留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纤维强度折减效应的Ⅳ型气瓶爆破失效分析方法研究

李瑞奇 胡海晓 李书欣 陈宏达 曹东风 刘昊 郑凯东 张宇 刘锐

李瑞奇, 胡海晓, 李书欣, 等. 基于纤维强度折减效应的Ⅳ型气瓶爆破失效分析方法研究[J]. 复合材料学报, 2024, 42(0): 1-16.
引用本文: 李瑞奇, 胡海晓, 李书欣, 等. 基于纤维强度折减效应的Ⅳ型气瓶爆破失效分析方法研究[J]. 复合材料学报, 2024, 42(0): 1-16.
LI Ruiqi, HU Haixiao, LI Shuxin, et al. Research on the burst failure analysis method of type IV cylinders based on the fiber strength reduction effect[J]. Acta Materiae Compositae Sinica.
Citation: LI Ruiqi, HU Haixiao, LI Shuxin, et al. Research on the burst failure analysis method of type IV cylinders based on the fiber strength reduction effect[J]. Acta Materiae Compositae Sinica.

基于纤维强度折减效应的Ⅳ型气瓶爆破失效分析方法研究

基金项目: 国家自然科学基金(52273080);2023年湖北省重大攻关项目(JD2023BAA028);湖北省自然科学基金(20231j0223)
详细信息
    通讯作者:

    胡海晓,博士,副教授,硕士生导师,研究方向为缠绕复合材料结构设计与监测 E-mail: yiming9008@126.com

    李书欣,博士,教授,博士生导师,研究方向为复合材料材料-工艺-结构一体化应用 E-mail: lishuxin@whut.edu.cn

  • 中图分类号: TB332;TB122

Research on the burst failure analysis method of type IV cylinders based on the fiber strength reduction effect

Funds: National Natural Science Foundation of China (52273080); Major research projects in Hubei Province in 2023 (JD2023BAA028); Natural Science Foundation of Hubei Province (20231j0223)
  • 摘要: 复合材料储氢气瓶是高压气态储氢最有效的解决方案,其中塑料内胆碳纤维全缠绕气瓶(Ⅳ型气瓶)是储氢气瓶发展的重要方向。精确预测Ⅳ型气瓶的爆破压力与失效方式是Ⅳ型气瓶轻量化设计的基础。目前气瓶失效预测方法多基于传统层合模型建立,未考虑螺旋缠绕过程中纤维交叉起伏形态影响。本文基于数值和实验方法,探究了纤维起伏形态对纤维拉伸强度的影响规律,进而发展了一种考虑纤维强度折减效应的Ⅳ型气瓶折减分析方法。使用该方法预测3种铺层IV气瓶的爆破压力和失效模式,并与不考虑纤维强度折减效应的传统分析方法进行对比。通过开展气瓶爆破实验,验证了考虑折减分析方法能更准确预测气瓶失效位置与形式,减小爆破压力预测误差,最大误差从+15.42%降低到+6.07%。

     

  • 图  1  纤维缠绕图案特征单元

    Figure  1.  Schematic diagram of fiber winding pattern

    图  2  固化成型和拉伸试样

    Figure  2.  Curing process and tensile specimens

    图  3  实验装置和加载方式

    Figure  3.  Experimental equipment and loading apparatus

    图  4  起伏角度随缠绕角度变化:(a)单层纤维的起伏形态;(b)2层纤维的起伏形态;(c)单层纤维变化规律;(d)2层纤维变化规律

    Figure  4.  Variations of undulation angle with the winding angle: (a) Undulation feature of single layer; (b) Undulation feature of 2 layer; (c) Variation curve of single layer; (d) Variation curve of 2 layer

    图  5  SLC平板模型和加载条件

    Figure  5.  Model of SLC plate and its loading conditions

    图  6  FWC平板中纤维交叉起伏形态:(a)实验观测截面图;(b)建模示意图

    Figure  6.  Undulation of fiber bundle in FWC plate: (a) Experimental image; (b) Modeling image

    图  7  不同缠绕角度FWC平板模型:(a)±10°;(b)±20°; (c)±30°;(d)±40°

    Figure  7.  FE models of FWC plates with different winding angles: (a) ±10°; (b) ±20°; (c) ±30°; (d) ±40°

    图  8  FWC平板和SLC平板的位移-载荷试验曲线:(a)±10°;(b)±20°;(c)±30°;(d)±40°

    Figure  8.  Experimental displacement-load curves of FWC and SLC plate specimens: (a) ±10°; (b) ±20°; (c) ±30°; (d) ±40°

    图  9  FWC平板和SLC平板长度方向DIC监测应变结果:(a)±10°;(b)±20°;(c)±30°;(d)±40°

    Figure  9.  Distribution of vertical strain of FWC and SLC plates monitored by DIC: (a) ±10°; (b) ±20°; (c) ±30°; (d) ±40°

    图  10  FWC平板和SLC平板长度方向仿真应变结果:(a)±10°;(b)±20°;(c)±30°;(d)±40°

    Figure  10.  Numerical predicted distribution of vertical strain fields of FWC and SLC plates: (a) ±10°; (b) ±20°; (c) ±30°; (d) ±40°

    图  11  仿真和实验位移-载荷曲线和FWC平板纤维拉伸失效演化:(a)±10°;(b)±20°;(c)±30°;(d)±40°

    Figure  11.  Simulation and experimental displacement-load curves and the evolution of fiber tensile failure in FWC plate: (a) ±10°; (b) ±20°; (c) ±30°; (d) ±40°

    图  12  4000 N载荷下FWC平板+α层云图:(a)拉伸方向应变;(b)纤维方向应力

    Figure  12.  FWC plate +α layer nephogram under 4000 N: (a) Strain in the tensile direction; (b) Stress in the fiber direction

    图  13  仿真预测的FWC平板和SLC平板拉伸失效载荷对比:(a)单层厚度;(b)双层厚度

    Figure  13.  Comparison of tensile failure loads of FWC and SLC plates predicted by FEA: (a) 1-layer thickness; (b) 2-layers thickness

    图  14  纤维强度折减系数随厚度和缠绕角度变化

    Figure  14.  Variation of strength reduction factors with winding angle and thickness

    图  15  基于纤维强度折减效应的气瓶数值分析框架

    Figure  15.  Numerical analysis framework for cylinders based on the effect of strength reduction effect

    图  16  9 L-IV型内胆尺寸

    Figure  16.  Dimensions of the 9 L-IV type liner

    图  17  IV型气瓶模型:(a)整体模型和载荷;(b)封头;(c)过渡区域

    Figure  17.  Type IV cylinder model: (a) Global model and loading; (b) Dome; (c) Transition region

    图  18  IV型气瓶制造

    Figure  18.  Type IV cylinder manufacturing

    图  19  气瓶水压实验及爆破失效形式:(a)试验装置;(b)A铺层;(c)B铺层;(d)C铺层

    Figure  19.  Pressure test and burst modes of type IV cylinders: (a) Burst test setup; (b) Layup-A; (c) Layup-B; (d) Layup-C

    图  20  气瓶爆破失效前纤维应力云图:(a)A铺层-传统分析方法;(b)B铺层-传统分析方法;(c)C铺层-传统分析方法;(d)A铺层-折减分析方法;(e)B铺层-折减分析方法;(f)C铺层-折减分析方法

    Figure  20.  Fiber stress nephogram of cylinder before failure: (a) Layup A-traditional method; (b) Layup B-traditional method; (c) Layup C-traditional method; (d) Layup A-reduction modified method; (e) Layup B- reduction modified method; (f) Layup C- reduction modified method

    图  21  气瓶爆破失效纤维拉伸损伤云图:(a) A铺层-传统分析方法;(b) B铺层-传统分析方法;(c) C铺层-传统分析方法;(d) A铺层-折减分析方法;(e) B铺层-折减分析方法;(f) C铺层-折减分析方法

    Figure  21.  Comparison of fiber tensile failure nephogram of cylinder: (a) Layup A-traditional method; (b) Layup B-traditional method; (c) Layup C-traditional method; (d) Layup A-reduction modified method; (e) Layup B- reduction modified method; (f) Layup C- reduction modified method

    表  1  单向纤维束材料参数

    Table  1.   Material properties of unidirectional fiber bundle

    ItemsValue
    Longitudinal modulus, E11/GPa125.4
    Transverse modulus, E22 =E33/GPa7.7
    In-plane shear modulus, G12=G13/GPa3.8
    Out-of-plane shear modulus, G23/GPa4.8
    Major Poisson's ratio, μ12 = μ130.33
    Through-thickness Poisson's ratio, υ230.35
    Longitudinal tensile strength, XT/GPa2.18
    Longitudinal compressive strength, XC/GPa1.2
    Transverse tensile strength, YT/MPa60
    Transverse compressive strength, YC/MPa140
    Density of laminate, ρ/(kg·m−3)1600
    Tensile fracture energy of fiber, Gft/(N·mm−1)133
    Compressive fracture energy of fiber, Gfc/(N·mm−1)40
    Tensile fracture energy of matrix, Gmt/(N·mm−1)0.6
    Compressive fracture energy of matrix,Gmc/(N·mm−1)2.1
    Elastic modulus of resin, E/GPa3.0
    Density of resin, ρr/(kg·m−3)1200
    Poisson's ratio of resin, μ0.3
    下载: 导出CSV

    表  2  IV型气瓶材料力学性能参数

    Table  2.   Type IV cylinder material mechanical parameters

    ItemsValue
    Longitudinal modulus, E11/GPa154
    Transverse modulus, E22 =E33/GPa11.4
    In-plane shear modulus, G12=G13/GPa4.8
    Out-of-plane shear modulus, G23/GPa3.8
    Major Poisson's ratio, μ12 = μ130.3
    Through-thickness Poisson's ratio, υ230.33
    Longitudinal tensile strength, XT/GPa2.5
    Longitudinal compressive strength, XC/GPa1.2
    Transverse tensile strength, YT/MPa70
    Transverse compressive strength, YC/MPa180
    Density of laminate, ρ/(kg·m−3)1600
    Tensile fracture energy of fiber, Gft/(N·mm−1)133
    Compressive fracture energy of fiber, Gfc/(N·mm−1)40
    Tensile fracture energy of matrix, Gmt/(N·mm−1)0.6
    Compressive fracture energy of matrix,Gmc/(N·mm−1)2.1
    Elastic modulus of HDPE, E/GPa1.1
    Poisson's ratio of HDPE, μ0.38
    Yield strength of HDPE, σs/MPa22.9
    Ultimate strength of HDPE, σb/MPa25
    Fracture elongation of HDPE, δ/%>600
    Elastic modulus of BOSS, E/GPa69
    Poisson's ratio of BOSS, μ0.324
    Yield strength of BOSS, σs/MPa298
    Ultimate strength of BOSS, σb/MPa330
    Fracture elongation of BOSS, δ/%12
    下载: 导出CSV

    表  3  气瓶爆破失效结果对比

    Table  3.   Comparison of burst failure results of cylinders

    Number Method Pressure/MPa Burst location Error
    A Test 62.86 Transition region
    Traditional method 68.00 Cylinder body +8.18%
    Reduction modified method 59.60 Transition region −5.19%
    B Test 49.21 BOSS
    Traditional method 56.80 BOSS +15.42%
    Reduction modified method 52.20 BOSS +6.07%
    C Test 52.95 Cylinder body
    Traditional method 56.40 Cylinder body +6.52%
    Reduction modified method 56.40 Cylinder body +6.52%
    下载: 导出CSV
  • [1] SORRENTINO L, ANAMATEROS E, BELLINI C, et al. Robotic filament winding: An innovative technology to manufacture complex shape structural parts[J]. Composite Structures, 2019, 220: 699-707. doi: 10.1016/j.compstruct.2019.04.055
    [2] FU J, YUN J, JUNG Y, et al. Generation of filament-winding paths for complex axisymmetric shapes based on the principal stress field[J]. Composite Structures, 2017, 161: 330-9. doi: 10.1016/j.compstruct.2016.11.022
    [3] QUANJIN M, REJAB M R M, KAIGE J, et al. Filament winding technique, experiment and simulation analysis on tubular structure[C]//IOP conference series: materials science and engineering. IOP Publishing, 2018, 342(1): 012029.
    [4] AIR A, SHAMSUDDOHA M, GANGADHARA PRUSTY B. A review of Type V composite pressure vessels and automated fibre placement based manufacturing[J]. Composites Part B: Engineering, 2023, 253.
    [5] AZEEM M, YA H H, ALAM M A, et al. Application of Filament Winding Technology in Composite Pressure Vessels and Challenges: A Review[J]. Journal of Energy Storage, 2022, 49.
    [6] ZHENG J, LIU P. Elasto-plastic stress analysis and burst strength evaluation of Al-carbon fiber/epoxy composite cylindrical laminates[J]. Computational Materials Science, 2008, 42(3): 453-61. doi: 10.1016/j.commatsci.2007.09.011
    [7] DATTA M, PIYALI H. Influence of winding angle on the physical properties of filament wound composite pipe[C]//The 3rd National Conference on Emerging Trends in Textile, Fibre and Apparel Engineering, GCETTB, Berhampore. 2016.
    [8] XU P, ZHENG J Y, LIU P F. Finite element analysis of burst pressure of composite hydrogen storage vessels[J]. Materials & Design, 2009, 30(7): 2295-301.
    [9] ZU L, KOUSSIOS S, BEUKERS A. Design of filament-wound isotensoid pressure vessels with unequal polar openings[J]. Composite Structures, 2010, 92(9): 2307-13. doi: 10.1016/j.compstruct.2009.07.013
    [10] GUO K, WEN L, XIAO J, et al. Design of winding pattern of filament-wound composite pressure vessel with unequal openings based on non-geodesics[J]. Journal of Engineered Fibers and Fabrics, 2020, 15.
    [11] HU Z, CHEN M, ZU L, et al. Investigation on failure behaviors of 70 MPa Type IV carbon fiber overwound hydrogen storage vessels[J]. Composite Structures, 2021, 259.
    [12] LIN S, YANG L, XU H, et al. Progressive damage analysis for multiscale modelling of composite pressure vessels based on Puck failure criterion[J]. Composite Structures, 2021, 255.
    [13] ZHANG Q, XU H, JIA X, et al. Design of a 70 MPa type IV hydrogen storage vessel using accurate modeling techniques for dome thickness prediction[J]. Composite Structures, 2020, 236.
    [14] DAGHIGHI S, WEAVER P M. Three-dimensional effects influencing failure in bend-free, variable stiffness composite pressure vessels[J]. Composite Structures, 2021, 262.
    [15] WANG L, ZHENG C, LUO H, et al. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel[J]. Composite Structures, 2015, 134: 475-82. doi: 10.1016/j.compstruct.2015.08.107
    [16] NAIK N, SHEMBEKAR P. Elastic behavior of woven fabric composites: I—Lamina analysis[J]. Journal of composite materials, 1992, 26(15): 2196-225. doi: 10.1177/002199839202601502
    [17] GUO Z, LI Z, CUI J, et al. The effect of winding patterns on the mechanical behavior of filament-wound cylinder shells[J]. Multidiscipline Modeling in Materials and Structures, 2019, 16(3): 508-18. doi: 10.1108/MMMS-03-2019-0059
    [18] YIN D, LI Z. Theoretical analysis for the axial tensile response of the mesoscopic model for filament-wound composites[C]//Journal of Physics: Conference Series. IOP Publishing, 2023, 2478(4): 042002.
    [19] SHEN C, HAN X. Meso-scale model for calculating the stiffness of filament wound composites considering fiber undulations[J]. Structural Engineering and Mechanics, An Int'l Journal, 2017, 62(3): 273-9. doi: 10.12989/sem.2017.62.3.273
    [20] HENRY T C, BAKIS C E, SMITH E C. Determination of Effective Ply-level Properties of Filament Wound Composite Tubes Loaded in Compression[J]. Journal of Testing and Evaluation, 2015, 43(1): 96-107. doi: 10.1520/JTE20130159
    [21] CHANG Y, WEN W, XU Y, et al. Quasi-static mechanical behavior of filament wound composite thin-walled tubes: Tension, torsion, and multi-axial loading[J]. Thin-Walled Structures, 2022, 177.
    [22] CHANG Y, ZHOU Y, WANG N, et al. Micro-mechanical damage simulation of filament-wound composite with various winding angle under multi-axial loading[J]. Composite Structures, 2023, 313.
    [23] HAMEED MIAN H, RAHMAN H. Influence of mosaic patterns on the structural integrity of filament wound composite pressure vessels[J]. International Journal of Structural Integrity, 2011, 2(3): 345-56. doi: 10.1108/17579861111162932
    [24] ARELLANO M T, CROUZEIX L, DOUCHIN B, et al. Strain field measurement of filament-wound composites at±55 using digital image correlation: an approach for unit cells employing flat specimens[J]. Composite Structures, 2010, 92(10): 2457-64. doi: 10.1016/j.compstruct.2010.02.014
    [25] 肖磊, 胡海晓, 曹东风, 等. 考虑纤维缠绕形态的复合材料结构拉伸承载行为[J]. 复合材料学报, 2023, 40(2): 12.

    XIAO L, HU H X, CAO D F, et al. Tensile bear-ing behavior of composite structures considering filament wound morphology[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 12 (in Chinese).
    [26] ZHOU W, WANG J, PAN Z-B, et al. Review on optimization design, failure analysis and non-destructive testing of composite hydrogen storage vessel[J]. International Journal of Hydrogen Energy, 2022, 47(91): 38862-83. doi: 10.1016/j.ijhydene.2022.09.028
    [27] ONDER A, SAYMAN O, DOGAN T, et al. Burst failure load of composite pressure vessels[J]. Composite Structures, 2009, 89(1): 159-66. doi: 10.1016/j.compstruct.2008.06.021
    [28] LEH D, MAGNEVILLE B, SAFFRé P, et al. Optimisation of 700 bar type IV hydrogen pressure vessel considering composite damage and dome multi-sequencing[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13215-30. doi: 10.1016/j.ijhydene.2015.06.156
    [29] ZHANG M, LV H, KANG H, et al. A literature review of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks[J]. International Journal of Hydrogen Energy, 2019, 44(47): 25777-99. doi: 10.1016/j.ijhydene.2019.08.001
    [30] HAN M-G, CHANG S-H. Evaluation of structural integrity of Type-III hydrogen pressure vessel under low-velocity car-to-car collision using finite element analysis[J]. Composite Structures, 2016, 148: 198-206. doi: 10.1016/j.compstruct.2016.03.060
    [31] JEBELI M A, HEIDARI-RARANI M. Development of Abaqus WCM plugin for progressive failure analysis of type IV composite pressure vessels based on Puck failure criterion[J]. Engineering Failure Analysis, 2022, 131: 105851. doi: 10.1016/j.engfailanal.2021.105851
    [32] ALAM S, YANDEK G R, LEE R C, et al. Design and development of a filament wound composite overwrapped pressure vessel[J]. Composites Part C: Open Access, 2020, 2.
    [33] SHARMA P, BUROLIA A K, ADAK N C, et al. Effect of tension on liner buckling and performance of a type-4 cylinder for storage of compressed gases with experimental validation[J]. Thin-Walled Structures, 2023, 189: 110928. doi: 10.1016/j.tws.2023.110928
    [34] WU Q G, CHEN X D, FAN Z C, et al. Stress and Damage Analyses of Composite Overwrapped Pressure Vessel[J]. Procedia Engineering, 2015, 130: 32-40. doi: 10.1016/j.proeng.2015.12.171
    [35] LEH D, SAFFRé P, FRANCESCATO P, et al. A progressive failure analysis of a 700-bar type IV hydrogen composite pressure vessel[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13206-14. doi: 10.1016/j.ijhydene.2015.05.061
    [36] VELOSA J C, NUNES J P, ANTUNES P J, et al. Development of a new generation of filament wound composite pressure cylinders[J]. Composites Science and Technology, 2009, 69(9): 1348-53. doi: 10.1016/j.compscitech.2008.09.018
    [37] ATUL S T, BHAT S S, CHAVAN S S, et al. Finite element analysis of composite overwrapped pressure vessel for hydrogen storage[C]//2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 2016: 430-436.
    [38] ANTUNES P J, DIAS G R, NUNES J P, et al. Finite Element Modelling of Thermoplastic Matrix Composite Gas Cylinders[J]. Journal of Thermoplastic Composite Materials, 2008, 21(5): 411-41. doi: 10.1177/0892705708089484
    [39] HONG J-H, HAN M-G, CHANG S-H. Safety evaluation of 70 MPa-capacity type III hydrogen pressure vessel considering material degradation of composites due to temperature rise[J]. Composite Structures, 2014, 113: 127-33. doi: 10.1016/j.compstruct.2014.03.008
    [40] RAMIREZ J P B, HALM D, GRANDIDIER J-C, et al. A fixed directions damage model for composite materials dedicated to hyperbaric type IV hydrogen storage vessel–Part II: Validation on notched structures[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13174-82. doi: 10.1016/j.ijhydene.2015.06.014
    [41] BOUVIER M, GUIHENEUF V, JEAN-MARIE A. Modeling and simulation of a composite high-pressure vessel made of sustainable and renewable alternative fibers[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11970-8. doi: 10.1016/j.ijhydene.2019.03.088
    [42] LIAO B, JIA L. Finite element analysis of dynamic responses of composite pressure vessels under low velocity impact by using a three-dimensional laminated media model[J]. Thin-walled structures, 2018, 129: 488-501. doi: 10.1016/j.tws.2018.04.023
    [43] HU Z, CHEN M, PAN B. Simulation and burst validation of 70 MPa type IV hydrogen storage vessel with dome reinforcement[J]. International Journal of Hydrogen Energy, 2021, 46(46): 23779-94. doi: 10.1016/j.ijhydene.2021.04.186
    [44] BERRO RAMIREZ J P, HALM D, GRANDIDIER J-C, et al. 700 bar type IV high pressure hydrogen storage vessel burst – Simulation and experimental validation[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13183-92. doi: 10.1016/j.ijhydene.2015.05.126
    [45] ASTM D3039/D3039M-17: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials: [S]. West Conshohocken, PA: ASTM International, 2017.
    [46] ASTM D6641/D6641M-16: Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture: [S]. West Conshohocken, PA: ASTM International, 2016.
    [47] ASTM D3518/D3518M-18: Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate: [S]. West Conshohocken, PA: ASTM International, 2018.
    [48] ASTM D5528/D5528M-13: Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites: [S]. West Conshohocken, PA: ASTM International, 2013.
    [49] ASTM D7905/D7905M-19: Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites: [S]. West Conshohocken, PA: ASTM International, 2019.
    [50] WANG X, WANG Y, JI Y, et al. Modeling Progressive Damage and Failure of Single-Lap Thin-Ply-Laminated Composite-Bolted Joint Using LaRC Failure Criterion[J]. Materials (Basel), 2022, 15(22): 8123. doi: 10.3390/ma15228123
    [51] 肖磊. 计及纤维交叉起伏影响的复合材料缠绕气瓶爆破失效分析 [D]. 武汉: 武汉理工大学, 2022.

    Xiao L. Burst failure analysis of composite wound cylinder considering the influence of fiber crossover and undulation [D]. Wuhan: Wuhan University of Technology, 2022 (in Chinese).
    [52] 张杰, 蒋文杰, 杨锐, et al. 70 MPa碳纤维缠绕储氢气瓶结构设计与力学性能研究[J]. 压力容器, 2023, 40(3): 28-37. doi: 10.3969/j.issn.1001-4837.2023.03.005

    Zhang J, JIANG W J, YANG R, et al. Study on structural design and mechanical properties of 70 MPa carbon fiber wound hydrogen storage cylinder[J]. Pressure Vessel Technology, 2023, 40(3): 28-37 (in Chinese). doi: 10.3969/j.issn.1001-4837.2023.03.005
    [53] 查燕. Ⅳ型储氢瓶塑料内胆坍塌失稳机理数值仿真研究 [D]. 北京: 北京化工大学, 2022.

    Cha Y. Numerical simulation research on the collapse and instability mechanism of the plastic liner of type IV hydrogen storage vessel [D]. Beijing: Beijing University of Chemical Technology, 2022 (in Chinese).
    [54] 中国国家标准化管理委员会. 水压爆破试验方法: GB/T 15385-2022 [S]. 北京: 中国标准出版社, 2022.

    Standardization Administration of the People’s Republic of China. Method for hydraulic burst test of gas cylinder: GB/T 15385-2022 [S]. Beijing: China Standards Press, 2022(in Chinese).
  • 加载中
计量
  • 文章访问数:  29
  • HTML全文浏览量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-03
  • 修回日期:  2024-07-23
  • 录用日期:  2024-07-28
  • 网络出版日期:  2024-08-30

目录

    /

    返回文章
    返回