留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木质素表面功能化MXene纳米片的制备及其对U(VI)的吸附性能

李仕友 乔记帅 杨宇彪 熊芷毓 王国华

李仕友, 乔记帅, 杨宇彪, 等. 木质素表面功能化MXene纳米片的制备及其对U(VI)的吸附性能[J]. 复合材料学报, 2024, 41(10): 5228-5241. doi: 10.13801/j.cnki.fhclxb.20240003.007
引用本文: 李仕友, 乔记帅, 杨宇彪, 等. 木质素表面功能化MXene纳米片的制备及其对U(VI)的吸附性能[J]. 复合材料学报, 2024, 41(10): 5228-5241. doi: 10.13801/j.cnki.fhclxb.20240003.007
LI Shiyou, QIAO Jishuai, YANG Yubiao, et al. Preparation of lignin surface-functionalized MXene nanosheets and its U(VI)adsorption properties[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5228-5241. doi: 10.13801/j.cnki.fhclxb.20240003.007
Citation: LI Shiyou, QIAO Jishuai, YANG Yubiao, et al. Preparation of lignin surface-functionalized MXene nanosheets and its U(VI)adsorption properties[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5228-5241. doi: 10.13801/j.cnki.fhclxb.20240003.007

木质素表面功能化MXene纳米片的制备及其对U(VI)的吸附性能

doi: 10.13801/j.cnki.fhclxb.20240003.007
基金项目: 湖南省自然科学基金项目(2022JJ30490);国家自然科学基金项目(51904155)
详细信息
    通讯作者:

    王国华,博士,副教授,硕士生导师,研究方向为放射性污染治理与资源化 E-mail: wghcsu@163.com

  • 中图分类号: TB333

Preparation of lignin surface-functionalized MXene nanosheets and its U(VI)adsorption properties

Funds: Natural Science Foundation of Hunan Province (2022JJ30490); National Natural Science Foundation of China (51904155)
  • 摘要: 为了进一步改善MXene纳米材料对模拟放射性废水中U(VI)的吸附性能,利用天然资源酶水解木质素(EHL)作为生物表面活性剂对MXene进行表面功能化处理,采用SEM-EDS、XRD及FTIR对改性前后的材料进行了表征分析,并在吸附实验中探究了pH、温度、反应时间、干扰离子及不同初始U(VI)浓度等因素对除U(VI)效果的影响。结果表明,EHL阻止了MXene纳米片的聚集堆叠,并且引入了大量活性官能团,提高了EHL功能化MXene纳米片的吸附性能。在MXene与EHL的质量比为1∶5、投加量为0.1 g·L−1、pH为5、温度为303 K时,对U(VI)的最大吸附容量为231.95 mg·g−1。此外,吸附动力学和等温线分析表明,拟二级动力学模型和Freundlich等温线模型能很好地拟合此吸附过程,热力学分析表明其吸附过程是自发吸热的。经历5次循环再生后,对U(VI)的去除率仍在80%以上。表征分析结果表明,MX/EHL与U(VI)之间相互作用机制包括离子交换、静电吸引以及与含氧官能团之间的络合作用。基于此研究,MX/EHL作为一种环境友好型吸附材料,对去除废水中的U(VI)具有巨大潜力。

     

  • 图  1  Ti3C2Tx (MX)/酶水解木质素(EHL)的主要制备步骤

    Figure  1.  Main preparation processes of Ti3C2Tx (MX)/enzymatically hydrolyzed lignin (EHL)

    图  2  MX ((a), (b))和MX/EHL ((c), (d))的SEM图像;MX (e)和MX/EHL (f)的EDS能谱

    Figure  2.  SEM images of MX ((a), (b)) and MX/EHL ((c), (d)); EDS patterns of MX (e) and MX/EHL (f)

    图  3  (a) MAX (Ti3AlC2)、MX和MX/EHL的XRD图谱;(b) MX和MX/EHL的N2吸脱附及孔径图

    Figure  3.  (a) XRD spectra of MAX (Ti3AlC2), MX and MX/EHL; (b) N2 adsorption-desorption and pore size of MX and MX/EHL

    STP—Standard temperature and pressure; dV/dD—Pore volume per unit pore size

    图  4  MX、EHL和MX/EHL吸附前后的FTIR图谱

    Figure  4.  FTIR spectra of MX, EHL and MX/EHL before and after adsorption

    图  5  不同配比MX/EHL吸附剂对U(VI) 的吸附效率对比

    Figure  5.  Comparison of adsorption efficiency of different ratios of MX/EHL adsorbents on U(VI)

    图  6  不同MX/EHL投加量对吸附U(VI) 的影响

    Figure  6.  Effect of different MX/EHL dosage on adsorption of U(VI)

    图  7  (a)不同pH值下U(VI) 的形态分布曲线图;(b)不同pH值对MX/EHL吸附U(VI)性能的影响

    Figure  7.  (a) Morphological distribution curves of U(VI) at different pH values; (b) Effect of different pH values on the adsorption performance of U(VI) by MX/EHL

    图  8  (a)接触时间对MX/EHL吸附U(VI)的影响;(b) 拟一级动力学;(c) 拟二级动力学;(d) 颗粒内扩散模型

    Figure  8.  (a) Effect of contact time on U(VI) adsorption by MX/EHL; (b) Pseudo-first-order; (c) Pseudo-second-order; (d) Intraparticle diffusion model

    qe—Equilibrium adsorption capacity; qt—Adsorption capacity at time t

    图  9  MX/EHL吸附U(VI)的Langmuir (a)、Freundlich (b)和Dubinin-Radushkevich (c)等温吸附模型拟合曲线;(d) lnK0与1/T的线性拟合

    Figure  9.  Fitting curve of Langmuir (a), Freundlich (b) and Dubinin-Radushkevich (c) isothermal adsorption model of U(VI) adsorption by MX/EHL; (d) Linear fit of lnK0 versus 1/T

    Ce—U(VI) concentration at adsorption equilibrium; R—Universal gas constant; T—Temperature (K); K0—Equilibrium constant at different temperatures

    图  10  不同种类竞争离子对MX/EHL吸附U(VI)的影响

    Figure  10.  Effect of different competitive ions on adsorption of U(VI) on MX/EHL

    图  11  MX/EHL吸附剂循环再生试验

    Figure  11.  MX/EHL adsorbent cycle regeneration experiment

    图  12  (a)吸附前后MX/EHL全谱图;(b) U4f图谱;((c), (d)) O1s图谱;((e), (f)) C1s图谱

    Figure  12.  (a) Full spectrum of MX/EHL before and after adsorption; (b) U4f spectrum; ((c), (d)) O1s spectrum; ((e), (f)) C1 spectrum

    表  1  MX和MX/EHL的孔隙结构参数

    Table  1.   Pore structure parameters of MX and MX/EHL

    MaterialSurface area/
    (m2·g−1)
    Pore volume/
    (cm3·g−1)
    Pore diameter/
    nm
    MX3.82970.010010.4628
    MX/EHL8.77510.045520.7320
    下载: 导出CSV

    表  2  MX/EHL对U(VI)的吸附动力学参数

    Table  2.   The adsorption kinetic parameters of U(VI) on MX/EHL

    Name of
    sample
    Pseudo-first-order Pseudo-second-order Intraparticle diffusion
    qe,exp/
    (mg·g−1)
    k1/
    min−1
    qe,cal/
    (mg·g−1)
    R2 k2/
    min−1
    qe,cal/
    (mg·g−1)
    R2 kp1/
    (mg·(g·
    min0.5)−1)
    C1 R12 kp2/
    (mg·(g·
    min0.5)−1)
    C2 R22 kp3/
    (mg·(g·
    min0.5)−1)
    C3 R32
    MX 35.22 0.017 3.487 0.882 0.021 35.51 0.999 0.688 29.782 0.973 0.406 31.266 0.989 0.015 35.029 0.804
    MX/EHL(1∶4) 46.92 0.017 2.737 0.949 0.027 47.13 0.999 0.282 43.819 0.958 0.324 43.568 0.986 0.058 46.175 0.653
    MX/EHL(1∶5) 48.24 0.018 2.502 0.930 0.030 48.43 0.999 0.338 45.002 0.981 0.303 45.243 0.994 0.035 47.794 0.615
    Notes: qe,exp—Actual adsorption capacity at adsorption equilibrium; qe,cal—Calculated adsorption capacity at adsorption equilibrium; k1 and k2—Adsorption rate constants of the pseudo-first and pseudo-second, respectively ; R2—Correlation coefficient; kp1, kp2, kp3—Adsorption rate constants of intraparticle diffusion; C1, C2, C3—Adsorption constants of intraparticle diffusion.
    下载: 导出CSV

    表  3  Langmuir、Freundlich和Dubinin‒Radushkevich吸附等温线模型的相关参数

    Table  3.   Parameters associated with Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models

    T/K Langmuir Freundlich Dubinin‒Radushkevich
    qmax/(mg·g−1) KL/(L∙mg−1) R2 KF 1/n R2 qDR E R2
    293 K 205.493 0.164 0.890 48.175 0.399 0.982 115.99 1.879 0.554
    298 K 217.057 0.221 0.925 58.802 0.378 0.989 129.09 2.077 0.607
    303 K 231.947 0.251 0.924 65.565 0.379 0.997 138.33 2.337 0.627
    Notes: qmax—Maximum adsorption capacity; KL—Langmuir adsorption equilibrium constant; KF and n—Constants that are related to the adsorption capacity and the adsorption intensity, respectively; qDR—Theoretical isotherm saturation capacity; E—Average free energy of adsorption.
    下载: 导出CSV

    表  5  不同吸附剂对U(VI)的吸附去除效果对比

    Table  5.   Comparison of adsorption and removal effects of different adsorbents on U(VI)

    Adsorbent pH T/K qmax/(mg·g−1) Ref.
    C-TC 5 308 165.43 [20]
    MXene/SA 4 298 126.82 [34]
    C-TC-CS 6 313 141.96 [36]
    PANI/Ti3C2Tx 5 298 102.80 [37]
    PAO/Ti3C2Tx 4 298 98.04 [38]
    Ti3C2-AO-PA 8.3 298 81.10 [47]
    MX/EHL 5 303 231.95 This work
    Notes: C-TC—Chloroacetic acid modified-Ti3C2Tx; MXene/SA—MXene composite sodium alginate gel microsphere; C-TC-CS—Chloroacetic acid-modified MXene-CS gel microspheres; PANI/Ti3C2Tx—Polyaniline modified MXene composites; PAO/Ti3C2Tx—Polyamidoxime functionalized MXene composite; Ti3C2-AO-PA—Polyamide enhanced amidoxime-functionalized Ti3C2 nanosheet.
    下载: 导出CSV

    表  4  MX/EHL吸附U(VI)的热力学参数

    Table  4.   Thermodynamic parameters of MX/EHL adsorption of U(VI)

    T/K lnK0 ΔG0/(kJ·mol−1) ΔH0/(kJ·mol−1) ΔS0/(J·(mol·K)−1)
    293 K 4.69 −11.43 38.89 175.26
    298 K 5.00 −12.39
    303 K 5.23 −13.18
    Notes: ΔH0—Standard enthalpy change; ΔG0—Standard free energy change; ΔS0—Standard entropy change.
    下载: 导出CSV
  • [1] YUAN D, ZHANG S, XIANG Z, et al. Highly efficient removal of uranium from aqueous solution using a magnetic adsorbent bearing phosphine oxide ligand: A combined experimental and density functional theory study[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9619-9627.
    [2] HUANG S, JIANG S, PANG H, et al. Dual functional nanocomposites of magnetic MnFe2O4 and fluorescent carbon dots for efficient U(VI) removal[J]. Chemical Engineering Journal, 2019, 368: 941-950. doi: 10.1016/j.cej.2019.03.015
    [3] HE Z, HUANG D, YUE G, et al. Ca2+ induced 3D porous MXene gel for continuous removal of phosphate and uranium[J]. Applied Surface Science, 2021, 570: 150804. doi: 10.1016/j.apsusc.2021.150804
    [4] ZHANG S, YUAN D, ZHANG Q, et al. Highly efficient removal of uranium from highly acidic media achieved using a phosphine oxide and amino functionalized superparamagnetic composite polymer adsorbent[J]. Journal of Materials Chemistry A, 2020, 8(21): 10925-10934. doi: 10.1039/D0TA01633K
    [5] ZAHERI P, DAVARKHAH R. Selective separation of uranium from sulfuric acid media using a polymer inclusion membrane containing alamine 336[J]. Chemical Papers, 2020, 74(8): 2573-2581. doi: 10.1007/s11696-019-01029-9
    [6] ORREGO P, HERNÁNDEZ J, REYES A. Uranium and molybdenum recovery from copper leaching solutions using ion exchange[J]. Hydrometallurgy, 2019, 184: 116-122. doi: 10.1016/j.hydromet.2018.12.021
    [7] CHEN J, HUANG Q, HUANG H, et al. Recent progress and advances in the environmental applications of MXene related materials[J]. Nanoscale, 2020, 12(6): 3574-3592. doi: 10.1039/C9NR08542D
    [8] YU H, WANG Y, JING Y, et al. Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage[J]. Small, 2019, 15(25): 1901503. doi: 10.1002/smll.201901503
    [9] ZHOU Z, LIU J, ZHANG X, et al. Ultrathin MXene/calcium alginate aerogel film for high performance electromagnetic interference shielding[J]. Advanced Materials Interfaces, 2019, 6(6): 1802040. doi: 10.1002/admi.201802040
    [10] SINHA A, DHANJAI, ZHAO H, et al. MXene: An emerging material for sensing and biosensing[J]. TrAC Trends in Analytical Chemistry, 2018, 105: 424-435. doi: 10.1016/j.trac.2018.05.021
    [11] ZHANG Y, WANG L, ZHANG N, et al. Adsorptive environmental applications of MXene nanomaterials: A review[J]. RSC Advances, 2018, 8(36): 19895-19905. doi: 10.1039/C8RA03077D
    [12] YING Y, LIU Y, WANG X, et al. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1795-1803. doi: 10.1021/am5074722
    [13] SHAHZAD A, RASOOL K, MIRAN W, et al. Two-dimensional Ti3C2T x MXene nanosheets for efficient copper removal from water[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11481-11488.
    [14] ZHANG P, WANG L, DU K, et al. Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets[J]. Journal of Hazardous Materials, 2020, 396: 122731. doi: 10.1016/j.jhazmat.2020.122731
    [15] ZHANG F, LI S, ZHANG Q, et al. Adsorption of different types of surfactants on graphene oxide[J]. Journal of Molecular Liquids, 2019, 276: 338-346. doi: 10.1016/j.molliq.2018.12.009
    [16] MENG Y, LU J, CHENG Y, et al. Lignin-based hydrogels: A review of preparation, properties, and application[J]. International Journal of Biological Macromolecules, 2019, 135: 1006-1019. doi: 10.1016/j.ijbiomac.2019.05.198
    [17] LUO R, ZHANG W, HU X, et al. Preparation of sodium ligninsulfonate functionalized MXene using hexach-lorocyclotriphosphazene as linkage and its adsorption applications[J]. Applied Surface Science, 2022, 602: 154197. doi: 10.1016/j.apsusc.2022.154197
    [18] WANG S, LIU Y, LYU Q F, et al. Facile preparation of biosurfactant-functionalized Ti2CT x MXene nanosheets with an enhanced adsorption performance for Pb(II) ions[J]. Journal of Molecular Liquids, 2020, 297: 111810. doi: 10.1016/j.molliq.2019.111810
    [19] ZHANG K N, WANG C Z, LU Q F, et al. Enzymatic hydrolysis lignin functionalized Ti3C2Tx nanosheets for effective removal of MB and Cu2+ ions[J]. International Journal of Biological Macromolecules, 2022, 209: 680-691.
    [20] XIE L, YAN J, LIU Z, et al. Synthesis of a two-dimensional MXene modified by chloroacetic acid and its adsorption of uranium[J]. ChemistrySelect, 2022, 7(1): e202103583. doi: 10.1002/slct.202103583
    [21] LYU Q F, LUO J J, LIN T T, et al. Novel lignin-poly(n-methylaniline) composite sorbent for silver ion removal and recovery[J]. ACS Sustainable Chemistry & Engineering, 2013, 2(3): 465-471.
    [22] HU Y, ZHUO H, LUO Q, et al. Biomass polymerassisted fabrication of aerogels from MXenes with ultrahigh com-pression elasticity and pressure sensitivity[J]. Journal of Materials Chemistry A, 2019, 7(17): 10273-10281. doi: 10.1039/C9TA01448A
    [23] SALEH T A. Carbon nanotube-incorporated alumina as a support for MoNi catalysts for the efficient hydrode-sulfurization of thiophenes[J]. Chemical Engineering Journal, 2021, 404: 126987. doi: 10.1016/j.cej.2020.126987
    [24] WANG Q M, LIU Z H, LYU Q F. Lignin modified Ti3C2T x assisted construction of functionalized interface for separation of oil/water mixture and dye wastewater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656: 130371.
    [25] DING L, WEI Y, WANG Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie International Edition, 2017, 56(7): 1825-1829. doi: 10.1002/anie.201609306
    [26] HAN R, MA X, XIE Y, et al. Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux[J]. RSC Advances, 2017, 7(89): 56204-56210. doi: 10.1039/C7RA10318B
    [27] LI S, WANG L, PENG J, et al. Efficient thorium(IV) removal by two-dimensional Ti2CT x MXene from aqueous solution[J]. Chemical Engineering Journal, 2019, 366: 192-199. doi: 10.1016/j.cej.2019.02.056
    [28] GUO Y, GONG Z, LI C, et al. Efficient removal of uranium (VI) by 3D hierarchical Mg/Fe-LDH supported nanoscale hydroxyapatite: A synthetic experimental and mechanism studies[J]. Chemical Engineering Journal, 2020, 392: 123682. doi: 10.1016/j.cej.2019.123682
    [29] DONG X, WANG Y, JIA M, et al. Sustainable and scalable insitu synthesis of hydrochar-wrapped Ti3AlC2-derived nanofibers as adsorbents to remove heavy metals[J]. Bioresource Technology, 2019, 282: 222-227. doi: 10.1016/j.biortech.2019.03.010
    [30] LEVITT A S, ALHABEB M, HATTER C B, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2019, 7(1): 269-277. doi: 10.1039/C8TA09810G
    [31] MA Z, LI S, FANG G, et al. Modification of chemical reactivity of enzymatic hydrolysis lignin by ultrasound treatment in dilute alkaline solutions[J]. International Journal of Biological Macromolecules, 2016, 93: 1279-1284.
    [32] AN L, WANG G, JIA H, et al. Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance[J]. International Journal of Biological Macromolecules, 2017, 99: 674-681. doi: 10.1016/j.ijbiomac.2017.03.015
    [33] KONG L, RUAN Y, ZHENG Q, et al. Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater[J]. Journal of Hazardous Materials, 2020, 382: 120784. doi: 10.1016/j.jhazmat.2019.120784
    [34] 李仕友, 胡俊毅, 贺俊钦, 等. MXene/SA凝胶微球的制备及对U(VI)的吸附性能[J]. 复合材料学报, 2022, 39(10): 4868-4878.

    LI Shiyou, HU Junyi, HE Junqin, et al. Preparation of MXene/SA gel microspheres and its adsorption performance for U(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4868-4878(in Chinese).
    [35] REN X, WANG S, YANG S, et al. Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2009, 283(1): 253-259.
    [36] LI S, HE J, WANG Y, et al. Adsorption characteristics of U(VI) in aqueous solution by chloroacetic acid-modified MXene-CS gel microspheres[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 674: 131983. doi: 10.1016/j.colsurfa.2023.131983
    [37] 顾鹏程, 宋爽, 张塞, 等. 聚苯胺改性Mxene复合材料对U(VI)的高效富集及机理研究[J]. 化学学报, 2018, 76(9): 701-708.

    GU Pengcheng, SONG Shuang, ZHANG Sai, et al. Enrichment of U(VI) on polyaniline modified mxene composites studied by batch experiment and mechanism investigation[J]. Acta Chimica Sinica, 2018, 76(9): 701-708(in Chinese).
    [38] ZHOU Y, HAO H X, DONG T H, et al. Efficient enrichment of U(VI) by two-dimensional layered transition metal carbide composite[J]. Radiochimica Acta, 2022, 110(5): 311-322. doi: 10.1515/ract-2021-1130
    [39] SHAHZAD A, NAWAZ M, MOZTAHIDA M, et al. Ti3C2T x MXene core-shell spheres for ultrahigh removal of mercuric ions[J]. Chemical Engineering Journal, 2019, 368: 400-408. doi: 10.1016/j.cej.2019.02.160
    [40] FENG X, YU Z, LONG R, et al. Self-assembling 2D/2D (MXene/LDH) materials achieve ultra-high adsorption of heavy metals Ni2+ through terminal group modification[J]. Separation and Purification Technology, 2020, 253: 117525. doi: 10.1016/j.seppur.2020.117525
    [41] ZAHAKIFAR F, KESHTKAR A R, TALEBI M. Performance evaluation of sodium alginate/polyvinyl alcohol/polyethylene oxide/ZSM5 zeolite hybrid adsorbent for ion uptake from aqueous solutions: A case study of thorium(IV)[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 327(1): 65-72.
    [42] WU J, ZHENG Z, ZHU K, et al. Adsorption performance and mechanism of g-C3N4/UiO-66 composite for U(VI) from aqueous solution[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(1): 469-481. doi: 10.1007/s10967-021-08116-w
    [43] WU L, LIN X, ZHOU X, et al. Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum[J]. Applied Surface Science, 2016, 384: 466-479. doi: 10.1016/j.apsusc.2016.05.056
    [44] 张鹏丽, 武莉娅, 杨宗政, 等. MXene改性材料的制备及其吸附除Sr2+性能[J]. 复合材料学报, 2023, 40(10): 5678-5691.

    ZHANG Pengli, WU Liya, YANG Zongzheng, et al. Preparation of modified MXene material and its adsorption performance for Sr2+[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5678-5691(in Chinese).
    [45] WANG L, SONG H, YUAN L, et al. Efficient U(VI) reduction and sequestration by Ti2CT x MXene[J]. Environmental Science & Technology, 2018, 52(18): 10748-10756. doi: 10.1021/acs.est.8b03711
    [46] ZHANG P, WANG L, HUANG Z, et al. Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15579-15587.
    [47] ZHANG D, LIU L, ZHAO B, et al. Highly efficient extraction of uranium from seawater by polyamide and amidoxime cofunctionalized MXene[J]. Environmental Pollution, 2023, 317: 120826. doi: 10.1016/j.envpol.2022.120826
    [48] HALIM J, COOK K M, NAGUIB M, et al. X-ray photoelectron spectroscopy of select multilayered tra-nsition metal carbides (MXenes)[J]. Applied Surface Science, 2016, 362: 406-417. doi: 10.1016/j.apsusc.2015.11.089
    [49] RETHINASABAPATHY M, HWANG S K, KANG S M, et al. Amino-functionalized POSS nanocage-intercalated titanium carbide (Ti3C2T x) MXene stacks for efficient cesium and strontium radionuclide sequestration[J]. Journal of Hazardous Materials, 2021, 418: 126315. doi: 10.1016/j.jhazmat.2021.126315
    [50] MISHRA V, SURESHKUMAR M K, GUPTA N, et al. Study on sorption characteristics of uranium onto biochar derived from eucalyptus wood[J]. Water, Air, & Soil Pollution, 2017, 228: 1-14.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  120
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-16
  • 修回日期:  2023-12-20
  • 录用日期:  2023-12-23
  • 网络出版日期:  2024-01-04
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回