Research on the burst failure analysis method of type IV cylinders based on the fiber strength reduction effect
-
摘要: 复合材料储氢气瓶是高压气态储氢最有效的解决方案,其中塑料内胆碳纤维全缠绕气瓶(Ⅳ型气瓶)是储氢气瓶发展的重要方向。精确预测Ⅳ型气瓶的爆破压力与失效方式是Ⅳ型气瓶轻量化设计的基础。目前气瓶失效预测方法多基于传统层合模型建立,未考虑螺旋缠绕过程中纤维交叉起伏形态影响。本文基于数值和实验方法,探究了纤维起伏形态对纤维拉伸强度的影响规律,进而发展了一种考虑纤维强度折减效应的Ⅳ型气瓶折减分析方法。使用该方法预测3种铺层IV气瓶的爆破压力和失效模式,并与不考虑纤维强度折减效应的传统分析方法进行对比。通过开展气瓶爆破实验,验证了考虑折减分析方法能更准确预测气瓶失效位置与形式,减小爆破压力预测误差,最大误差从+15.42%降低到+6.07%。Abstract: Composite material hydrogen storage cylinders are the most effective solution for high-pressure gaseous hydrogen storage. The carbon fiber fully wrapped plastic liner cylinder (Type IV cylinder) is the most important potential in the development of hydrogen storage. Accurately predicting the burst pressure and failure mode of Type IV cylinders is basement for the lightweight design of these cylinders. Current burst failure prediction methods are developed base on traditional laminated structural models, where the influence of fiber bundles cross undulation that occurs during the helical winding process are not considered. This paper comprehensively investigated the influence of fiber bundles cross undulation on the fiber strength by combining numerical and experimental approaches, and a failure prediction method which takes into account of the strength knock-down effect was developed for Type IV cylinders. The burst pressures and failure locations of three different types of IV cylinders were predicted and compared with the ones that predicted by traditional method which does not consider the strength knock-down effect. The physical bursting experiments were conducted, and the results validate that the numerical analysis method considering the strength knock-down effect can give more accurate prediction of the failure location and reduce the prediction error of the bursting pressure, the maximum error is reduced from +15.42% to +6.07%.
-
Key words:
- composite /
- type IV cylinder /
- cross undulation feature /
- strength reduction /
- burst failure
-
图 20 气瓶爆破失效前纤维应力云图:(a)A铺层-传统分析方法;(b)B铺层-传统分析方法;(c)C铺层-传统分析方法;(d)A铺层-折减分析方法;(e)B铺层-折减分析方法;(f)C铺层-折减分析方法
Figure 20. Fiber stress nephogram of cylinder before failure: (a) Layup A-traditional method; (b) Layup B-traditional method; (c) Layup C-traditional method; (d) Layup A-reduction modified method; (e) Layup B- reduction modified method; (f) Layup C- reduction modified method
图 21 气瓶爆破失效纤维拉伸损伤云图:(a) A铺层-传统分析方法;(b) B铺层-传统分析方法;(c) C铺层-传统分析方法;(d) A铺层-折减分析方法;(e) B铺层-折减分析方法;(f) C铺层-折减分析方法
Figure 21. Comparison of fiber tensile failure nephogram of cylinder: (a) Layup A-traditional method; (b) Layup B-traditional method; (c) Layup C-traditional method; (d) Layup A-reduction modified method; (e) Layup B- reduction modified method; (f) Layup C- reduction modified method
表 1 单向纤维束材料参数
Table 1. Material properties of unidirectional fiber bundle
Items Value Longitudinal modulus, E11/GPa 125.4 Transverse modulus, E22 =E33/GPa 7.7 In-plane shear modulus, G12=G13/GPa 3.8 Out-of-plane shear modulus, G23/GPa 4.8 Major Poisson's ratio, μ12 = μ13 0.33 Through-thickness Poisson's ratio, υ23 0.35 Longitudinal tensile strength, XT/GPa 2.18 Longitudinal compressive strength, XC/GPa 1.2 Transverse tensile strength, YT/MPa 60 Transverse compressive strength, YC/MPa 140 Density of laminate, ρ/(kg·m−3) 1600 Tensile fracture energy of fiber, Gft/(N·mm−1) 133 Compressive fracture energy of fiber, Gfc/(N·mm−1) 40 Tensile fracture energy of matrix, Gmt/(N·mm−1) 0.6 Compressive fracture energy of matrix,Gmc/(N·mm−1) 2.1 Elastic modulus of resin, E/GPa 3.0 Density of resin, ρr/(kg·m−3) 1200 Poisson's ratio of resin, μ 0.3 表 2 IV型气瓶材料力学性能参数
Table 2. Type IV cylinder material mechanical parameters
Items Value Longitudinal modulus, E11/GPa 154 Transverse modulus, E22 =E33/GPa 11.4 In-plane shear modulus, G12=G13/GPa 4.8 Out-of-plane shear modulus, G23/GPa 3.8 Major Poisson's ratio, μ12 = μ13 0.3 Through-thickness Poisson's ratio, υ23 0.33 Longitudinal tensile strength, XT/GPa 2.5 Longitudinal compressive strength, XC/GPa 1.2 Transverse tensile strength, YT/MPa 70 Transverse compressive strength, YC/MPa 180 Density of laminate, ρ/(kg·m−3) 1600 Tensile fracture energy of fiber, Gft/(N·mm−1) 133 Compressive fracture energy of fiber, Gfc/(N·mm−1) 40 Tensile fracture energy of matrix, Gmt/(N·mm−1) 0.6 Compressive fracture energy of matrix,Gmc/(N·mm−1) 2.1 Elastic modulus of HDPE, E/GPa 1.1 Poisson's ratio of HDPE, μ 0.38 Yield strength of HDPE, σs/MPa 22.9 Ultimate strength of HDPE, σb/MPa 25 Fracture elongation of HDPE, δ/% >600 Elastic modulus of BOSS, E/GPa 69 Poisson's ratio of BOSS, μ 0.324 Yield strength of BOSS, σs/MPa 298 Ultimate strength of BOSS, σb/MPa 330 Fracture elongation of BOSS, δ/% 12 表 3 气瓶爆破失效结果对比
Table 3. Comparison of burst failure results of cylinders
Number Method Pressure/MPa Burst location Error A Test 62.86 Transition region − Traditional method 68.00 Cylinder body +8.18% Reduction modified method 59.60 Transition region −5.19% B Test 49.21 BOSS − Traditional method 56.80 BOSS +15.42% Reduction modified method 52.20 BOSS +6.07% C Test 52.95 Cylinder body − Traditional method 56.40 Cylinder body +6.52% Reduction modified method 56.40 Cylinder body +6.52% -
[1] SORRENTINO L, ANAMATEROS E, BELLINI C, et al. Robotic filament winding: An innovative technology to manufacture complex shape structural parts[J]. Composite Structures, 2019, 220: 699-707. doi: 10.1016/j.compstruct.2019.04.055 [2] FU J, YUN J, JUNG Y, et al. Generation of filament-winding paths for complex axisymmetric shapes based on the principal stress field[J]. Composite Structures, 2017, 161: 330-9. doi: 10.1016/j.compstruct.2016.11.022 [3] QUANJIN M, REJAB M R M, KAIGE J, et al. Filament winding technique, experiment and simulation analysis on tubular structure[C]//IOP conference series: materials science and engineering. IOP Publishing, 2018, 342(1): 012029. [4] AIR A, SHAMSUDDOHA M, GANGADHARA PRUSTY B. A review of Type V composite pressure vessels and automated fibre placement based manufacturing[J]. Composites Part B: Engineering, 2023, 253. [5] AZEEM M, YA H H, ALAM M A, et al. Application of Filament Winding Technology in Composite Pressure Vessels and Challenges: A Review[J]. Journal of Energy Storage, 2022, 49. [6] ZHENG J, LIU P. Elasto-plastic stress analysis and burst strength evaluation of Al-carbon fiber/epoxy composite cylindrical laminates[J]. Computational Materials Science, 2008, 42(3): 453-61. doi: 10.1016/j.commatsci.2007.09.011 [7] DATTA M, PIYALI H. Influence of winding angle on the physical properties of filament wound composite pipe[C]//The 3rd National Conference on Emerging Trends in Textile, Fibre and Apparel Engineering, GCETTB, Berhampore. 2016. [8] XU P, ZHENG J Y, LIU P F. Finite element analysis of burst pressure of composite hydrogen storage vessels[J]. Materials & Design, 2009, 30(7): 2295-301. [9] ZU L, KOUSSIOS S, BEUKERS A. Design of filament-wound isotensoid pressure vessels with unequal polar openings[J]. Composite Structures, 2010, 92(9): 2307-13. doi: 10.1016/j.compstruct.2009.07.013 [10] GUO K, WEN L, XIAO J, et al. Design of winding pattern of filament-wound composite pressure vessel with unequal openings based on non-geodesics[J]. Journal of Engineered Fibers and Fabrics, 2020, 15. [11] HU Z, CHEN M, ZU L, et al. Investigation on failure behaviors of 70 MPa Type IV carbon fiber overwound hydrogen storage vessels[J]. Composite Structures, 2021, 259. [12] LIN S, YANG L, XU H, et al. Progressive damage analysis for multiscale modelling of composite pressure vessels based on Puck failure criterion[J]. Composite Structures, 2021, 255. [13] ZHANG Q, XU H, JIA X, et al. Design of a 70 MPa type IV hydrogen storage vessel using accurate modeling techniques for dome thickness prediction[J]. Composite Structures, 2020, 236. [14] DAGHIGHI S, WEAVER P M. Three-dimensional effects influencing failure in bend-free, variable stiffness composite pressure vessels[J]. Composite Structures, 2021, 262. [15] WANG L, ZHENG C, LUO H, et al. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel[J]. Composite Structures, 2015, 134: 475-82. doi: 10.1016/j.compstruct.2015.08.107 [16] NAIK N, SHEMBEKAR P. Elastic behavior of woven fabric composites: I—Lamina analysis[J]. Journal of composite materials, 1992, 26(15): 2196-225. doi: 10.1177/002199839202601502 [17] GUO Z, LI Z, CUI J, et al. The effect of winding patterns on the mechanical behavior of filament-wound cylinder shells[J]. Multidiscipline Modeling in Materials and Structures, 2019, 16(3): 508-18. doi: 10.1108/MMMS-03-2019-0059 [18] YIN D, LI Z. Theoretical analysis for the axial tensile response of the mesoscopic model for filament-wound composites[C]//Journal of Physics: Conference Series. IOP Publishing, 2023, 2478(4): 042002. [19] SHEN C, HAN X. Meso-scale model for calculating the stiffness of filament wound composites considering fiber undulations[J]. Structural Engineering and Mechanics, An Int'l Journal, 2017, 62(3): 273-9. doi: 10.12989/sem.2017.62.3.273 [20] HENRY T C, BAKIS C E, SMITH E C. Determination of Effective Ply-level Properties of Filament Wound Composite Tubes Loaded in Compression[J]. Journal of Testing and Evaluation, 2015, 43(1): 96-107. doi: 10.1520/JTE20130159 [21] CHANG Y, WEN W, XU Y, et al. Quasi-static mechanical behavior of filament wound composite thin-walled tubes: Tension, torsion, and multi-axial loading[J]. Thin-Walled Structures, 2022, 177. [22] CHANG Y, ZHOU Y, WANG N, et al. Micro-mechanical damage simulation of filament-wound composite with various winding angle under multi-axial loading[J]. Composite Structures, 2023, 313. [23] HAMEED MIAN H, RAHMAN H. Influence of mosaic patterns on the structural integrity of filament wound composite pressure vessels[J]. International Journal of Structural Integrity, 2011, 2(3): 345-56. doi: 10.1108/17579861111162932 [24] ARELLANO M T, CROUZEIX L, DOUCHIN B, et al. Strain field measurement of filament-wound composites at±55 using digital image correlation: an approach for unit cells employing flat specimens[J]. Composite Structures, 2010, 92(10): 2457-64. doi: 10.1016/j.compstruct.2010.02.014 [25] 肖磊, 胡海晓, 曹东风, 等. 考虑纤维缠绕形态的复合材料结构拉伸承载行为[J]. 复合材料学报, 2023, 40(2): 12.XIAO L, HU H X, CAO D F, et al. Tensile bear-ing behavior of composite structures considering filament wound morphology[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 12 (in Chinese). [26] ZHOU W, WANG J, PAN Z-B, et al. Review on optimization design, failure analysis and non-destructive testing of composite hydrogen storage vessel[J]. International Journal of Hydrogen Energy, 2022, 47(91): 38862-83. doi: 10.1016/j.ijhydene.2022.09.028 [27] ONDER A, SAYMAN O, DOGAN T, et al. Burst failure load of composite pressure vessels[J]. Composite Structures, 2009, 89(1): 159-66. doi: 10.1016/j.compstruct.2008.06.021 [28] LEH D, MAGNEVILLE B, SAFFRé P, et al. Optimisation of 700 bar type IV hydrogen pressure vessel considering composite damage and dome multi-sequencing[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13215-30. doi: 10.1016/j.ijhydene.2015.06.156 [29] ZHANG M, LV H, KANG H, et al. A literature review of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks[J]. International Journal of Hydrogen Energy, 2019, 44(47): 25777-99. doi: 10.1016/j.ijhydene.2019.08.001 [30] HAN M-G, CHANG S-H. Evaluation of structural integrity of Type-III hydrogen pressure vessel under low-velocity car-to-car collision using finite element analysis[J]. Composite Structures, 2016, 148: 198-206. doi: 10.1016/j.compstruct.2016.03.060 [31] JEBELI M A, HEIDARI-RARANI M. Development of Abaqus WCM plugin for progressive failure analysis of type IV composite pressure vessels based on Puck failure criterion[J]. Engineering Failure Analysis, 2022, 131: 105851. doi: 10.1016/j.engfailanal.2021.105851 [32] ALAM S, YANDEK G R, LEE R C, et al. Design and development of a filament wound composite overwrapped pressure vessel[J]. Composites Part C: Open Access, 2020, 2. [33] SHARMA P, BUROLIA A K, ADAK N C, et al. Effect of tension on liner buckling and performance of a type-4 cylinder for storage of compressed gases with experimental validation[J]. Thin-Walled Structures, 2023, 189: 110928. doi: 10.1016/j.tws.2023.110928 [34] WU Q G, CHEN X D, FAN Z C, et al. Stress and Damage Analyses of Composite Overwrapped Pressure Vessel[J]. Procedia Engineering, 2015, 130: 32-40. doi: 10.1016/j.proeng.2015.12.171 [35] LEH D, SAFFRé P, FRANCESCATO P, et al. A progressive failure analysis of a 700-bar type IV hydrogen composite pressure vessel[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13206-14. doi: 10.1016/j.ijhydene.2015.05.061 [36] VELOSA J C, NUNES J P, ANTUNES P J, et al. Development of a new generation of filament wound composite pressure cylinders[J]. Composites Science and Technology, 2009, 69(9): 1348-53. doi: 10.1016/j.compscitech.2008.09.018 [37] ATUL S T, BHAT S S, CHAVAN S S, et al. Finite element analysis of composite overwrapped pressure vessel for hydrogen storage[C]//2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 2016: 430-436. [38] ANTUNES P J, DIAS G R, NUNES J P, et al. Finite Element Modelling of Thermoplastic Matrix Composite Gas Cylinders[J]. Journal of Thermoplastic Composite Materials, 2008, 21(5): 411-41. doi: 10.1177/0892705708089484 [39] HONG J-H, HAN M-G, CHANG S-H. Safety evaluation of 70 MPa-capacity type III hydrogen pressure vessel considering material degradation of composites due to temperature rise[J]. Composite Structures, 2014, 113: 127-33. doi: 10.1016/j.compstruct.2014.03.008 [40] RAMIREZ J P B, HALM D, GRANDIDIER J-C, et al. A fixed directions damage model for composite materials dedicated to hyperbaric type IV hydrogen storage vessel–Part II: Validation on notched structures[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13174-82. doi: 10.1016/j.ijhydene.2015.06.014 [41] BOUVIER M, GUIHENEUF V, JEAN-MARIE A. Modeling and simulation of a composite high-pressure vessel made of sustainable and renewable alternative fibers[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11970-8. doi: 10.1016/j.ijhydene.2019.03.088 [42] LIAO B, JIA L. Finite element analysis of dynamic responses of composite pressure vessels under low velocity impact by using a three-dimensional laminated media model[J]. Thin-walled structures, 2018, 129: 488-501. doi: 10.1016/j.tws.2018.04.023 [43] HU Z, CHEN M, PAN B. Simulation and burst validation of 70 MPa type IV hydrogen storage vessel with dome reinforcement[J]. International Journal of Hydrogen Energy, 2021, 46(46): 23779-94. doi: 10.1016/j.ijhydene.2021.04.186 [44] BERRO RAMIREZ J P, HALM D, GRANDIDIER J-C, et al. 700 bar type IV high pressure hydrogen storage vessel burst – Simulation and experimental validation[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13183-92. doi: 10.1016/j.ijhydene.2015.05.126 [45] ASTM D3039/D3039M-17: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials: [S]. West Conshohocken, PA: ASTM International, 2017. [46] ASTM D6641/D6641M-16: Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture: [S]. West Conshohocken, PA: ASTM International, 2016. [47] ASTM D3518/D3518M-18: Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate: [S]. West Conshohocken, PA: ASTM International, 2018. [48] ASTM D5528/D5528M-13: Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites: [S]. West Conshohocken, PA: ASTM International, 2013. [49] ASTM D7905/D7905M-19: Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites: [S]. West Conshohocken, PA: ASTM International, 2019. [50] WANG X, WANG Y, JI Y, et al. Modeling Progressive Damage and Failure of Single-Lap Thin-Ply-Laminated Composite-Bolted Joint Using LaRC Failure Criterion[J]. Materials (Basel), 2022, 15(22): 8123. doi: 10.3390/ma15228123 [51] 肖磊. 计及纤维交叉起伏影响的复合材料缠绕气瓶爆破失效分析 [D]. 武汉: 武汉理工大学, 2022.Xiao L. Burst failure analysis of composite wound cylinder considering the influence of fiber crossover and undulation [D]. Wuhan: Wuhan University of Technology, 2022 (in Chinese). [52] 张杰, 蒋文杰, 杨锐, et al. 70 MPa碳纤维缠绕储氢气瓶结构设计与力学性能研究[J]. 压力容器, 2023, 40(3): 28-37. doi: 10.3969/j.issn.1001-4837.2023.03.005Zhang J, JIANG W J, YANG R, et al. Study on structural design and mechanical properties of 70 MPa carbon fiber wound hydrogen storage cylinder[J]. Pressure Vessel Technology, 2023, 40(3): 28-37 (in Chinese). doi: 10.3969/j.issn.1001-4837.2023.03.005 [53] 查燕. Ⅳ型储氢瓶塑料内胆坍塌失稳机理数值仿真研究 [D]. 北京: 北京化工大学, 2022.Cha Y. Numerical simulation research on the collapse and instability mechanism of the plastic liner of type IV hydrogen storage vessel [D]. Beijing: Beijing University of Chemical Technology, 2022 (in Chinese). [54] 中国国家标准化管理委员会. 水压爆破试验方法: GB/T 15385-2022 [S]. 北京: 中国标准出版社, 2022.Standardization Administration of the People’s Republic of China. Method for hydraulic burst test of gas cylinder: GB/T 15385-2022 [S]. Beijing: China Standards Press, 2022(in Chinese).
计量
- 文章访问数: 15
- HTML全文浏览量: 12
- 被引次数: 0