1097-1108. doi: 10.1016/S0890-6955(96)00095-8
    [87] WANG H J, SUN J, ZHANG D D, et al. The effect of cutting temperature in milling of carbon fiber reinforced polymer composites[J]. Composites Part A: Applied Science and Manufacturing,2016,91:380-387. doi: 10.1016/j.compositesa.2016.10.025
    [88] HOU G Y, LUO B, ZHANG K F, et al. Investigation of high temperature effect on CFRP cutting mechanism based on a temperature cont1 rolled orthogonal cutting experiment[J]. Composite Structures,2021,268:113967. doi: 10.1016/j.compstruct.2021.113967
    [89] 王福吉, 郭会彬, 贾振元, 等. 玻璃纤维增强聚丙烯复合材料制孔损伤[J]. 复合材料学报, 2018, 35(8):2023-2031.

    WANG Fuji, GUO Huibing, JIA Zhenyuan, et al. Drilling damage of glass fiber reinforced polypropylene compo-sites[J]. Acta Materiae Compositae Sinica,2018,35(8):2023-2031(in Chinese).
    [90] XU J Y, HUANG X H, PAULO D J, et al. On the machining behavior of carbon fiber reinforced polyimide and PEEK thermoplastic composites[J]. Polymer Composites, 2020, 41(9): 3649-3663.
    [91] 胡记强, 王兵, 张涵其, 等. 热塑性复合材料构件的制备及其在航空航天领域的应用[J]. 宇航总体技术, 2020, 4(4):61-70.

    HU Jiqiang, WANG Bing, ZHANG Hanqi, et al. Fabrication of thermoplastic composite components and their application in aerospace[J]. Astronautical Systems Engi-neering Technology,2020,4(4):61-70(in Chinese).
    [92] 肇研, 孙铭辰, 张思益, 等. 连续碳纤维增强高性能热塑性复合材料的研究进展[J]. 复合材料学报, 2022, 39(9):4274-4285. doi: 10.13801/j.cnki.fhclxb.20220809.008

    ZHAO Yan, SUN Mingchen, ZHANG Siyi, et al. Advance in continuous carbon fiber reinforced high performance thermoplastic composites[J]. Acta Materiae Compositae Sinica,2022,39(9):4274-4285(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220809.008
    [93] 刘彬, 安卫龙, 倪楠楠. 国外热塑性复合材料工程应用现状[J]. 航空制造技术, 2021, 64(22):80-90.

    LIU Bing, AN Weilong, NI Nannan. Application status of thermoplastic composite materials in foreign engineering[J]. Aeronautical Manufacturing Technology,2021,64(22):80-90(in Chinese).
    [94] 张加波, 张开虎, 范洪涛, 等. 纤维复合材料激光加工进展及航天应用展望[J]. 航空学报, 2022, 43(4):525735. doi: 10.7527/j.issn.1000-6893.2022.4.hkxb202204010

    ZHANG Jiabo, ZHANG Kaihu, FAN Hongtao, et al. Progress in laser processing of fiber composite materials and prospects of its applications in aerospace[J]. Acta Aeronautica et Astronautica Sinica,2022,43(4):525735(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.4.hkxb202204010
    [95] WANG X M, LI C H, ZHANG Y B, et al. Vegetable oil-based nanofluid minimum quantity lubrication turning: Academic review and perspectives[J]. Journal of Manufacturing Processes,2020,59:76-97. doi: 10.1016/j.jmapro.2020.09.044
    [96] ZHANG Y B, LI H N, LI C H, et al. Nano-enhanced biolubricant in sustainable manufacturing: From processability to mechanisms[J]. Friction,2022,10(6):803-841. doi: 10.1007/s40544-021-0536-y
    [97] XU J Y, JI M, CHEN M, et al. Experimental investigation on drilling machinability and hole quality of CFRP/Ti6 Al4 V stacks under different cooling conditions[J]. The International Journal of Advanced Manufacturing Technology,2020,109(5-6):1527-1539. doi: 10.1007/s00170-020-05742-8
    [98] XU J Y, JI M, PAULO D J, et al. Comparative study of minimum quantity lubrication and dry drilling of CFRP/titanium stacks using TiAlN and diamond coated drills[J]. Composite Structures,2020,234(C):111727.
    [99] ARJUN N, ALPER U, JAWAHIR I S. An investigation of process performance when drilling carbon fiber reinforced polymer (CFRP) composite under dry, cryogenic and MQL environments[J]. Procedia Manufacturing,2020,43(C):551-558.
    [100] GÜLTEKIN B, YORUK A S, UGUR K, et al. Impact of cryogenic condition and drill diameter on drilling performance of CFRP[J]. Applied Sciences, 2017, 7(7): 667.
    [101] MARCELO F B, IGOR B, FRANCISCO DE A T, et al. Cryogenic drilling of carbon fibre reinforced thermoplastic and thermoset polymers[J]. Composite Structures,2020,251:112625. doi: 10.1016/j.compstruct.2020.112625
    [102] NAVNEET K, FRANCI P, CHETAN A, et al. Measurement and evaluation of hole attributes for drilling CFRP composites using an indigenously developed cryogenic machining facility[J]. Measurement,2020,154(C):107504.
    [103] 王晋宇, 刘海波, 刘阔, 等. 芳纶纤维增强树脂复合材料液氮冷却钻孔试验[J]. 复合材料学报, 2020, 37(1):89-95.

    WANG Jinyu, LIU Haibo, LIU Kuo, et al. Experiment of liquid nitrogen cooling drilling test of aramid fiber-reinforced polymer composites[J]. Acta Materiae Compositae Sinica,2020,37(1):89-95(in Chinese).
    [104] RODRÍGUEZ A, CALLEJA A, DE LACALLE L N LÓPEZ, et al. Drilling of CFRP-Ti6 Al4 V stacks using CO2-cryogenic cooling[J]. Journal of Manufacturing Processes,2021,64:58-66. doi: 10.1016/j.jmapro.2021.01.018
    [105] 邹凡, 王贤锋, 张烘州, 等. 超临界二氧化碳低温铣削CFRP复合材料试验研究[J]. 航空制造技术, 2021, 64(19):14-19.

    ZOU Fan, WANG Xianfeng, ZHANG Hongzhou, et al. Experimental investigation on milling characteristic of CFRP composites under supercritical carbon dioxide based cryogenic environment[J]. Aeronautical Manufacturing Technology,2021,64(19):14-19(in Chinese).
    [106] 王福吉, 成德, 赵猛, 等. 冷却空气流向对CFRP制孔刀具磨损及孔质量的影响[J]. 复合材料学报, 2019, 36(2):410-417.

    WANG Fuji, CHENG De, ZHAO Meng, et al. Influence of cooling air direction on tool wear and hole quality in CFRP drilling[J]. Acta Materiae Compositae Sinica,2019,36(2):410-417(in Chinese).
    [107] IQBAL A, ZHAO G L, ZAINI J, et al. CFRP drilling under throttle and evaporative cryogenic cooling and micro-lubrication[J]. Composite Structures,2021,267:113916. doi: 10.1016/j.compstruct.2021.113916
    [108] 李远霄, 焦锋, 张世杰, 等. 高低频复合振动钻削CFRP/钛合金叠层结构试验[J]. 航空学报, 2021, 42(10):524802.

    LI Yuanxiao, JIAO Feng, ZHANG Shijie, et al. Experiment on high and low frequency compound vibration-assisted drilling of CFRP/titanium alloy laminated structure[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):524802(in Chinese).
    [109] 彭振龙, 张翔宇, 张德远. 航空航天难加工材料高速超声波动式切削方法[J]. 航空学报, 2022, 43(4):52558. doi: 10.7527/j.issn.1000-6893.2022.4.hkxb202204007

    PENG Zhenlong, ZHANG Xiangyu, ZHANG Deyuan. High-speed ultrasonic vibration cutting for difficult-to-machine materials in aerospace field[J]. Acta Aeronautica et Astronautica Sinica,2022,43(4):52558(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.4.hkxb202204007
    [110] 赵波, 李鹏涛, 张存鹰, 等. 超声振动方向对TC4钛合金铣削特性的影响[J]. 航空学报, 2020, 41(2):62330.

    ZHAO Bo, LI Pengtao, ZHANG Cunying, et al. Effect of ultrasonic vibration direction on milling characteristics of TC4 titanium alloy[J]. Acta Aeronautica et Astronautica Sinica,2020,41(2):62330(in Chinese).
    [111] SADEK A, ATTIA M H, MESHREKI M, et al. Characterization and optimization of vibration-assisted drilling of fibre reinforced epoxy laminates[J]. CFRP Annals-Manufacturing Technology,2013,62(1):91-94. doi: 10.1016/j.cirp.2013.03.097
    [112] OLIVER P, EKKARD B. Tool wear analyses in low frequency vibration assisted drilling of CFRP/Ti6 Al4 V stack material[J]. Procedia CIRP,2014,14(14):142-147.
    [113] 张世杰, 焦锋, 李远霄, 等. 碳纤维复合材料/钛合金叠层结构高低频复合振动钻削试验[J]. 机械设计与研究, 2020, 36(6):120-124, 129.

    ZHANG Shijie, JIAO Feng, LI Yuanxiao, et al. Experimental study on high and low frequency compound vibration drilling of carbon fiber reinforced plastic/titanium alloy laminated structure[J]. Machine Design and Research,2020,36(6):120-124, 129(in Chinese).
    [114] 陈冒风, 张臣, 方军, 等. 振动辅助钻削对CFRP/钛合金叠层结构孔径阶差影响规律实验研究[J]. 宇航材料工艺, 2022, 52(3):88-93.

    CHEN Maofeng, ZHANG Cheng, FANG Jun, et al. Experimental study on the influence of vibration-assisted drilling on CFRP/titanium alloy laminated structures[J]. Aerospace Materials Technology,2022,52(3):88-93(in Chinese).
    [115] 谢大叶, 孙忠海, 刘标. CFRP/Ti叠层材料低频振动辅助钻削时不同参数对刀具磨损的影响[J]. 工具技术, 2021, 55(9):88-91.

    XIE Daye, SUN Zhonghai, LIU Biao. Effects of different parameters on tool wear during low frequency vibration assisted drilling of CFRP/Ti laminates[J]. Tool Technology,2021,55(9):88-91(in Chinese).
    [116] LIU Y, LI Q N, QI Z C, et al. Defect suppression mecha-nism and experimental study on longitudinal torsional coupled rotary ultrasonic assisted drilling of CFRPs[J]. Journal of Manufacturing Processes,2021,70:177-192. doi: 10.1016/j.jmapro.2021.08.042
    [117] LIU Y, PAN Z T, LI Q N, et al. Experimental and scale-span numerical investigations in conventional and longitudi-nal torsional coupled rotary ultrasonic assisted drilling of CFRPs[J]. The International Journal of Advanced Manufacturing Technology,2022,119:1707-1724. doi: 10.1007/s00170-021-08286-7
    [118] 李树健, 陈蓉, 李常平, 等. 一种超声超低温冰层支撑辅助CFRP钻削方法[J]. 复合材料学报, 2022, 39(3):1044-1054.

    LI Shujian, CHEN Rong, LI Changping, et al. A method of CFRP drilling assisted by ultrasonic, cryogenic tempera-ture and ice support[J]. Acta Materiae Compositae Sinica,2022,39(3):1044-1054(in Chinese).
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  732
  • HTML全文浏览量:  303
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-29
  • 修回日期:  2023-01-23
  • 录用日期:  2023-02-19
  • 网络出版日期:  2023-02-28
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回